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ABSTRACT: Transformers are considered as the significant contributors to the efficient transmission and 

distribution of electrical energy. The ability to change the voltage and current levels in inverse proportion 

help to reduce the conductor losses. However, today’s stringent requirements for more significant 

efficiency markings turn attention to the efficiency of individual components in a power system. 

Therefore, a great deal of effort is being placed to maximize the efficiency of the transformers without 

compromising their fundamental function. This is a complex problem and requires the use of advanced 

design tools. Metaheuristic methods developed in recent years are being used in electrical engineering, 

where they provide savings in design time and great success in finding the optimum solution. In this 

study, we have used the Particle Swarm Optimization (PSO), the Simulated Annealing (SA), and the Tree 

Seed Algorithm (TSA) methods, respectively. The objective is to develop a design methodology for three-

phase dry-type transformers and to maximize their efficiency. The results of the three algorithms are 

compared to validate the optimum solution.  For the demonstration of the process, a three-phase 100 kVA 

dry-type transformer is used. After the mathematical model of the transformer is created, the transformer 

parameters, current density (s), and transformer iron cross-section acceptability (C) are optimized.  As a 

result, it has been observed that the efficiency of transformers can be increased beyond what is achieved 

with conventional techniques. The efficiency has been optimized and increased from 97.5% to 98.44%. 
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Üç Fazlı Kuru Tip Transformatör Verimliliği İçin Meta Sezgisel Algoritma Tabanlı Yaklaşımlar 

 

ÖZ: Transformatörler, elektrik enerjisinin verimli iletimi ve dağıtımına önemli katkı sağlayan unsurlar 

olarak kabul edilir. Gerilim ve akım seviyelerini ters orantılı olarak değiştirme yeteneği, iletken 

kayıplarının azaltılmasına yardımcı olur. Bununla birlikte, günümüzün daha önemli verimlilik 

işaretlerine yönelik katı gereksinimleri, bir güç sistemindeki bireysel bileşenlerin verimliliğine dikkat 

çekiyor. Bu nedenle, temel işlevlerinden ödün vermeden transformatörlerin verimliliğini en üst düzeye 

çıkarmak için büyük çaba sarf edilmektedir. Bu karmaşık bir sorundur ve gelişmiş tasarım araçlarının 

kullanılmasını gerektirir. Son yıllarda geliştirilen meta-sezgisel yöntemler, tasarım süresinde tasarruf ve 

optimum çözümü bulmada büyük başarı sağladıklarından elektrik mühendisliğinde kullanılmaktadır. Bu 

çalışmada sırasıyla Parçacık Sürü Optimizasyonu (PSO), Benzetimli Tavlama (SA) ve Ağaç Tohum 

Algoritması (TSA) yöntemlerini kullandık. Amaç, üç fazlı kuru tip transformatörler için bir tasarım 

metodolojisi geliştirmek ve verimliliklerini en üst düzeye çıkarmaktır. Üç algoritmanın sonuçları, 

optimum çözümü doğrulamak için karşılaştırılır. Prosessin gösterimi için üç fazlı 100 kVA kuru tip bir 
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transformatör kullanılır. Transformatörün matematiksel modeli oluşturulduktan sonra transformatör 

parametreleri, akım yoğunluğu (s) ve transformatör demir kesiti kabul edilebilirliği (C) optimize 

edilmiştir. Sonuç olarak, transformatörlerin verimlerinin geleneksel tekniklerle elde edilenin üzerinde 

artırılabileceği gözlemlenmiştir. Verimlilik optimize edilmiş ve 0.975'ten 0.9844'e yükseltilmiştir. 

 

Anahtar Kelimeler: Optimizasyon, kuru tip transformatör, meta sezgisel algoritmalar, transformatör verimliliği. 

1. INTRODUCTION 

In recent years, increasing demand for eco-friendly and efficient energy systems has made dry-type 

transformers the top choice of many critical applications. The main motivation behind this choice is that 

the dry-type transformers are safer and more reliable compared to oil-immersed transformers.  They are 

the ideal choices for risky areas, industrial plants, environments that require safety, reliability, non-

flammable, and eco-friendly such as marine systems, transit applications, and urban areas. However, this 

type of transformer is more expensive and has voltage and power limitations. Therefore, the critical 

problem in overall design has become achieving an optimal solution for cost and efficiency. Many 

techniques have been developed and applied to reduce the cost and improve the efficiency of the dry-type 

transformers. In literature, optimum design of dry-type transformers has been studied using different 

optimization techniques such as Genetic Algorithm (GA), Artificial Bee Colony (ABC), Particle Swarm 

Optimization (PSO), Artificial Neural Network (ANN), and different nature-inspired and metaheuristic 

algorithms.  

In this section, an overview of the optimization studies of transformers is presented. These studies 

have used different optimization techniques and considered optimizing the cost, mass, efficiency, 

parameter, and temperature. The minimum cost and mass optimization analysis for a 1.5 kVA dry-type 

transformer was performed using the GA with two different mutation operators and compared against 

each other (Celebi, 2008). The genetic algorithm is one of the oldest known optimization methods for 

transformer design.  In (Smolka and Nowak, 2011), the GA and the Computational Fluid Dynamics (CFD) 

were used to optimize the coil and air-gap dimensions for hot-spot and average temperature. These results 

are compared with the existing devices. After the GA applications, the researcher in (Tosun et al., 2012) 

used the Tabu Search Algorithm to obtain the minimum weight for the maximum efficiency. They 

compare this method with the classic numerical calculation results for a 1.5 kVA three-phase transformer 

in terms of efficiency.  

Cost is an essential parameter during the design process in industry; therefore, mass optimization is 

a popular topic for studying; however, efficiency and dimension validation should be considered in terms 

of feasibility. The general objective of the studies is cost optimization with different techniques and 

evaluating the performance by comparing the results against each other (Cheema et al., 2013; Azizian et 

al., 2016; Patil and Kushare, 2016; Orosz et al., 2017; Gaikwad, 2018). (Cheema et al., 2013) uses four different 

methods for comparing and examining the result in terms of efficient thermal design. GA and SA were 

used to optimize the overall cost of the system for the real data of all types of transformers, such as oil-

immersed and dry-type in (Gaikwad, 2018). Then, GA, PSO, and ABC are also compared according to 

performance and process speed (Azizian et al., 2016). The Grey Wolf optimization technique was 

implemented for the first time in transformer optimization and compared to other optimization methods 

in (Orosz et al., 2017). Invasive Weed optimization was first time used in an industrial application with 

other metaheuristic methods (Aksu and Demirdelen, 2018). Another study used the Tree Pruning method 

for design optimization; a 200 MVA transformer was simulated with FEM (Soldoozy et al., 2018). 

Researchers optimized all design parameters in order to minimize both the losses and the cost. In 

(Demirdelen, 2018), the volume optimization and minimum-cost maximum efficiency optimization were 

performed using the Firefly algorithm (FA). It was used for the first time in volume calculation in this 

study. The PSO algorithm was used to decide the joint design of the transformer based on core 

performance, and a FEM model was created based on obtained parameters (Alyozbaky et al., 2019). 
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In other studies, up to now, they mainly used optimization algorithms such as Genetic Algorithm, 

ANN, surface respond, pattern search, honey bee mating, ant colony optimization for cost, thermal, loss, 

and mass optimization and compared their performances. Later, some tested their suitability with FEM, 

and some made measurements on existing transformers (Zhang et al., 2013; Orosz et al., 2020). All the 

literature review made in this paper is summarized in Table 1. It is seen that the efficiency analysis of 

transformers is the fundamental subject almost in every design optimization; what comes later is the 

optimization of cost, weight, volume, and thermal behavior, respectively. 

 

Table 1. Review summary of fundamental optimization studies made for transformers 
Ref. Year 

 

Cooling 

Type 

Objective 

Function 

Optimization 

Technique  

Methodology Conclusion 

(Celebi, 2008)  2008 Dry-

type 

Min-cost 

and mass 

Genetic 

Algorithm 

Optimized 𝐶 and 𝑠 

parameters with two 

different mutation 

operators 

Random and partial mutation 

operators are applied, and 

random mutation yields a 

better performance to get the 

minimum mass 

(Tosun et al., 

2012) 

2012 Dry-

type 

Min weight Tabu Search 

Algorithm 

Numeric Transformer 

formulation 

Comparing mathematical and 

optimization results within 

each other 

(Cheema et 

al., 2013) 

2013 Oil-type, Min cost Direct search, 

Differential 

Evolution, 

Simulated 

annealing, 

Random 

search, 

The hybrid approach is 

composed of multiple 

algorithms constrained 

optimization of the 

objective function. Four 

differently rated 

transformers were 

designed and tested. 

Design made by this 

optimization achieves lower 

magnetic flux density and 

current density. Optimization 

results have improved 

efficiency, and projected 

longer operational lifetimes, 

and so on. 

(Azizian et 

al., 2016) 

2016 Dry-

type 

Min cost GA, PSO, 

ABC 

Compared within each 

other in terms of 

design parameters and 

cost 

PSO is the best in terms of 

rapid convergence, accuracy, 

and simplicity of 

implementation  

(Patil and 

Kushare, 

2016) 

2016 Dry-

type 

low cost, 

low weight, 

small size 

FEM Optimized value of 

Inter-coil spacing or 

the insulation thickness 

Analysis of the Electric field 

stresses three variants of Inter-

coil insulation thickness using 

FEM by ElecNet software. 

(Orosz et al., 
2017) 

2017 Dry-

type 

Min cost Meta 

Heuristic, 

Brute Force 

Algorithm, 

PSO, Gray 

wolf 

optimization, 

These four techniques 

were compared to see 

the accurate solution in 

the case of core-form 

power transformers. 

The meta-heuristic algorithm 

gave more accurate results in 

a much shorter time than any 

other examined method. The 

grey wolf optimization 

algorithm had a better 

performance for low iterations 

than the particle swarm 

optimization. 

(Basak, 2017) 2017 Dry-

type 

Min cost Simulated 

Annealing 

and Pattern 

Search 

Finding optimal design 

parameters for low cost 

using effective 

methods 

SA has better optimal design 

parameters result for min-cost 

than a pattern search 

algorithm 

(Gaikwad, 

2018) 

2015 Oil-type, 

synthetic 

oil-type 

and Dry-

type 

Min cost GA and 

Simulated 

Annealing 

Insurance cost is 

optimized using GA to 

achieve economic 

benefits and optimal 

placement  

The working model  

optimized  placing,  rating,  

quantity considering average 

demand and gave a user-

friendly tool, optimize placing 

for  

getting cost-effective results in 

terms of different types of 

transformers. 

(Aksu and 

Demirdelen, 

2018) 

2018 Dry-

type 

Min weight 

and cost, 

max 

Firefly, 

Invasive 

Weed, Multi-

𝐶 and 𝑠 parameters are 

optimized 

PSO finds the fastest way to 

the optimal solution. FA 

algorithm calculated weight 



892                                                                                                                             S. KUL, A. CELTEK,  I. ISKENDER 

efficiency Objective 

Algorithms 

priority; the IWO algorithm 

calculated weight and 

efficiency with the same 

priority. 

(Soldoozy et 

al., 2018) 

2018 Oil- type Min weight 

and cost, 

design 

optimization 

Tree Pruning 

Method 

Genetic algorithm, 

unrestricted 

population size 

evolutionary multi-

objective optimization, 

and heuristic method 

were compared. 

6.5%, 5.9% and 2.1% reduced, 

respectively. 

(Demirdelen, 

2018) 

2018 Oil type Volume 

optimization 

Firefly 

optimization 

Optimization of design 

parameters of 

transformer and 

comparison with GA 

results 

Obtained results with FA were 

better than those obtained 

with GA. FA was also faster. 

(Alyozbaky et 

al., 2019) 

2019 Oil-type Min loss PSO Different joint types 

and materials were 

used to obtain the 

optimal design 

parameter. 

An interaction was observed 

between Matlab code for PSO 

and the ANSYS software. The 

first results generated by the 

PSO were used. The losses, 

core, and oil temperature were 

measured using the ANSYS 

software. 

(Demirdelen, 

2019) 

2019 Dry-

type 

Optimum 

efficiency 

Firefly 

optimization 

Optimum efficiency 

was evaluated 

depending on the 

losses, winding size, 

and the𝐶 coefficient. 

Magnetic and thermal 

analysis concerning the 

lifetime of the 

transformer were done 

Single Phase Transformer was 

designed and optimized based 

on design parameters, and the 

result showed that optimal 

efficiency has a significant 

impact on the temperature 

behavior 

(Rodríguez, et 

al., 2019) 

2019 Dry-

type 

Geometric 

parameters 

were 

optimized to 

reduce 

power loss 

Artificial Bee 

algorithm 

Power loss and volume 

were optimized to get 

min cost 

Six design parameters were 

optimized and compared with 

ABC, ant colony, honey bee 

mating, simulated annealing 

optimization algorithms 

(Esenboga 

and 

Demirdelen, 

2020) 

2020 Dry-

type 

Min weight 

and cost, 

max 

efficiency 

PSO based on 

ANN 

𝐶 and 𝑠 parameters are 

optimized 

Weight and efficiency values 

were obtained, and FEM 

analysis 

(Wang et al., 

2020) 

2020 Dry-

type 

Min loss 

and cost 

GA The cross-sectional 

area of the core and 

length of the winding 

coil are optimized to 

minimize loss and cost 

The relationship between loss, 

cost, and design parameters 

was analyzed, an optimization 

model was established with 

min loss and cost optimization 

aim.  

(Orosz et al., 
2020) 

2020 Oil-

immerse

d 

Min total 

cost 

NSGA II and 

FEM 

The study presents a 

novel, evolutionary 

algorithm-based 

transformer 

optimization to 

determine the optimal 

conductor shape for 

the windings during 

this examined design 

stage. 

The precision of the analytical 

formulas used is about 5% less 

compared to FEM-based 

calculations. This difference is 

acceptable as less than 1%. 

In this paper, the optimization problem is defined mathematically by expressing the objective function 

in terms of the analytical formulas used by manufacturers for the electromagnetic design of transformers. 
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We have come across many brand-new research and publications that propose novel metaheuristic 

algorithms for optimization during our literature review study so far. Our motivation is to quickly adopt 

this technology to our field of expertise and improve dry-type transformers. Verified performance via 

Finite Element Analysis (FEA) and computer simulation will guide designers and accelerate the design of 

future high-performance transformers. Therefore, in this study, the Tree Seed Algorithm (TSA) 

optimization method, which is a newly developed optimization algorithm, is used in dry-type transformer 

optimization for the first time. The results are compared with other metaheuristics techniques for 

performance verification. 

Finite Element Analysis of the transformer has been simulated using the optimized design parameters 

for electromagnetic behavior to validate the result. This application allows us to test the optimization 

results faster. If the results do not match the practical application, optimization can be repeated. 

It is possible to summarize the main objectives of this study as follows: 

 

 First time application of the Tree Seed Algorithm to a dry-type transformer design optimization 

problem 

 Comparing results in terms of accuracy, process speed, and performance with other state-of-the-art 

transformer optimization methods  

 Analysis of the transformer via FEM for the validation of optimization results 

The rest of the paper is organized as follows. Section 2 describes the mathematical design of a three-phase 

dry-type transformer. The methodology of the optimization technique and objective functions have been 

explained in Section 3. The optimization results and discussion are shown in Section 4. The conclusions 

are summarized in Section 5. 

2. MATHEMATICAL DESIGN OF THREE-PHASE DRY-TYPE TRANSFORMERS 

The mathematical model of the three-phase dry-type transformer is obtained, and the boundary 

conditions of objective function have been determined according to reference (Tosun et al., 2012). Using 

these boundary conditions and objective functions, optimization will be performed according to current 

density (𝑠) and transformer iron cross-section acceptability (𝐶) values. 

 
2.2 < 𝑠 < 3.5 (A/𝑚𝑚2) 

5.9 < 𝐶 < 10.6 (𝑐𝑚2𝐽𝑜𝑢𝑙𝑒−1/2) 

 

𝑆 (kVA), 𝑈1 and 𝐼 are parameters of the transformer, and they are the apparent power, excitation or 

winding voltage, and the current, respectively. 

 

𝑆 = √3𝑈1𝐼 (1) 

 

𝑞𝑓𝑒 is the iron cross-section of the core, and 𝑓 is a fundamental frequency of the system.  

 

 𝑞𝑓𝑒 = 𝐶√
1000𝑆

3𝑓
 (2) 

 

The radius of the iron core (𝐷) is obtained as: 

 

𝐷 = √
4 𝑞𝑓𝑒

(0.677)𝜋
 (3) 

Primary and secondary winding turn ratios are defined in 𝐸𝑞. 4. Here 𝐵 is the magnetic flux density. 

 

 𝑁1 =
𝑈1

√34.44𝑓𝐵𝑞𝑓𝑒10−8 (4) 
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 𝑁2 =
𝑈2

√34.44𝑓𝐵𝑞𝑓𝑒10−8 (5)     

 

Cross-section of the transformer primary and secondary winding is obtained respectively: 

 

𝑞1 =
𝐼1

𝑠
 (6) 

 

𝑞2 =
𝐼2

𝑠
 (7) 

 

𝐿𝑠 is the height of windings, and 𝐴𝑠 is specific amper winding as 387 A /cm for a 100 kVA transformer 

given in (Aksu and Demirdelen, 2018): 

 

𝐿𝑠 = 2
𝑁1𝐼1

𝐴𝑠
 (8) 

 

𝑎 is a window width for the core type transformer and 𝑘𝑐𝑢 is defined as a window copper fill factor.   
 

𝑎 = (0.04)
𝑁2𝑞2

(0.1)𝑘𝑐𝑢𝐿𝑠
 (9) 

 

to obtain average winding lengths: 

 

𝐿𝑚1
= 𝜋(𝐷 + 3.32) (10) 

 

𝐿𝑚2
= 𝜋(10𝐷 + 8 + 𝑎2) (11) 

 

After calculating winding lengths, winding resistances can be calculated, and 𝜌0 =2.65x10-8 Ωm 

denotes electric resistivity for aluminium.   

 

𝑟1 = 𝜌0
𝐿𝑚1𝑁1

𝑞1
 (12) 

 

𝑟2 = 𝜌0
𝐿𝑚2𝑁2

𝑞2
 (13) 

 

𝑟1 and 𝑟2 are used to calculate winding losses: 

 

𝑃𝑐𝑢1 = 3𝐼1
2𝑟1 (14) 

 

𝑃𝑐𝑢2 = 3𝐼2
2𝑟2𝑘 (15) 

 

Total winding losses can be given as below 

 
𝑃𝑐𝑢 = 𝑃𝑐𝑢1 + 𝑃𝑐𝑢2 (16) 

 

After determining the winding losses, the next step is calculating iron (core) losses. To obtain iron 

losses, weights of legs and yokes, specific yoke iron loss (𝑝𝑓𝑒𝑗) and specific leg iron loss (𝑝𝑓𝑒𝑏) must be 

calculated separately.  

 

𝑝𝑓𝑒𝑏 = 𝑝10𝜉2𝐵
2  (17) 
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𝑝10  and 𝜉
2
 are defined as the loss factor and the additional loss factor, respectively. The detailed 

definitions of these constants can be seen in (Aksu and Demirdelen, 2018).  𝛾
𝐹𝑒

=7600 kg/m3 is the iron-

specific weight constant. 

   

𝐺𝑓𝑒𝑏 = 3𝛾𝐹𝑒𝑞𝑓𝑒𝐿𝑠10−3   (18) 

 

𝐺𝑓𝑒𝑏  is the total weight of the transformer legs. The total iron losses for the legs can be obtained: 

 

𝑃𝑓𝑒𝑏 = 𝐺𝑓𝑒𝑏𝑝𝑓𝑒𝑏    (19) 

 

𝑞𝑓𝑒𝑗  is yoke cross-section area and it should be 20% more, therefore 𝑞𝑓𝑒𝑗=1.2𝑞𝑓𝑒 .  

 

𝐺𝑓𝑒𝑗 = 3𝛾𝐹𝑒𝑗𝑞𝑓𝑒𝑗2(2𝑀 + 0,8𝐷)10−3            (20) 

 

Here 𝑀 = 0.851𝐷 + 0.1𝐿𝑠𝐵𝑗  is the yoke flux density, and it should be 20% less than flux density in the 

limbs.  𝐵𝑗 =
𝐵

1.2
 .      

        

𝑝𝑓𝑒𝑗 = 𝑝10𝜉2𝐵𝑗
2   (21) 

 

Iron loss of yokes is shown in 𝐸𝑞. 22. 

 

𝑃𝑓𝑒𝑗 = 𝐺𝑓𝑒𝑗𝑝𝑓𝑒𝑗   (22) 

    

Total iron losses of the transformer in terms of Watt is obtained: 

 

𝑃𝑓𝑒 = 𝑃𝑓𝑒𝑏 + 𝑃𝑓𝑒𝑗   (23) 

   

The total losses of the transformer are shown in 𝐸𝑞. 24. 

 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑓𝑒 + 𝑃𝑐𝑢   (24) 

 

End of the calculations, the efficiency of the transformer can get as a percentage by 𝐸𝑞. 25. The main 

target of this paper is to maximize the efficiency of the transformer. Therefore,𝐸𝑞. 25 is used as an objective 

function of three optimization methods for this study. 

 

𝜂 =
𝑆

𝑆+𝑃𝑡𝑜𝑡𝑎𝑙
   (25) 

 

If we express the optimization parameters 𝑥1 = 𝑠; 𝑥2 = 𝐶; 𝑥3 = 𝜂: 
 

𝑋 = {2.2 < 𝑠 < 3.5, 5.9 < 𝐶 < 10.6, 0.9 < 𝜂 < 1 } 
 

This study applies the optimization process by considering these limit values to a 100 kVA transformer 

for validation. The optimized parameters have been used to redesign the transformer and seen the 

feasibility of the study. 
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Table 2. General specifications and dimensions of three-phase dry-type transformer 

Quantity Values 

Power Level 100 kVA 

Voltages 10/0.4 kV 

Turns 1819/42 

Window width 245 mm 

Diameter of the iron core 146 mm 

Primary winding length 450 mm 

Secondary winding length 490 mm 

Iron cross-section 14740 mm2 

Window length 580 mm 

Core loss (𝑃𝑐𝑜𝑟𝑒𝑙𝑜𝑠𝑠  ) 400 W 

Copper losses (𝑃𝑐𝑢) 2000 W 

 

 
Figure 1. Transformer ANSYS/Maxwell model 

 

3. THE METHODOLOGY OF OPTIMIZATION TECHNIQUES 

3.1. Simulated annealing  

The simulated annealing (SA) algorithm is a multi-dimensional optimization method inspired by the 

metallurgical annealing process. Providing the appropriate property changes with the solid-state 

temperature changes in metal materials with one or several connected processes. To avoid metastable 

states caused by blast cooling, metals are usually cooled rather slowly. Thus to metals, time is given to 

reach a stable, structurally robust, and low-energy level. 

The same general process is used in the simulated annealing algorithm. Here the temperature value 

is assigned to a function, and optimization causes a temperature drop. Heat treatment (Simulated 

Annealing) (SA) is a random search algorithm developed by taking advantage of the analogy between 

cooling and freezing a metal to its minimum energy crystal structure and investigating the minimum in a 

more general system. This analogy forms the basis of a combinatorial optimization technique. 

Simulated annealing was developed by Kirkpatrick et al. in 1983 to solve nonlinear problems 

(Kirkpatrick et al., 1983). It has attracted the attention of many researchers because of its simple application 

and wide application area (Bendaoud et al., 2019; Holzschuh et al., 2020).  The most important advantage 

of the algorithm is that it can avoid getting stuck in local minimums over other methods. 

The pseudocode that can be used to find the function minimum by simulated annealing is as follows. 

1. Choose the initial value of T. 

2. Calculate 𝑓( 𝑥𝑖⃗⃗⃗   ) for 𝑥𝑖 

3. Calculate 𝑓( 𝑥𝑖⃗⃗⃗   ) for 𝑥𝑖+1 

4. 𝑖𝑓 𝑓( 𝑥𝑖+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) < 𝑓( 𝑥𝑖⃗⃗⃗   ) , movement is accepted, otherwise;       

a.   𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝜔 = 𝑒𝑥𝑝[(𝑓( 𝑥𝑖+1⃗⃗ ⃗⃗ ⃗⃗  ⃗ ) − 𝑓( 𝑥𝑖⃗⃗⃗   ))/𝑇] 

b. 𝑟𝑎𝑛𝑑𝑜𝑚 𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 < 𝑟 < 1 
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c.   𝑖𝑓 𝜔 > 𝑟 the solution is accepted, otherwise rejected 

5. Calculate the new 𝑥𝑖+1. 

6. Find the minimum fitness. 

7. Decrease T 

8. If the stop criteria is done, go to step 10 

9. Go to step 2 and apply for a new T 

10. Finish 

 

Where T is the temperature value, and f(x) is an objective function. 𝑥𝑖 and 𝑥𝑖+1 represent the solution 

candidate and the relationship between 𝑥𝑖 and 𝑥𝑖+1 like in 𝐸𝑞. 26: 

 

𝑥𝑖+1 = 𝑥𝑖 + 𝑄𝑢     (26) 

 

Where 𝑄𝑢 is a matrix that controls the step size distribution. 

3.2. Particle swarm optimization 

The PSO, developed by Eberhart and Kennedy in 1995, is a population-based metaheuristic 

optimization technique (Eberhart and Kennedy, 1995).  PSO, which birds inspire, is assumed that each 

particle can update its position and velocity by using global and local best values. Many researchers have 

applied PSO to their study because of its simple application (Latchoumi et al., 2019; Celtek et al., 2020). The 

position and velocity equations for a conventional PSO are as follows: 

 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1(𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2(𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡))  (27) 

 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)     (28)  
 

 

Where 𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡,  𝑥𝑖(𝑡), 𝑣𝑖(𝑡 + 1) are the local best particle, the global best particle, the position of 

particle 𝑖 in iteration 𝑡, the velocity of particle 𝑖 in iteration 𝑡 + 1, respectively. 

 

In 𝐸𝑞. 27 𝑎𝑛𝑑 28, 𝑡, 𝑣𝑖(𝑡) and 𝑥𝑖(𝑡) indicate respectively the number of iterations, the speed of particle 

i, and the position of particle i.  The 𝑐1 and 𝑐2 are called acceleration coefficients where 0 < 𝑐1, 𝑐2 ≤ 2. The 

inertia weight 𝜔𝜖[0.8; 1.2] and 𝜔 set to 1 in the original PSO update speed equation. Inertia weight 

indicates how much of the previous speed is taken from the previous time step. Shortly, inertia weight 

was used to balance the global and local search capability of the PSO. Large inertia weight makes the 

global search easier, while small weight makes the local search easier. Inertia weight provides the balance 

between local and global search, and as a result, the optimal results are achieved with less iteration. 

Therefore, the determination of the appropriate value of inertia weight is very critical.  

3.3. Tree seed algorithm 

Tree Seed algorithm (TSA) is one of the heuristic algorithms developed inspired by nature. In this 

algorithm, the positions of trees and seeds in a certain area are considered as an optimization problem 

(Kiran, 2015). Each seed production is based on the best or randomly selected tree location in the tree 

population. The computational process starts by determining the starting positions of the trees using the 

following 𝐸𝑞. 29; 

 

𝑇𝑖,𝑗 = 𝐿𝑗,𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1)(𝐻𝑗,𝑚𝑎𝑥 − 𝐿𝑗,𝑚𝑖𝑛)     (29) 
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Where 𝑖 = 1,2… ,𝑁 and 𝑗 = 1,2… , 𝐷, N is the tree number, D is the dimension.  𝑇𝑖,𝑗 represents the 

position of the tree, 𝐻𝑚𝑎𝑥  and 𝐿𝑚𝑖𝑛  represent the top limit and bottom limit, respectively. 

After the tree positions are generated, each location optimization problem is evaluated according to 

the objective function. Seed production is carried out in two different ways for each tree. This selection is 

determined by the most basic control parameter of the algorithm, defined as search tendency (ST). If the 

random value generated is lower than this parameter, 𝐸𝑞. 30 is used, and if it is greater, the seed 

production mechanism is in 𝐸𝑞. 31  is used. 
 
𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝑟𝑎𝑛𝑑(−1,1)(𝐵𝑗 − 𝑇𝑟,𝑗)   (30) 

 

𝑆𝑖,𝑗 = 𝑇𝑖,𝑗 + 𝑟𝑎𝑛𝑑(−1,1)(𝑇𝑖,𝑗 − 𝑇𝑟,𝑗)   (31) 

 

 

Where 𝑆𝑖,𝑗 is the jth dimension of the ith seed, 𝐵𝑗  is the jth dimension of the best tree, and 𝑇𝑟,𝑗 is the 

jth dimension of the rth seed, which is random.  

 

After the seeds produced are evaluated according to the purpose function, those with better suitability 

from the current tree position replace the trees in the next generation. The seed production and 

development process continues until the maximum number of fitness evaluations (FEs) is reached. 

4. RESULTS AND DISCUSSIONS 

In this study, we have aimed to design a 100 kVA dry-type transformer in such a way that the 

efficiency is maximum. As it is suggested in the references that handle the efficiency issue, the core quality 

factor (C) and the current density (s), which are the basic design parameters,  are selected as the 

optimization parameters (Celebi, 2008; Tosun et al., 2012; Aksu and Demirdelen, 2018). We formulated the 

efficiency as the objective function and updated the selected parameters to maximize it (𝐸𝑞. 25).  

Other design parameters used in the transformer design are given in Table 3. 

 

Table 3. Parameters used in transformer design (Aksu and Demirdelen, 2018) 

Symbols Parameters Value 
𝑝10 Loss factor 1.3 

𝜀2 Additional loss factor 1.15 

B Flux density [1.5-1.7] T 

𝑈1 Primary winding voltage 10000 V 

𝑈2 Secondary winding voltage 400 V 

𝐴𝑠 Specific ampere winding 387 A/cm 

 

Losses are directly related to the type of transformer to be designed. In this study, the dry-type 

transformer has been optimized by PSO, TSA, and SA methods. It is aimed to obtain the maximum 

efficiency for each method. The calculation for each method was carried out in 50 iterations. Each 

calculation is obtained by running the algorithms 30 times because of the stochastic nature of the methods 

used in this study. 

The results of optimization methods are given in Figures 2, 3, and 4. The horizontal axis and vertical 

axis represent the iteration number and objective function, respectively. The study aims to maximize 

efficiency while simultaneously obtaining the optimum s and C value of a three-phase dry-type 

transformer. Thus the objective functions show efficiency. Algorithms optimize the C and s parameters; 

thus, the transformer losses are minimized, and efficiency is maximized. The values used to plot the curves 

in three figures are the average values of the multiple runs (30 runs).  
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Figure 2 shows the SA optimization results. As seen in Figure 2, the SA finds out the best value on the 

fourth iteration. The best value found out by SA is 0.981. There is a slight fluctuation between iteration 5 

and 50. We assume that it is because of the stochastic structure of the SA.  

The result of the PSO technique is given in Figure 3. The best value, which is 0.9838, is obtained on the 

fifth iteration. According to the results of the first iteration, the PSO gives better results than SA. The PSO 

starts the optimization process with 0.9822, while SA begins with about 0.85. These results show that the 

PSO method searches the solution space better than SA. 

The results of TSA are given in Figure 4. The best value obtained by TSA is 0.98439, which is found in 

the third iteration. There is no fluctuation between the 3rd iteration and the 50th iteration. Therefore, it 

can be said that TSA generates very stable results. Therefore, the maximum efficiency of the transformer 

is obtained as η = 0.98439 at C = 9.0196 and s = 2.501. 

The maximum efficiencies obtained by SA, PSO, and TSA optimization algorithms are listed in Table 

4. The transformer used as a prototype and the fem model given in Figure 1 above is expressed as Model 

in Table 4. 

Time-dependent FEM analysis has been made with the basic design parameters of the transformer, 

and current-voltage graphs have been obtained, as seen in Figure 5. In addition, the iron and copper losses 

are shown separately in Figure 6. These values are the analysis results obtained with basic design 

parameters before the optimization. 

After obtaining the optimum C and s values with SA, PSO, and TSA algorithms, transformer 

dimensions were changed using each method's optimum C and s values. Therefore, six separate new 

simulations (three for core and three for copper losses) have been performed. Table 5 shows the new 

efficiency values obtained from the analysis of the three-phase dry-type transformer designed with the 

optimum C and s values calculated according to the optimization methods. 

 

 
Figure 2. Change of objective function based on SA 
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Figure 3. Change of objective function based on PSO  

 

 
Figure 4. Change of objective function based on TSA 

 

Table 4. Efficiency results of optimization techniques 

Algorithms Efficiency 

Model 0.9750 

SA 0.9810 

PSO 0.9838 

TSA 0.9844 
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(a) (b) 

Figure 5. a) Excitation voltage b) Primary current 

 

  
 

(a)  
 

(b) 

Figure 6. a) Winding Losses b) Core losses 

 

Table 5. Efficiency result of FEM modeling with optimized parameters 

Algorithms Efficiency 

Model 0.9750 

SA 0.9800 

PSO 0.9803 

TSA 0.9815 

 

5. CONCLUSIONS 

In this study, a three-phase 100 kVA dry-type transformer was modeled and optimized to obtain 

maximum efficiency. Then the electromagnetic analyses are performed by using the ANSYS/Maxwell 

program. Moreover, the metaheuristic algorithms depending on the core coefficients (𝐶 and 𝑠) are used to 

obtain the highest transformer efficiency; the transformer is optimized by the SA, PSO, and TSA methods. 

The TSA is both the quickest and the best in finding the maximum efficiency among these three 

algorithms. The maximum efficiency of the transformer is obtained as 𝜂 = 0.98439 at 𝐶 = 9.0196 and 𝑠 = 

2.501 parameter values. After optimization, the transformer design parameters are re-calculated using 

these optimized numbers. Maxwell analysis was performed, and optimization efficiency results and 

analysis results were compared to each other. The relative differences of these two efficiency results are 

approximately 0.38%, 0.29%, and 0.1% for PSO, TSA, and SA, respectively. In conclusion, we have reached 
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our goal of creating a guide for transformer manufacturers and designers on optimizing the design 

parameters for maximum efficiency in dry-type transformers. 
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