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In this paper, we examine two structure preserving numerical finite difference methods for solving the various reaction-diffusion
models in one dimension, appearing in chemistry and biology. *ese are the finite difference methods in splitting environment,
namely, operator splitting nonstandard finite difference (OS-NSFD) methods that effectively deal with nonlinearity in the models
and computationally efficient. Positivity of both the proposed splitting methods is proved mathematically and verified with the
simulations. A comparison is made between proposed OS-NSFD methods and well-known classical operator splitting finite
difference (OS-FD) methods, which demonstrates the advantages of proposed methods. Furthermore, we applied proposed NSFD
splitting methods on several numerical examples to validate all the attributes of the proposed numerical designs.

1. Introduction

A system of differential equations represents the dynamics of
real-life phenomenon. *ese systems can be applied in the
field of physics, chemistry, fluid dynamics, engineering,
economics, biological sciences etc. Initially, only temporal
systems were used to observe the dynamics of different
situations. But, for studying the most general behaviors of
such systems, we can include the additional quantities such
as advection and diffusion in the systems of differential
equations. *ese systems depict the generic situations of the
temporal and spatial models [1–3]. Reaction-diffusion
equations are considered as one of the most important
equations that are used in the modeling of chemical and

biological systems. Certain phenomena such as population
densities, concentration of chemical substance, and pressure
of fluid are described by the state variables of such systems.
*erefore, the positivity of state variables is an important
requirement for the discrete scheme and should not produce
nonphysical oscillations and negative solutions. *ere is not
much work in the literature for positivity preserving and
chaos-free numerical methods for chemical reaction models.
In this study, we have designed two operator splitting
positivity preserving and chaos-free numerical schemes for
various reaction diffusion models arising in chemistry and
biology.

In this paper, three different models of reaction diffusion
equations in one-space dimension are considered for the
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study. *e main aim of this work is to find the numerical
solutions of these models with reliable numerical techniques.
*ese proposed techniques preserve the structure of con-
tinuous systems in one dimension.

First of all, among these important models, we consider
the Brusselator system that is used in describing the sim-
ulations of nonlinear oscillations in chemical reaction-dif-
fusion processes [4–7]. *e importance of oscillation in a
biochemical system is very significant and was first intro-
duced by Turning et al. [8]. *ey showed that when some
phenomena are considered with diffusion term, a stable
spatial pattern is obtained. Also, this system appears in a
wide variety of models, such as ozone formation during
oxygen atoms collision and enzymatic reactions. *e reac-
tion diffusion Brusselator system contains a couple of var-
iables which intervene with reactions, and this process
produces chemicals whose concentrations are then con-
trolled. *is model has been revealed as the trimolecular
model.

Due to the importance of such models, many powerful
and efficient techniques have been proposed for solving
this system. Such models with nonlinear evolution terms
are very hard to solve with the aid of analytical methods.
*erefore, numerical methods are needed while dealing
with such models. For example, Mittal et al. [9–11] in-
vestigated the solution of the one-dimensional Brusselator
system using the differential quadrature technique. *e
behaviour of one-dimensional version of the Brusselator
system is studied in [12] with the aid of collocation method
based on the radial bases functions. A B-spline approach
with a modification was introduced by Jiwari and Yuan in
[13] for the Brusselator system with one and two di-
mensions. Also, a three dimensional form of this system
was first solved in [14] using the modified B-spline dif-
ferential quadrature method. Lin et al. [15] studied the
inhomogeneous Brusselator model with cross diffusion
process by using a finite volume element approximation
and performed the stability analysis for the method and
addressed the formation of turning patterns. A new exact
solution for this system was driven using the exp-function
method in [16]. For more details about the methods for
solving the Brusselator model, see [17–20] and references
therein.

*e Brusselator reaction-diffusion model in one di-
mension is given as follows:
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with initial conditions

ψ1(x, 0) � α(x), 0≤x≤L, (3)

ψ2(x, 0) � β(x), 0≤ x≤L, (4)

and homogeneous Neumann boundary conditions
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As discussed earlier that ψ1(x, t) and ψ2(x, t) are the
concentrations of the chemical substances or species, ϑ1 and
ϑ2 represent the concentrations’ constants that appear in the
reaction process, and εψ1

and εψ2
are the diffusion constants.

*e equilibrium point of systems (1) and (2) is
(ψ∗1 ,ψ∗2 ) � (ϑ2, ϑ1/ϑ2).*e point (ψ∗1 ,ψ∗2 ) is stable if 1 − ϑ1 +

ϑ22 ≥ 0 and unstable if 1 − ϑ1 + ϑ22 < 0. *e solution to the
system represented by equations (1) and (2) describes the
positivity criteria as ψ1 andψ2 are the concentrations of the
two species [21].*erefore, negative values of the solution of
this model are meaningless. *e numerical technique ap-
plied to find the solution of system by the coupled equation
in (1) and (2) must preserve the positivity.

*e finite-difference technique is an important tool to
solve the nonlinear model involving differential equations.
Because finding the analytical solution of such models is not
an easy task. *erefore, various authors used finite-differ-
ence numerical schemes to solve several mathematical
models involving ordinary differential equations or partial
differential equations [22–28].

*e nonstandard finite difference method (NSFD) is a
powerful technique for solving different type of nonlinear
continuous models which was first presented by Mickens
back in 1993 [29]. Over the years, this method proved that it
can treat continuous dynamical models that should preserve
positivity property. For example, Ahmed et al. [30] adapt the
NSFD scheme for solving different types of such models
including the SEIR reaction diffusion model. Detailed dis-
cussion regarding NSFD and positivity preserving tech-
niques can be found in [31–37].

*e paper is organized as follows: in Section 2, four
numerical techniques are presented for solving the Brusse-
lator model. In Section 3, the stability and accuracy of the
presented methods are introduced. Section 4 is devoted for
illustrating the positivity of the purposed schemes. *e ap-
plications of various reaction-diffusion systems along with the
comparison of the four presented methods are presented in
Section 5. Lastly, Section 6 provides conclusion for the study.

2. Numerical Techniques

In this section, we will introduce four techniques for solving
systems (1)and(2) subjected to condition (3) and homoge-
neous Neumann boundary conditions. *ese numerical
methods can be divided into two classical methods named as
forward and backward operator splitting methods and two
nonclassical methods named as explicit and implicit OS-
NSFD methods. Each of these method has its own pros and
cons. *ese methods are explained as follows.

2.1. Forward Euler Operator SplittingMethod. In the current
section, the first method is introduced which is a splitting
method based on a finite difference scheme. *e splitting
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techniques are computationally efficient and handle the
complexity and nonlinearity of the differential equations.
*e main idea of these methods is to split the main equation
into two-equation system. *e nonlinear reaction steps are
described as
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Here, ϑ1 and ϑ2 represent the concentrations’s constants
that appears in the reaction process. *ese last mentioned
equations are then utilized for the solution of the linear part
of the diffusion equation at the first half step for time as
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that are used for the second equal time step.
For the finite difference approximations, divide [0, L] ×

[0, T] into M × N with ω � L/M and κ � T/N.
Grid points are xi � iω, i � 0, 1, 2, . . . , M,

tn � nκ, n � 0, 1, 2, . . . , N, and ψn
1i

and ψn
2i

describe the
difference approximations of ψ1(iω, nκ) and ψ2(iω, nκ),
respectively. *en, the proposed scheme is used to solve
these equations in the form:
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where ψn+(1/2)
1i

andψ n+(1/2)
2i

demonstrate the concentrations
at the first equal step of time and
ψ1(tn+(1/2)) � ψ1(tn + (1/2)ω) and
ψ2(tn+(1/2)) � ψ2(tn + (1/2)ω). At the next step of time, the
form is
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*e boundary condition (5) is incorporated in (10) and
(11) by using central difference approximation as
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with initial conditions as
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2.2. Backward Euler Operator SplittingMethod. Now, in this
section, we will implement the backward Euler OS-FD
technique to solve the Brusselator system.*e procedure for
the first half step of time is given as
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which is identical to the last scheme. At the next equal step of
time, the final form for the above mentioned scheme is
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*e boundary condition (5) is incorporated in (16) and
(17) by using central difference approximation as
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with initial conditions as,
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2.3. Operator Splitting Nonstandard Explicit Finite Difference
Method. Here, we turn our attention to construct a novel
method based on a nonstandard finite difference and an
operator splitting method named as (OS-NSFD) explicit
scheme. For this, we apply the rules defined by Mickens [29]
and the designed OS-NSFD technique at the first half time
step is described as
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For the second equal time step, the strategy for afore-
mentioned technique is
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*e boundary condition (5) is incorporated in (22) and
(23) by using central difference approximation as
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2.4. Operator Splitting Nonstandard Implicit Finite Difference
Method. *is section is devoted for the second proposed
novel scheme named as OS-NSFD implicit scheme. *e
designed OS-NSFD implicit technique at the first half step of
time is
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For the next step, the final form of current technique is
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*e boundary condition (5) is incorporated in (28) and
(29) by using central difference approximation as
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In all above numerical schemes, the value of
λ1 � εψ1

(κ/ω2) and λ2 � εψ2
(κ/ω2).

3. Stability and Consistency of
Underlying Techniques

In this section, the stability along with the consistency of the
solution for all the above operator splitting methods is in-
vestigated. In all of these methods, the time derivative has an
accuracy of O(κ) when solved exactly for the reaction step.

*e diffusion step, in the same way, has an O(ω2) accuracy,
and the accumulative accuracy for all the techniques is first
order and second order in time and space, respectively. *e
reaction steps are proven to be unconditionally stable for all
the methods illustrated above when solving in an exact way
[38,39]. In forward Euler OS-FD and explicit NSFD tech-
niques represented in equations (22) and (23), the stability
region is

λi ≤
1
2
, (i � 1, 2, 3). (32)

In addition, for the Euler OS-FD and implicit NSFD
methods, the stability for the diffusion process is found to be
stable without any conditions.

Next, we will study the positivity of the solution by
considering all of the above schemes.

4. Positivity of the Proposed Schemes

*is section is concerned with the validation of positivity of
the designed NSFD explicit and implicit techniques. *e
following theorem verifies that the proposed explicit tech-
nique retains the positivity of the solution.

Theorem 1. �e solution of the proposed explicit techniques
in the given formulas (20), (21), (26), and (27) at the reaction
step with the assumptions of nonnegative initial conditions,
i.e.,

ψ1
n
i, ≥ 0,ψ2

n
i ≥ 0⇒ψ1i

n+(1/2) ≥ 0,ψ2i
n+(1/2) ≥ 0. (33)

*eorem 1 verifies that the property of positivity of the
solution is preserved by the proposed OS-NSFD schemes at
the reaction step.

Remark 1. A positive solution is achieved by using the
explicit NSFD method represented in equations (22) and
(23) if

1 − 2λi ≥ 0, i � 1, 2. (34)

From the above expression, it is clear that

λi ≤
1
2
, (i � 1, 2), (35)

which is the same stability condition as (32) of the OS-NSFD
explicit method. *is proves that the OS-NSFD explicit
method can preserve positivity within its stability region.

We, then utilize the M-matrix theory [40] which helps in
proving the positivity property for the proposed OS-NSFD
implicit method (28)-(29).

Theorem 2. For any ω> 0 and κ> 0, systems (28) and (29)
are positive, i.e., ψn

1 > 0 and ψn
2 > 0 for all n � 0, 1, 2 . . ..

Proof. Systems (28) and (29) can be written as
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In the above equations, Θ and Φ are the square matrices
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*e off-diagonal entries of Θ are Θ1 � − 2λ1 and
Θ2 � − λ1, and diagonal entries are Θ3 � 1 + 2λ1. *e off-
diagonal entries of Φ are Φ1 � − 2λ1 and Φ2 � − λ1, and
diagonal entries are Φ3 � 1 + 2λ2. *us, Θ, and Φ are
M-matrices. *erefore, expressions (36) and (37) can be
written as

ψn+1
1 � Θ− 1ψn

1, (40)

ψn+1
2 � Φ− 1ψn

2. (41)

If we consider that ψn
1 > 0 and ψn

2 > 0, then we get that
ψn+1
1 > 0 and ψn+1

2 > 0, with the aid of the property of
M-matrix and *eorem 1. So, the result is then proved by
induction. From this theorem, we conclude that the implicit
OS-NSFD preserves the property of positivity uncondi-
tionally. □ □

5. Application

To support our claims regarding the proposed OS-NSFD
techniques, we will implement these schemes to several
reaction diffusion models along with the famous Brusselator
model.

5.1. Brusselator Model. For the application of the proposed
and classical methods under study, we chose the following
numerical test. *e graphical behaviour of the solution for
each of the proposed four methods are demonstrated

through the following figures for solving systems (1) and (2).
As discussed above, systems (1) and (2) have a positive
solution and converge toward the equilibrium point if the
condition 1 − ϑ1 + ϑ22 ≥ 0 is satisfied and unstable if
1 − ϑ1 + ϑ22 < 0.

First, Figures 1 and 2 demonstrates the simulated results
for the first method which is the forward Euler OS-FD
technique at various step sizes. It can be noticed from these
figures that this method gives nonconsistent data with
systems (1) and (2). *is proves that this method gives
negative values of the concentrations which is meaningless.
Also, the solution diverge from the equilibrium point which
contradict with the physical behavior of the solution.

*e second method is tested on the same example which
is the backward Euler OS-FD method with the same value of
parameters as in the first method for the sake of comparison.
*e behavior of the solution is illustrated in Figures 3 and 4.
*ese figures show that this method, like the first method,
fails to preserve the positivity of the solution and also gives
divergence.

*e graphical behaviour of the state variables show that
the forward Euler and backward Euler OS-FD method are
not the reliable techniques to solve the nonlinear auto-
catalytic chemical reaction model. As they provide us with
the negative solutions for the small step sizes.

Due to the failure of the two abovementioned methods,
the NSFD methods are presented to overcome this issue.
Figures 5 and 6 show the graphs of the solution using the
explicit OS-NSFD method. For the sake of comparison with
the other methods, we use the same values of the parameters
which are used in the previous two methods and took the
value of ϑ1 and ϑ2 such that 1 − ϑ1 + ϑ22 ≥ 0. From these
figures, unlike the other methods, we observe that this
method preserves the positivity and all the important
properties of the glycolysis continuous model and converges
toward the equilibrium point.

*e graphs in Figures 7 and 8 demonstrate the con-
centrations by using the implicit OS-NSFD method. *is
behavior is also shown to be consistent with the explicit OS-
NSFD method. *is method like the previous method also
preserves positivity and chaos-free properties and converges
towards the equilibrium point which is stable under the
condition 1 − ϑ1 + ϑ22 ≥ 0> 0.

Now, the simulations by using both designed OS-NSFD
techniques are given by considering the values of parameters
ϑ1 and ϑ2 so that 1 − ϑ1 + ϑ22 > 0.

As mentioned before, the stability of the Brusselator
system is preserved with the condition 1 − ϑ1 + ϑ22 > 0.
Figures 9 and 10 prove this fact that the two new presented
OS-NSFD methods are consistent with the continuous
model when the stability condition holds and are incon-
sistent when 1 − ϑ1 + ϑ22 < 0. Figures 9 and 10 reflect the
inconsistent behavior when the stability criterion does not
hold, while the other while the other parameters and step
sizes and kept fixed. *is fact has been proven that stability
criteria is very important in the stability analysis.

Now, we consider T � 1 and M � 100. Figure 11 depicts
log-log graphs of the error versus the computational time.
We presented the four schemes, and the graphs correspond
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to the solutions when we estimate the concentration profiles
ψ1 and ψ2 of the Brusselator system.*e result demonstrates
that the OS-NSFD explicit and implicit schemes are ap-
proximately as efficient as forward Euler OS-FD and
backward Euler OS-FD schemes. Obviously, the former
technique stands out in terms of its capability to preserve the
structure of the relevant solutions of the Brusselator model
under investigation. It is worth pointing out that the ap-
proximation to the exact solution was obtained using
N � 20000.

Finally, four numerical methods are used to solve the
underlying model, namely, the forward Euler operator
splitting method, backward Euler operator splitting method,
nonstandard finite difference explicit operator splitting
method, and nonstandard finite difference implicit operator
splitting method. *e extensively used numerical Euler

methods (backward and forward) are used to solve the
underlying models. *e obtained solutions are analyzed and
compared with the newly developed methods. *e failure of
the classical methodsmotivated us to develop new numerical
methods. *e new techniques are structure-preserving and
reliable numerical methods that give positive and bounded
solutions. *e computed solutions converge towards the
exact steady-state. So, the numerical analysis demonstrates
that the NSFD methods are the reliable tool to solve the
nonlinear models.

5.2. Susceptible-Infected-Recovered Epidemic Model. For the
second application, we consider nonlinear reaction-diffusion
system of infectious disease dynamics.*e system is known as
susceptible-infected-recovered (SIR) epidemic [41],
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Figure 1: Mesh graphs and plot graphs of ψ1 andψ2 (concentration profile) using forward Euler OS-FD method at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Solution graph of ψ1. (b) Solution graph of ψ2. (c) Plot graph of ψ1. (d)

Plot graph of ψ2.
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Figure 2: Plot graphs of ψ1 andψ2 implementing the forward Euler OS-FD technique at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.001, and εψ1
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� 10− 4. (a) Plot graph of ψ1. (b) Plot graph of ψ2.
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Backward Euler OS-FD Method (x=1)
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Figure 3: Solution graphs and plot graphs of ψ1 andψ2 implementing backward Euler OS-FD technique at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Solution graph of ψ1. (b) Solution graph of ψ2. (c) Plot graph of ψ1.

(d) Plot graph of ψ2.
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Figure 4: Plot graphs of ψ1 andψ2 implementing the backward Euler OS-FD method at
κ � 0.01, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.001, and εψ1
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� 10− 4. (a) Plot graph of ψ1. (b) Plot graph of ψ2.
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zψ1

zt
� εψ1

z
2ψ1

zx
2 + ϑ1N − ϑ1ψ1 − ϑ3ψ1ψ2, (42)

zψ2

zt
� εψ2

z
2ψ2

zx
2 − ϑ1 + ϑ2( 􏼁ψ2 + ϑ3ψ1ψ2, (43)

with initial conditions

ψ1(x, 0) �

325000x, 0≤ x≤
1
2
,

325000(1 − x),
1
2
≤ x≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ψ2(x, 0) �

7500x, 0≤ x≤
1
2
,

7500(1 − x),
1
2
≤ x≤ 1,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(44)

and homogeneous Neumann boundary conditions. In sys-
tems (42) and (43), ψ1 � ψ1(x, t) and ψ2 � ψ2(x, t) are
susceptible and infected population densities. ϑ1 is the pa-
rameter which represents natural birth and death rate. ϑ2
indicates the rate of recovery from infected to recovered
class. *e transmission coefficient from susceptibility to
disease is denoted by ϑ3.

*e epidemic systems (42) and (43) have two stable fixed
points, disease-free point (DFP) and endemic point (EP).
DFP is the point when disease eradicates from the pop-
ulation.*eDFP of systems (42)and(43) ϵ0 � (N, 0). *e EP
is the point when disease persists in the population. *e EP
of systems (42)and(43) is ϵ∗ � (ψ1∗,ψ2∗), where
ψ1∗ � (ϑ1 + ϑ2)/ϑ3 and ϑ2∗ � (ϑ1N/(ϑ1 + ϑ2)) − (ϑ1/ϑ3).

*e basic reproductive number of the epidemic system
(42)and(43) is B0 � Nϑ3/ϑ1 + ϑ2 when dψi

� 0, i � 1, 2. B0
is very important quantity which decides whether disease is
eradicated or persisted. IfB0 < 1, then disease will wipe out,
and the disease is present if B0 > 1.
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Figure 5: Mesh graphs and plot graphs of ψ1 andψ2 implementing NSFD explicit splitting method at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Mesh graph of ψ1. (b) Mesh graph of ψ2. (c) Plot graph of ψ1. (d) Plot

graph of ψ2.
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Figure 6: Mesh and plot graphs of ψ1 andψ2 implementing NSFD explicit splitting technique at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.001, and εψ1

� εψ1
� 10− 4. (a) Mesh graph of ψ1. (b) Mesh graph of ψ2. (c) Plot graph of ψ1. (d) Plot

graph of ψ2.
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Figure 7: Continued.
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Figure 7: Mesh graphs and plot graphs of ψ1 andψ2 implementing NSFD implicit splitting technique at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Mesh graph of ψ1. (b) Mesh graph of ψ2. (c) Plot graph of ψ1. (d) Plot

graph of ψ2.
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Figure 8: Mesh and plot graphs of ψ1 andψ2 implementing NSFD implicit splitting method at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.001, and εψ1

� εψ1
� 10− 4. (a) Solution graph of ψ1. (b) Solution graph of ψ2. (c) Plot graph of ψ1.

(d) Plot graph of ψ2.
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In the above experiment, we use the following numerical
values of parameters involved in the above system.
N � 3 × 10− 05, ϑ1 � 0.04, ϑ2 � 24, and εψ1

� εψ2
� 0.01. First,

we depict the simulations of OS-NSFD explicit and implicit
schemes at DFP. For the DFP, we take the value ϑ3 � 9.2 ×

10− 07 so that B0 < 1.
*e simulations in the Figures 12 and 13 describe that

the proposed splitting methods show positive solution as
well as preserves the stability of fixed point DFP
ϵ0 � (N, 0) � (3 × 10− 05) under the condition B0 < 1. *is
shows that the designed NSFD splitting techniques do not
show the contrived chaos.

Also, the graphs for susceptible and infected individuals
reflect the positive and bounded solutions. It is notable that

those graphs converge towards the exact fixed points for the
step sizes, and other parameter values are mentioned above.

Next, we present the simulations of OS-NSFD explicit
and implicit schemes at EP. For the EP, we use the value
ϑ3 � 1.4 × 10− 03 so that B0 > 1.

As we have taken the values of parameters so thatB0 > 1.
*is implicates that SIR epidemic model converges toward
EP ϵ∗ � (ψ1∗,ψ2∗). *e simulation executed in Figures 14
and 15 illustrate the positive behavior and convergence to
the EP ϵ∗ � (ψ1∗,ψ2∗) of NSFD explicit and implicit
splitting schemes. In the light of the above discussion, it can
be concluded that OS-NSFD explicit and implicit methods
are reliable numerical methods for the solution of reaction
diffusion models. Because these methods confine all the
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Figure 9: Solution graphs of ψ1 andψ2 implementing NSFD explicit splitting technique at
κ � 0.1, ϑ1 � 3.4, ϑ2 � 1, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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Figure 10: Solution graphs of ψ1 andψ2 implementing NSFD implicit splitting method at
κ � 0.1, ϑ1 � 1, ϑ2 � 3.4, λ1 � λ2 � 0.0006, and εψ1

� εψ1
� 10− 4. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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important features of reaction diffusion systems like as
positivity, boundedness, and stability at equilibrium points.

6. Schnakenberg Model

Schnakenberg model is autocatalytic in nature given in 1979
[42]. *e Schnakenberg model is a coupled reaction diffu-
sion system [43] given as

zψ1
zt

�
z
2ψ1

zx
2 + ϑ3 ϑ1 − ψ1 + ψ1( 􏼁

2ψ2􏼐 􏼑, (45)

zψ2

zt
� εψ2

z
2ψ2

zx
2 + ϑ3 ϑ2 − ψ1( 􏼁

2ψ2􏼐 􏼑, (46)

with initial conditions
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Figure 11: Log-log graphs.*e error versus the computational time when solving the system subjected to the initial data.*ree schemes are
employed: forward Euler OS-FD technique, backward Euler OS-FD technique, OS-NSFD explicit technique, and OS-NSFD implicit
technique. *e graphs correspond to the solutions when the functions ψ1 andψ2 of the Brusselator model are estimated. *e parameters
employed are L � 1, T � 1, ϑ1 � 0.05, ϑ2 � 0.02, M � 100, and εψ1

� εψ1
� 10− 4. *e exact solution was approximated using N � 20000. (a)

Error time graph for ψ1. (b) Error time graph for ψ2.
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Figure 12: Solution graphs of ψ1 andψ2 (susceptible and infected population densities) using the NSFD explicit splitting method at
κ � 0.1, λ1 � λ2 � 0.05. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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Figure 13: Solution graphs of ψ1 andψ2 (susceptible and infected population densities) using NSFD implicit splitting method at
κ � 0.002, λ1 � λ2 � 125. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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Figure 14: Solution graphs of ψ1 andψ2 (susceptible and infected population densities) using the NSFD explicit splitting method at
κ � 0.1, λ1 � λ2 � 0.05. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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Figure 15: Solution graphs of ψ1 andψ2 (susceptible and infected population densities) using the NSFD implicit splitting method at
κ � 0.002, λ1 � λ2 � 125. (a) Solution graph of ψ1. (b) Solution graph of ψ2.
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ψ1(x, 0) � e
− (1+0.001x)

, (47)

ψ2(x, 0) �
1
9
, (48)

and no flux boundary conditions.
Here, ψ1 and ψ2 demonstrate the chemical concentra-

tions of the two species. ϑ1 and ϑ2 are chemical kinetic
positive constants, and ϑ3 is the positive constant for the
model which is dimensionless. *e equilibrium point of
systems (45)and(46) is (ψ∗1 ,ψ∗2 ), where ψ∗1 � (ϑ1 + ϑ2) and
ψ∗2 � ϑ2/(ϑ1 + ϑ2). *e equilibrium point is stable under the
condition ϑ2 − ϑ1 < (ϑ1 + ϑ2)

3 [43]. If this condition violates,
then the point (ψ∗1 ,ψ∗2 ) is unstable.

Now, we present the simulations of the above experi-
ment. First, we take the values of parameters ϑ1 � 2, ϑ2 � 3,
ϑ3 � 0.5, and εψ2

� 10− 04 such that the condition
ϑ2 − ϑ1 < (ϑ1 + ϑ2)

3 satisfies. For these numerical values, the
equilibrium point is (ψ∗1 ,ψ∗2 ) � (5, 0.12).

*e graphs in Figures 16 and 17 show the consistent
behavior of both OS-NSFD explicit and implicit schemes.
Both schemes show that the graphs converge towards the
point (ψ∗1 ,ψ∗2 ) � (5, 0.12). We are not presenting the
graphical solution with forward Euler and backward Euler
splitting schemes, but it is confirmed that the schemes will
present the inconsistent behavior for different values of
parameters as shown earlier for the Brusselator model.

Now, we choose the values of parameters ϑ1 � 0.1,
ϑ2 � 0.4, ϑ3 � 0.5, and εψ2

� 10− 04 such that the condition
ϑ2 − ϑ1 < (ϑ1 + ϑ2)

3 violates.
As we discussed earlier that systems (45) and (46) show

the unstable behavior if the condition ϑ2 − ϑ1 < (ϑ1 + ϑ2)
3

does not satisfy. *e graphs in Figures 18 and 19 clarify that
OS-NSFD explicit and implicit schemes also reveal the
unstable behavior which is possessed by the continuous
system.

It is important to note that all the parameters and step
sizes are kept same during the simulations. It is the stability

00

50

100
0

1

2

3

4

5

6

0.2
0.4

x
t 0.6

0.8
1

ψ 1 (x
,t)

OS-NSFD Explicit Method

(a)

1.5

1

0.5

0

00

50

100

0.2

X: 0.6
Y: 100
Z: 0.12

0.4
x

t 0.6
0.8

1

ψ 2 (x
,t)

OS-NSFD Explicit Method

(b)

Figure 16: Mesh graphs of ψ1 andψ2 (chemical concentration) using NSFD explicit splitting method at κ � 0.1, λ1 � 0.1, λ2 � 0.00001. (a)
Mesh graph of ψ1. (b) Mesh graph of ψ2.
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Figure 17: Mesh graphs of ψ1 andψ2 (chemical concentration) using NSFD implicit splitting method at κ � 0.01, λ1 � 1000, λ2 � 0.1. (a)
Mesh graph of ψ1. (b) Mesh graph of ψ2.
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condition that also plays an important role in describing the
stability of the system.

7. Conclusion

In this article, four numerical schemes based on finite dif-
ference approximation are presented for solving different
reaction-diffusion models in one-space dimension. It has
been observed that two classical methods fail to provide
accurate solution. Also, these schemes do not hold the pos-
itivity condition of the unknown variables in the continuous
system. To overcome this issue, two new positivity preserving
techniques have been proposed, based on OS-NSFD schemes.
Our proposed methods not only provide the positive solution
but also retain the essential physical attributes of the state
variables. *e designed schemes are applied on the Brusse-
lator model, Schnakenberg model, and SIR epidemic model.

*e simulations are carried out to obtain the graphical so-
lutions. *e numerical results ascertained that the newly
designed NSFD splitting schemes have some prominent
features of the solution such as positivity of the solutions and
stability at equilibrium points of the continuous system. One
of the main significance is that the designed schemes do not
generate the contrived chaos.

*e OS-NSFD methods grant the positive solution
irrespective of the step sizes. So, these schemes are un-
conditionally positivity preserving. Also, these schemes are
time efficient and consistent.

*e successful implementation of NSFD splitting
schemes on three different problems show that our proposed
schemes are futuristic and these techniques can be applied
on various physical reaction diffusion problem in the fields
of physical science, engineering, fluid mechanics, econom-
ics, and many more.
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Figure 19: Mesh graphs of ψ1 andψ2 (chemical concentration) using the NSFD implicit splitting method at κ � 0.01, λ1 � 1000, λ2 � 0.1. (a)
Mesh graph of ψ1. (b) Mesh graph of ψ2.
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Figure 18: Mesh graphs of ψ1 andψ2 (chemical concentration) using the NSFD explicit splitting method at κ � 0.1, λ1 � 0.1, λ2 � 0.00001.
(a) Mesh graph of ψ1. (b) Mesh graph of ψ2.
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