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Abstract: The novel Coronavirus COVID-19 emerged in Wuhan, China in
December 2019. COVID-19 has rapidly spread among human populations
and other mammals. The outbreak of COVID-19 has become a global chal-
lenge. Mathematical models of epidemiological systems enable studying and
predicting the potential spread of disease. Modeling and predicting the evo-
lution of COVID-19 epidemics in near real-time is a scientific challenge,
this requires a deep understanding of the dynamics of pandemics and the
possibility that the diffusion process can be completely random. In this paper,
we develop and analyze a model to simulate the Coronavirus transmission
dynamics based on Reservoir-People transmission network. When faced with
a potential outbreak, decision-makers need to be able to trust mathematical
models for their decision-making processes. One of the most considerable
characteristics of COVID-19 is its different behaviors in various countries and
regions, or even in different individuals, which can be a sign of uncertain and
accidental behavior in the disease outbreak. This trait reflects the existence of
the capacity of transmitting perturbations across its domains. We construct a
stochastic environment because of parameters random essence and introduce
a stochastic version of the Reservoir-People model. Then we prove the unique-
ness and existence of the solution on the stochastic model. Moreover, the
equilibria of the system are considered. Also, we establish the extinction of the
disease under some suitable conditions. Finally, some numerical simulation
and comparison are carried out to validate the theoretical results and the
possibility of comparability of the stochastic model with the deterministic
model.
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1 Introduction

Mathematical biology is one of the most interesting research areas for applied mathematicians.
In these research areas, modeling infectious diseases are considered as an important tool to describe
the dynamics of epidemic transmission [1—11]. These models play an important role in quantifying the
efficient control and preventive measures of infectious diseases. Different scholars used various types
of mathematical models in their analysis.

The ongoing Coronavirus disease 2019 (COVID-19) outbreak, emerged in Wuhan, China at the
end of 2019 and increased the attention worldwide [12]. COVID-19 has rapidly spread among human
populations and other mammals. Additionally, COVID-19 can be capable of spreading from person
to person and between cities. Modeling and predicting the evolution of COVID-19 epidemics in near
real-time is a scientific challenge [13], this requires a deep understanding of the dynamics of pandemics
and the possibility that the diffusion process can be completely random [14]. Nowadays, a large
number of models are used to simulate the current COVID-19 pandemic. One of the common ways for
analyzing the dynamic of COVID-19 is the use of ordinary differential equations (ODEs), but there
are some limitations compared to stochastic models. Recently, many works related to the ODEs have
been published (see, for example [15-19]). Furthermore, Tahir et al. [20] developed a mathematical
model (for MERS) in form of a nonlinear system of differential equations. Chen et al. [21] developed
a Bats-Hosts-Reservoir-People (BHRP) transmission network model for simulating the phase-based
transmissibility of Coronavirus, which focus on calculating R,. Additionally, Hashemizadeh et al. [22],
presented a numerical solution for the mathematical model of the novel Coronavirus by the application
of alternative Legendre polynomials to find the transmissibility of COVID-19 based on Reservoir-
People network model. Also, Gao et al. [23] presented a numerical solution for the BHRP transmission
network model for simulating the transmissibility of Coronavirus.

The deterministic models make assumptions about the expected value of parameters in the
future, but they ignore the variation and fluctuation about the expected value of parameters. One
of the main benefits of the stochastic models is that they allow the validity of assumptions to
be tasted statistically and produce an estimate with additional degree of realism. However, there
are times when stochastic output cannot be thoroughly reviewed and compared to expectations.
Stochastic models have advantages but they are computationally quite complex to perform and need
careful consideration of outputs. The parameters of deterministic models governing the equations
are supposed to be known and therefore the solutions are often unique. This limitation poses a
practical problem because nature is intrinsically heterogeneous and the system is only measured at
a discrete (and often small) number of locations. Stochastic models can be regarded as a tool to
combine deterministic models, statistics and uncertainty within a coherent theoretical framework.
So, this idea leads researchers to consider the stochastic models [3, 24—35]. On the other hand, one
of the most considerable characteristics of COVID-19 is its different behaviors in various countries
and regions, or even in different individuals, which can be a sign of uncertain and accidental behavior
in the disease outbreak. This trait reflects the existence of the capacity of transmitting perturbations
across its domains. In past studies, [10-11, 29, 30, 35-39] have been considered a stochastic form of
the COVID-19 outbreak.

In this paper, we establish a model for investigation of the COVID-19 transmission based on
a stochastic version of the Reservoir-People network with additional degree of realism. Also, it is
important to note that an implication of our work is that the numerical simulations demonstrate
the efficiency of our model and the possibility of comparability of the stochastic model with the
deterministic model. We believe that the stochastic model established by this study is useful for
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researchers and scientists in making informed decisions and taking appropriate steps to dominance the
COVID-19 disease. We conduct numerical simulations to support the theoretical findings. Numerical
simulations demonstrate the efficiency of our model. We hope that the stochastic model established
by this study will be useful for researchers and scientists in making informed decisions and taking
appropriate steps to dominance the COVID-19 disease. The mathematical analysis of this stochastic
model can be investigated in future researches and the simulation results can be extended to other
countries involved in the global outbreak. This paper could lead to other studies that have included
random and uncertainty of the model and can be more consistent with the reality of Coronavirus
transmission. This paper is organized as follows. In Section 2, preliminaries are presented. In Section
3, the stochastic version of the Reservoir-People network model of transmission is presented. Section 4
is devoted to present dynamical analysis of solution. Finally, in order to validate our analytical results,
numerical simulations are presented in Sections 5 and 6.

2 Preliminaries

Let (£2,{F.}.~0,P) be a complete probability space with a filtration {F}., satisfying the usual
conditions. We also let R? = {x € R’ : x; > 0,1 < i < d}, d—dimensional stochastic differential
equation can be expressed as follows:

dX(@®) =f,X@)dt + g(t,X(0))dB(?), t > t,, (N

with initial value X (t,) = X,, where f(¢,x) is a function in R’ defined on [¢,, + 00) x R, g(z,x) is a
d x m matrix and B(¢) is an m—dimensional standard Brownian motion defined on the probability
space (£2,.F,,P), also f.,g are locally Lipschitz functions in x.

We define the differential operator L associated with Eq. (1) by [39],

2
Tx,0x;

If L acts on function V in C*>'(R? x [f,,00)), then we obtain

I 3 I,
L= o+ ;ff(t’x)a_x,- +5 Z [g" (1,x)g(2,x)]

ij=

LV (t,x) = V.(t,x) + V.(t.x)f (t,x) + %lmce[gr(t,X) Ve (t,2)g(2,X)],

where

oV oV *V

Vrz—, V¥= —T’sz qo a. Jdxd:
ar’ - (axlaxz...ax(,) - (3xi33€;)dd

The generalized It6 formula implies that

dV(t,x) = LV (t,x)dt + V.(t,x)g(t,x)dB(?).

3 COVID-19 Model

In this work, we consider a model of 2019-novel Coronavirus (COVID-19) named as Reservoir-
people model. This model is the simplified and normalized form of Bats-Hosts-Reservoir-People
model [21]. Assuming S, and E, refer to the number of susceptible and exposed people, /, denotes
symptomatic infected people, 4, denotes asymptomatic infected people, R, denotes removed people
including recovered and dead people and W denotes the COVID in the reservoir (the seafood market).
These variables have the unit of number which are considered at time 7. Also, the model parameters
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and their definitions are given in Tab. 1. Furthermore, the pictorial diagram indicating of the model is

shown in Fig. 1.

Table 1: Model parameters and their definitions

Parameter

Description

=

N;<\|»—§|_‘§

(=2
Z;.: mly_‘~3§|'_‘$|’_‘

The birth rate parameter of people
The death rate parameter of people

The incubation period of people

The infectious period of asymptomatic infection of
people

The infectious period of symptomatic infection of
people

The latent period of people

The lifetime of virus in W

The proportion of asymptomatic infection of people
The shedding coefficient from 4, to W

The shedding coefficient from 7, to W

The total number of people

The transmission rate from 7, to S,

The transmission rate from W to S,

el
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Figure 1: The model’s flow diagram

In this paper, we assume n, and m, as the rate of people moving into and moving out from a region
per day and the unit of measuring is (individual/day). The incubation period (w,) is the time between
infection or contact with the agent and the onset of symptoms or signs of infection and the unit of
measuring is (day~'). In this model, the unit of measuring w/, y, and y, is (day™'). The Coronavirus
typically spreads via droplets from an infected person’s coughs or sneezes. Coronavirus could survive
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on different types, ranging from 2 h to 14 days. In this model, the unit of measuring € is (day™').
Furthermore, the unit of measuring transmission rates , and g, is the number of infections per unit
time. Also, we defined asymptomatic COVID-19 positive persons as those who did not present any
symptoms. The proportion §, is calculated as the number of asymptomatic COVID-19 infections at
initial testing over COVID-19 positive persons.

The process of normalization is implemented as follows [21]:

_ Sp _ Ep _ I/}
P Np, y2 Npﬂ 94 Np’
A, R, ew
Clp=—,r[,=—,W:_,
]\717 NI’ I’LFNF
’ ,bL ﬂwN7
Mp =y, bp = :Bpr: bw = %

Therefore the six-dimensional integer-order COVID-19 model can be expressed by the following
ordinary differential equation:

s, =n, —m,s, — s,b,(i, + ka,) — s,wb,,

. . !’

e, = 5,b,(i, + ka,) + b,s,w — wye, + §,w,e, — §,w e, — m,e,,
Iy = Wpe, — 51,W,,€p = Volp — L1y,

. / ’

a, = 8,w,e, — y,a, — m,a,,

. . ’

r]’ = yﬁlﬁ + ypaﬂ - rpmpa

w=€(i, + ca, —w).

3.1 Implementation of Stochastic Description

We can provide an additional degree of realism by defining the white noise and Brownian
motion and introducing a stochastic model. Therefore, we implement this idea by replacing random
parameters

n, — n,+ O’IB](Z), m, —> m, + Usz(t),
bp — bp + USBS([)a bw - bw + 04B4([)9
8, = 8, + 0sBs(1), € = € + aeBy(1),

where B;(f) and o,,i = 1,2,...,6 are the Brownian motions and the intensities of the white noises,
respectively. These parameters are selected for the implementation of stochastic environment because
of their random essence. So, the following stochastic differential equation for COVID-19 model is
obtained
s, = (n, —m,s, — s,b,(i, + ka,) — s,wb,)dt + 0,dB, — 5,0,dB,
—s,(i, + ka,)o;dB; — s,wo,dB,,
e, = (s5,0,(i, + ka,) + b,s,w — w,e, + §,w,e, — §,w e, — m,e,)dt )
+5,03(i, + ka,)dB; + s,wo,d B, + w,e,05dBs — w e,05d B; — €,0,dB,,
i, = (we, — 8,w,e, — y,i, — i,m,)dt — i,0,dB, — osw,e,dBs,
a, = (§,w,e, — y,a, — ma,)dt — a,0,dB,,
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=Wl + yp/aﬂ — r,m,)dt — 1,0,dB,,
w = €(i, + ca, — wydt + o5(i, + ca, — w)d Bs.

4 Dynamical Analysis of Solution

In this section, existence and uniqueness of the solution of the introduced model (2) and the
equilibria of the system are presented.

4.1 Existence and Uniqueness of the Solution

Theorem 4.1. The coefficients of the stochastic differential Eq. (2) are locally Lipschitz.

Proof. We define the following kernel y (s,, i,) = s,.i,. Now we should prove the Lipschitz condition
for y(s,, i,). First we set d= (s, i,) therefore y (d) = s,.i, and y(d) € C'(£2,R). So we must prove
Vdy,dy € £2,3K > 0 :||y(dy) — v(d)I| < K]|d, — d,]| A3)

Now we choose suitable a subset of £2 and consider N(x,r) as an open ball centered at x and with
radius r, such that

N,n={l lly—xl=r}
Then we continue our proof by applying: di,d, € N(x,r) C £ C R Since y (d) is unbounded
therefore, due to (3), we replace K with K, which depends on x.

So we define the path ¢ : [0, 1] — N(x,r) such that ¥ (¢) = (1 — £)d, + td,. So. We consider the
following increment from d, to d,:

d
I y(d:) = y(d) lI=] v (1) = y(¥(0) ||= f V(Z@)
where —Y(W)) = VY@ ()Y (1) = Vy(¥ (1)) (d> — d,). Thus we have:

L d 1 X

{ v(z/fl(t)) = |I{ VY () (d, — dy)dt|| 5/0‘ | VY )) |l Iy — d, || dt

1
= ||d, —d1||{ | Vy((6) | dt
< K.||d, — d,||
Where K, > sup{|| VY (d)|d € N(x,r) ||} .

As a result, there is no global Lipschitz constant K valid on all of 2 = R? in this case, thus y
(d) is in fact locally Lipschitz.

Lemma 4.1. Suppose that X C R,, and let f, g2 X C R, satisfy Lipschitz conditions, then f + g
satisfies Lipschitz condition.

Proof. The proof is presented in [40].

Therefore, we have local Lipschitz condition for the coefficient of dB,(r) and similarly, this
condition will be proved for the coefficient of dB,(f), dBi(t), dB.(t), dBs(t) and dBs(t). So our
Model contains stochastic differential equations with Lipschitz coefficient and we can obtain a strong
solution and for each initial value, the solution will be unique.
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Theorem 4.2. For any given initial value (s,(0), ¢,(0), ,(0), a,(0), r,(0),w(0)) € R°,, there exists
the solution (s,(t), e,(t), i,(t), a,(t), r,(t), w(t)) for model (2) and the solution will remainin R°, with
probability one.

Proof. There exists a local solution on the interval [0, 7,) where 7, is the explosion time [39]. Now,
we need to prove t, = +o00. Let m, > 0 be sufficiently large such that each component of initial value

(5,(0), e,(0), i,(0), a,(0), r,(0),w(0)) remain within the interval [mLO,mO]. For each integer m > m,),

we define

1
T, = inf {t € [0, 7.) : min{(s,(2), €,(1), i, (1), a, (1), 1, (1), w(1))} < E} “4)
or
T, = inf{t € [0, 7,) : max{(s,(2), €,(1), i, (1), a,(1), 1, (1), w(1))} > m} )
where t,, is stopping time. We denote 7,,, = lim 7, and we will show that t,,, = 400 is valid

m— 00

almost surely. Then the proof goes by contradiction. If this statement is false, then there exist constants
T > 0 and n € (0, 1)such that P{z,, < T} > 5 for any m > m,.

Let f be a C* —function, by defining /' : RS — R such that
fGs,(0),e,(2),1,(2), a,(t), r,(0), w()) = Ins,() + Ine,(t) + Ini,(t) + Ina,(t) + Inr,(t) + Inw(z)
Generalized 1t6’s formula yields that
af (t,s,, e,, i,, a,, w) =f,,ds, + f.,d., + fi,d;, + f.,,d,, + 1.,d,, + f.d,+

1
+ 5 (f;pxp dxp d.\'p + ﬁpé’p dfp dep + ﬁplp al’l’ a"P

+f;1pap dap dap +f;‘pl‘p drp dr/; +f\‘vwdwdw) + ..

So we obtain

n s,b b, s, -w
d, :n—” —5m,—b, (i, +k-a) —w-b,+ % (i, + ka,) + e—p —w, + 8w, — 8w,
s 14 P
N w{e,, B apvyl,e,, et 5w Ly Yoly N Y, a, e (ip +C-a, l)
P
lp lﬂ P p P w
1 0_2 2 2 2, 0,2”}282
-3 (S—; +507 + 02 (i, + k- a,) + w0l + ——L 4+ wol+wol+ = l,z" L
P 4 P
2 2
o} (i, +C-a,—w sol (i, +k-a, o s
4ol — ) o U 5 ") +—1dBl—502d32+(—p—l)(ip+Kap)a3dB3
W e s, e,

L.
+ woy, (S—p — 1) dB, + (wp (1 - 2) - W/)) osdBs + ose (lp+_dp — 1) dBy
e, i, ! w
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Therefore we obtain

df = Lfdt + ﬁdBl — 50,dB, + (& —1 (i1; + Kap)03st + woy (& — ) dB,
S

K e (©)
e , i a
N (Wp (R T Ry G
i, w
where K is a positive constant and we have
n s,b b,-s,-w
Lf = n—p —5m, —b, (i, +k-a,) —w-b,,,—i-%(i,,—i-k-a,,)—i-e—p
s 4 P
we, S w.e, s,we A
—w, + oW, — oW, + == — = —y, ,,,,p_p, Yily
lp lp ap rl?
Y, 4, i, + C.a, 1[0} . )
L e[ —2 1) = | 2+ 502+ (i,+k-a) +wa?
r, ( W 2\ 8 +ol ") ¢
, 7)
wio}s oswe ol (i,+ C-a,— W)2 (
2 2 ) pp 6 14 4
e? + W05 + W,0s + 2 + w2
P
so2 (i, +k-a)’ n s.b b, s, -w
+,,3(p . ) <L4+22(,+Ka)+—"—+65w,
el n, e, e,
+w{,e1, N Swe, N Yoy N Y, 4, te (z,,—l— C-a, 1) K
L, a, r, r, w

Due to (7) and integrating both sides of (6) from to (z,, A T)and taking expectation deduce that
Ef < f(s,00),¢,(0),,(0),a,(0),5,(0), w(©0)) + KT
Thus for every w € £2,, = {t,, < T} we obtain
f(s,(0),¢,(0),,(0),a,(0),7,(0),w(0)) + KT > E[lg, (w).f(s(t, AT), e,(t, AT), i,(t, AT)
9 ap(r}ﬂ /\ T)’ rp(tm /\ T), W(Tlﬂ /\ T))]
> plt, < T} - [(Inm) A (=Inm)]
> n[(Inm) A (=Inm)]
where 1,,, 1s indicator function of £2. Letting m — +oo leads to contradiction

+00 > £(s,(0),¢,(0),7,(0),a,(0),r,0),w0)) + KT > +o0.

So the statement 7,,, = +00 is being satisfied and the proof is complete.

4.2 Extinction of the Disease

In this section, we establish sufficient conditions for the extinction of the disease. In order to form
these conditions, we consider variation in the number of symptomatic infected people (Z,). Chen et al.
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[21] have proved that the deterministic model admits the basic reproduction number R, as follows:

Ry = b,y + kb, + b, + b,cy’

where
Y =5b 2 (1= &) wr and
my (1= 8,) w, + 8w, +m, (v, +m,)
V=, o

pZP (1 - ‘Sp) wp + 81"4/; +m, (J/p/ + mﬂ)

In deterministic epidemiological models, basic reproduction number is planned to be a criterion of
transmissibility of infectious agents. If R, > 1, then the outbreak is expected to continue if R, < 1
then the outbreak is expected to become extinct. In this stochastic COVID-19 model, we consider the
effect of high intensity white noises on the prevalence or extinction of the COVID-19. So we present
the following theorem to demonstrate that random effect may lead the disease to extinct under suitable
conditions, although the disease may be immanent for the deterministic model. Before presenting the
main theorem of this section, we refer to the following lemma presented in [39].

Lemma 4.2. Let Z(t): t > 0 be a continuous local martingale [41] and < Z(t), Z(t) > be its quadratic

variation. Let 0 < ¢ < 1 and k be a random integer. Then for almost all w € £2, there exit a random
integer k,(w) such that for all k > k,:

P {sup [zm - % < Z(0),Z(t) >} > glnk} <L

0<t<k %
kc
Theorem 4.3. Let (5,(0), ¢,(0), i,(0), a,(0), r,(0), w(0)) € R°, be the solution of model (2) with
initial value (s,(0), ¢,(0), ,(0), a,(0), r,(0), w(0)) € R°, , we obtain

. InI(t) 1 1,
lim sup < —o, +7,+m,]) as.

oo t ~ 202 \2°
Furthermore, if the assumptions 357 < 357 +7,+m, and §, > 1 hold, then I(t) will tend to zero
o o
exponentially with probability one. ’ ’
Proof. 1t6’s formula yields that
1)
d(lni,) = (w"—e" S mp) dt — 0ydB,(t) — 2%y (1)
1, 1, 1,
So we obtain
) ) ¢ (S 1 1 0.20)2 2
In(i,) = In(i,(0)) + S a).p_ep — Lpep -7, —-m,— =0, — = =27 Vdt — 0,B,(t) + Z(1). (8)
0 » 1, 2 2 1
where Z(t) = — f %dBS(t) is a continuous local martingale and its quadratic variation is

2,2
<Z@M),Z() > = Gﬁf%dt

p
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According to Lemma 4.2, we obtain

P{i‘}pk [(Z(t) = §<Z(t>,Z(t>>) > flnkﬂ < iz
kc

where 0 < ¢ < 1 and k is a random integer. Applying Borel-Cantelli Lemma [41] leads to that for
almost all w € 2, there exit a random integer k,(w) such that for k > k:

2
sup [(Z(t) — —(Z(t) Z(t))} < ZInk

0<t<k
Therefore
50) e t wle? 2
{ 2dBs(t) < o f L "dt+ Ink )
P p

for 0 <t < k. Substituting (9) into (8) yields

242

1 2 1
-7, - m)dt+azB2(t)+ ~co: [ ppdt+ lnk—zé2

P

n 8
InI(t) < Ini,(0) + f (wf’ep %%y
0 1

I, P

_lawe i %_T_m_l 52+8§a)§ef’ +l% dt
2 2 i, i, S W 2 2 2

2 t P 1 olw’e]
+82B2(t)+—lnk=f(w.p—ep Dy, 2o——(l—) "")dt
C
p

o\

0 1p 1p

2
+ O'sz(t) + E In k.

If 5, > 1, we obtain

w.pep _ 6p6f)pep _ 1(1 —¢) 52 ; 127 =(1- 8p)a)pep _ 1(1 _ 0)01226313612)
1, 1, p p 2 P
ol —2w,€, wee,
=—=U-9 + =
2 gl — 0)i 07 h
o, SN 2w,e, 1 1
= —?(1 - C)( - 1 N B + 4 5 T 4 B
) i (I =905 of(l-c) oi(l —c¢)
lof w,e, 1 1 1
=—5U=0| == +55 <55
2 i, as(1 —o¢) 20(1 —¢) =~ 20(1 —c¢)
So we have
t 1 1 2
Inl(t) <Inl(o)+ f{—z0;, =7, —m, + ——— ) dt + &,B,(t) + — lnk
. 0 2 20¢(1 —¢) (10)
:11’11(0)+ (—EUZZ—Tp—mp—Fm t+0’2B2(t)—|— Ink.

By dividing both sides of Eq. (10) by t such that k — 1 <t < k, we achive
InI(t) - In1(0) L (_l 2y 1 ) 0,B,(t) _1 K

PR S e ry t

t t
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Letting k — oo leads to n — oo and according to the strong law of large numbers [41] to the

A . . B
Brownian motion, we have lim sup % =0

t—+o00

So we obtain

i i _ (1, oy, |
1m su -\ = m, e sa—
e P =T R T T TS o

Letting ¢ — 0 yields

; Inl©v _ | Loy
B A U AR R

Therefore, our claim holds and this completes our proof.

Remark 4.1. Theorem 4.3 shows that the disease will decay exponentially to zero under suitable
conditions. When the noises o, and o; are sufficiently large then the disease goes extinct exponentially.
The white noises o, and o5 are related to the fluctuation of m, (the death rate of people) and §, (the
proportion of asymtomatic infection of people), respectively.

4.3 Equilibria of the System

Equilibria of the system can be estimated by setting the all derivatives equal to zero. This gives the
system

n, —m,s, — s,b,(i, + ka,) — s,wb,, = 0,
s,b,(i, + ka,) + b,s,w —w,e, + 8,w,e, — 5,,w;e,, —m,e, =0,
(w,e, — 8,w,e, — v,i, — i,m,)dt — i,0,dB, — osw,e,dBs = 0, (11)
s,wie, — y,a, —m,a, =0,
Volp + ¥, 0, — 1, =0,
€(i, +ca,—w) =0.
In order to obtain the fixed points of COVID-19 model (2), we consider the solution of system

(11) as follows

np
m, — b,(i, + ka,) — wb,,’
s,b,(1, + ka,) + b,s,w

w,(1 —8,) +8,w, +m,

s, = 0, we obtain §, =

For ¢, = 0, we obtain €, =

o .o 1—5 Ww,C
For 1, = 0, we obtain i, = M
T, +m,
. . S, w'ye
For 4, = 0, we obtain 4, = ——"—"—.
T, +m,
T4 Ta
For i, = 0, we obtain 7, = ———2",
m

P
For w = 0, we obtain w = i, + ca,.
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In order to achieve biologically relevant solutions, we find equilibrium points such that this system
has positive solutions. There are two equilibrium points of system (11).

1) Disease free equilibrium point E, = (5,(2), 0, 0, 0, 0, 0). In this disease free equilibrium
point, the population of five compartments of categorized people tends to zero and the system
can be recognized in healthy situation.

ii) Endemic equilibrium point E, = (5,(7),¢,(?), f;(t), a,(1),r,(t), w(t)) where its components are
expressed above.

5 Numerical Simulation

In this section, we get deep insights into the model’s dynamical behavior. For numerical simulation,
the results of the implementation are given by the known Euler-Maruyama method [42]. We consider
the following discretization model for # =0, At,2A¢t, ... .nA andk=1,2,...,n.

Spey = (m, —mys, — s, b,(i, + ka,) — s, wb,) At
+ 08B, — S,,08B, — S, (i, + ka,)o36B;, — S, woud B,

épk+1 = (S, b0,(i, + ka,) + b,s, w — w,e, +5,w,e, — 5,,w;e

e — mpepk)At

+ 8,,03(i, + ka,) ABs, + 5, wo,AB, + w,e,05AB;, — we,05ABs, — e,0,AB,,,

i

) = (wye, — 8,w,e, — V,i,, — I, m,)At — i, 0,AB, — osw,e,ABs,,

al’k+1

0,AB;,;,

’ /
= (8,,wpe,, =V, Ay, — mya, )At — a,,

i’pk+1 = Wi, + v, a4, — o) At — 1, 0, AByy,

Wi = €(, + ca, — w) At + o4(i, + ca, — wy) ABg,

where AB,(f) ~ /AtZ, and Z, ~ N(0,1),i = 1,2,...,6. The source code has been written in
MATLAB R2017b. Data given in Tab. 2 were calibrated for the cases in China, the first big source of
COVID-19. On 21 February 2020 China (and WHO) informed that they have revised their guidance
on case classification for COVID-19, removing the classification of clinically diagnosed previously
used for Hubei province, and retaining only suspected and confirmed for all areas, the latter requiring
laboratory confirmation. Some previously reported clinically diagnosed cases are thus expected to be
discarded over the coming days as laboratory testing is conducted and some are found to be COVID-
19-negative (see [43]). Thus, in order to use more accurate and reliable data, we use the reported data
in China before October 2020.

Table 2: The parameters values used in Example 5.1

n, m, € k c b, b, w, W, s, "z Y

0.0018 0.0018 0.1 05 05 001 05 0.1923 0.1923 0.65 0.1724 0.1724

Example 5.1 In order to illustrate the adaptation and compatibility of the presented model with
the deterministic model, we used the reported data in Wuhan City, China [21]. The parameters values
used in the numerical simulation are given in Tab. 2.
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The world health organization (WHO) reported an incubation period for COVID-19 between
2-10 days and the United States center for Disease Prevention and Control (CDC) estimates the
incubation period for COVID-19 to be between 2-14 days. The mean incubation was 5.2 days (95%
confidence interval CI: 4.1 to 7.0). According to the report of WHO on 3 March 2020, globally
about 3.4% of reported COVID-19 cases have died. In this simulation, we assume that w, = wp
and we set the infectious period of the cases as 5.8 days [21]. Therefore, we set y, = 0. 1724 Since
the Coronavirus can live for hours to days on surfaces, so we set ¢ = 0.1 for 10 days lifetime of
virus. Meanwhile, the transmission rates in our model depend on the epidemiological status and
environmental conditions which change with time. The other parameters values used in this simulation
are assumed based on the reported data in Wuhan City [21]. Also, initial conditions have been chosen
as (s,(0), e,(0), i,(0), a,(0), r,(0), w(0)) = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1) and o, = 04,i = 1,2,...,6.
The strength of the presented numerical method is particularly demonstrated in Fig. 2 which shows
the adaptation of our model with the deterministic model.

In this example, if the intensities of the white noises of model (2) increase, the solution of model
(2) will fluctuate around the disease free equilibrium. Fig. 3 shows the simulations with o; = 0.6, i =
1,2,....6.
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Figure 2: (Continued)
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Figure 2: Comparison between the our presented stochastic model and deterministic model (o; = 0.4)
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Figure 3: Comparison between the our presented stochastic model and deterministic model (o, = 0.6)

Table 3: The parameters values used in Example 5.2

n

) m

, € k c b, b, w, W 5, "z %

P

0.0018 0.0018 01 05 05 00l 05 01923 0.1923 0.65 0.080 0.080

Example 5.2 Since the information is changing and due to the lack of complete data on many
parameters used in the proposed model, we now present some numerical simulations to illustrate the
efficiency of our approach as an experiment for considering sensitivity analysis. Sensitivity analysis
is commonly used to determine the robustness of model predictions to parameter values, since there
are usually errors in collected data and assumptive parameter values. The parameter values used in
this example are given in Tab. 3. In this example, we decrease the value of y and y,, so the infectious
period of symptomatic and asymptomatic infection of people will increase. Fig. 4 shows that the time
interval for occurring extinction of the disease increases when the infectious period of symptomatic
and asymptomatic infection of people increases.

Example 5.3 In this example we take the intensities of the white noises of the model (2) as o, = 0.7,

o; =0.8and o, = o0; = o, = o4 = 0.4 which satisfy the condition of Theorem 4.3. The other

parameter values used in this example are given in Tab. 4. On the basis of simulation, Fig. 5 shows that

the number of symptomatic infected people i,will decay to zero under suitable conditions presented in

Theorem 4.3. Therefore numerical simulation confirms the effect of high intensity white noises on the
prevalence or extinction of the COVID-19.
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Table 4: The parameters values used in Example 5.3

n

) m

P

€ k c b, b, w, W s, Vs Y

r

0.0018 0.0018 01 05 05 001 06 0.1923 0.1923 1.1 0.650 0.1724
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Figure 5: Extinction of the stochastic model under suitable conditions

6 Results and Discussion

In the proposed approach, the results have been obtained using the known Euler-Maruyama
method as mentioned above. Moreover, to ensure the accuracy and precision of the obtained results,
the comparison of the proposed scheme has been done with the deterministic model. In stochastic
models, there are random variations due to uncertainties in the parameter. According to the presented
comparisons (see Fig. 2 and Fig. 3), the results of our stochastic epidemic model are convergent to
the deterministic model. The simulation results demonstrate the efficiency of our model, and the
possibility of comparability of the stochastic model with the deterministic model. Evaluation results
and dynamical analysis confirmed its effectiveness, efficiency, and user satisfaction. In this paper,
we found that the infection can be controlled by suitable health decisions and herd immunity as a
naturally occurring phenomenon can make the number of infectious cases descending. Furthermore,
numerical simulation confirms the effect of high intensity white noises on the prevalence or extinction
of the COVID-19. From the simulated findings (please see Fig. 4 and Fig. 5), it can be noticed that
the our stochastic model shows a strong agreement with the deterministic case at different values
of white noise. Additionally, graphical investigations confirmed that the infectious population tends
to zero under suitable extinction conditions presented in Theorem 4.3. When the noises o, and o5
are sufficiently large then the disease goes extinct. The white noises o, and o5 are related to the
fluctuation of m, (the death rate of people) and §, (the proportion of asymtomatic infection of people),
respectively.

7 Conclusion and Remarks

In this paper, we have developed and analyzed an epidemic model for simulating transmissibility
of the COVID-19 based on Reservoir-People transmission network. We construct a stochastic version
of the Reservoir-People model by using the white noise and Brownian motion. Also, we proved that
there is a unique solution for the presented stochastic model. Moreover, the equilibria of the system
are considered. Also, we establish the extinction of the disease under some suitable conditions. Finally,
the numerical simulation is carried out to demonstrate the efficiency of our model, and the possibility
of comparability of the stochastic model with the deterministic model. Furthermore, numerical results
demonstrate the validity of suitable conditions for the extinction of the disease. Since mathematical
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models are powerful tools to understand the dynamics of real world phenomena, particularly the
transmission of an infectious disease, therefore this paper could lead to other studies that have included
random and uncertainty of the model and can be more consistent with the reality of Coronavirus
transmission. The presented results may be fruitful for the existing outbreak in a better way and can be
used in taking defensive techniques to decrease the infection. The area of stochastic modeling has been
extended recently, therefore this model is an indication for further study in this area. After getting high
motivation from this paper and using ideas of modeling approaches in new researches (see [43—52]),
hybrid stochastic fractional approach will be considered to investigate the dynamics of the COVID-19,
as a scope of future works.
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