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A B S T R A C T   

In this article, heat source impact on unsteady magnetohydrodynamic (MHD) flows of Prabhakar- 
like non integer second grade fluid near an exponentially accelerated vertical plate with expo-
nentially variable velocity, temperature and mass diffusion through a porous medium. For the 
sake of generalized memory effects, a new mathematical fractional model is formulated based on 
newly introduced Prabhakar fractional operator with generalized Fourier’s law and Fick’s law. 
This fractional model has been solved analytically and exact solutions for dimensionless velocity, 
concentration and energy equations are calculated in terms of Mittag-Leffler functions by 
employing the Laplace transformation method. Physical impacts of different parameters such as 
α, Pr, β, Sc, Gr, γ, Gm are studied and demonstrated graphically by Mathcad software. Further-
more, to validate our current results, some limiting models such as classical second grade model, 
classical Newtonian model and fractional Newtonian model are recovered from Prabhakar frac-
tional second grade fluid. Moreover, compare the results between second grade and Newtonian 
fluids for both fractional and classical which shows that the movement of the viscous fluid is 
faster than second grade fluid. Additionally, it is visualized that for both classical second grade 
and viscous fluid have relatively higher velocity as compared to fractional second grade and 
viscous fluid.   

1. Introduction 

It is a well-known fact that many scientists and researchers have more interest to explore the non-Newtonian fluids due to its wide 
practical applications with significant characteristics in modern technologies. The properties of non-Newtonian fluids are demon-
strated in various industrial sectors because it play a vital role in manufacturing such as greases, clay coatings, polymer melts, waste 
liquid, extrusion of molten plastic, pharmaceutical, polymer processing, oil and gas well drilling food processing industries and many 
emulsions. For instance, shampoo, drilling mud, biological materials, polymer melts, all emulsions and complex mixtures are 
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considered as non-Newtonian liquid. The non-Newtonian fluids have different characteristics and it can not be defined in a single 
model but in case of Newtonian fluid it is possible to express in a single model. It is quite ambiguous how to classified non-Newtonian 
fluids, because in the literature, several types of fluids exists. However, non-Newtonian fluids are classified into three types such as 
rate, differential and Integral. Researchers studied theses three types of non-Newtonian models and each model has different char-
acteristics. Among them, second grade fluid attracted special attention, which is a simple subclass of differential type of non- 
Newtonian fluids and analytical solutions for such fluid can be derived easily. Rajagopal [1] and Gupta [2] have investigated 
different applications of differential type fluids, for instance, in biological sciences, in theological problems, chemical, geophysics and 
petroleum industries. Flow analysis of such fluids have great importance for practically and theoretically studies in many industrial 
sectors. The scientists and many researchers are interested to explore the geometry of the flow regime of second grade fluid and 
discussed many interesting features in different configurations, for example, Erdogan [3], Labropulu [4], Fetecau et al. [5], Tawari and 
Ravi [6] and Islam et al. [7] studied the pressure gradient application in time dependent second-grade fluid flow. They applied 
separation of variables method to acquire the exact solution expressions. The dynamic study of MHD flow problems are quite 
complicated but such problem physically useful and interesting mathematically. Punith et al. [8] investigated the flow of a 
second-grade liquid over a curved stretching sheet with the Newtonian heating, Soret, magnetic and Dufour effects. Theoretical 
analysis is carried out to scrutinize the flow of a second-grade liquid over a curved stretching sheet with the impact of Stefan blowing 
condition, thermophoresis and Brownian motion has been analyzed by Punith et al. [9]. Madhukesh et al. [10] explored the impact of 
heat source/sink on the flow of nanofluid across an exponentially stretchable sheet with the suspension of TiO2 as nano-particle in base 
liquid water. Naveen et al. [11] discussed the flow of a ferromagnetic viscous liquid with thermophoretic particle deposition over a 
stretching cylinder on taking account of a uniform heat source/sink. Sarada et al. [12] described the heat, and mass transfer behavior 
of a non-Newtonian (Jeffrey and Oldroyd-B) fluid flow over a stretching sheet. Sk. Reza-E-Rabbi et al. [13] analyzed the hydrodynamic 
flow behavior of multiphase radiative Casson and Maxwell fluids with the appearance of nano-sized particles and also considered the 
impression of a nonlinear chemical reaction. Asterios Pantokratoras [14] discussed common errors concerns the shape of velocity, 
temperature and concentration profiles which are truncated due to small calculation domain used during the numerical solution 
procedure. Sk. Reza-E-Rabbi et al. [15] elaborated the heat and mass transfer analysis of Casson nanofluid flow past a stretching sheet 
together with magnetohydrodynamics (MHD), thermal radiation and chemical reaction effects. Heat and mass transfer characteristics 
of naturally convective hydromagnetic flow of fourth-grade radiative fluid resulting from vertical porous plate described by S.M et al. 
[16]. Gharami et al. [17] presented the exploration of unsteady magnetohydrodynamic (MHD) free convection flow of tangent hy-
perbolic nano-fluid flow on a moving cylinder with Brownian motion and thermophoresis effects. Aziz et al. [18] investigated the MHD 
secondgrade fluid flow under radiation effect and explored exact solution by using Laplace integral transformation. Parida et al. [19] 
described the effect of MHD second-grade fluid on the flow and solutions acquired numerically by applying th Runge-Kutta fourth--
order method. Some interesting facts regarding second grade fluid are described in the studies of Rashidi et al. [20], Dinarvand et al. 
[21] and Fetecau et al. [22]. 

Fractional calculus, namely the study of the generalization of the standard theory of calculus to derivatives and integrals of non- 
integer orders, has attracted much attention in recent years from different disciplines. Fractional differential equations are massively 
applied to model various daily life physical problems because fractional calculus have memory effects, such as problems in fluid flow, 
diffusion, relaxation, reaction, oscillation, dynamical processes, retardation processes in complex systems and many more engineering 
processes. Wherefore, ordinary models can not anticipate the preceding processes state. In literature, most of the studies are focused on 
flow problems relative to several fractional operators with local kernels as well as non-local kernels such as Marchaud Caputo, 
Atangana-Baleanu, Caputo-Fabrizio, Prabhakar fractional derivative and few others [23–25], those are indicated the current state but 
also on its future state of a system. Riaz et al. [26] explored the impact of ram conditions on energy and velocity by considering 
fractionalized convective flow model. Abdullah et al. [27] investigated the unsteady electroosmotic flow (EOF) of an electrolyte so-
lution of generalized fractional second grade hybrid nanofluid (Cu–TiO2/Water) confined between vertical two coaxial tubes. Ahmad 
et al. [28] studied the unsteady electro-osmotic flow (EOF) of a fractional second-grade fluid through a vertical microchannel with 
convection heat transfer. EI Kot et al. [29] discussed the heat transfer of pulsatile unsteady fractional Maxwell fluid (blood) flow 
through a vertical stenosed artery with body acceleration. The electroosmotic generalized Burgers’ fluid through a vertical annulus 
with free convection heat transfer via C.F fractional derivative has been investigated by Y. Abd et al. [30]. Linear visco-elastic model 
with the application of Prabhakar fractional operator has been investigated by Giusti and Colombaro [31]. Rehman et al. [32] 
described the generalized Mittag-Leffler kernel form solutions for natural convective flow of Prabhakar fractional Maxwell fluid in the 
presence of Newtonian heating. Some respective studies associated with fractionalized models are discussed in detail; see for instance 
Refs. [33–36], most of the studies are focused on flow problems by considering different fluids, related to fractional operators and heat 
transport phenomena. 

A. Selvaraj et al. [37] recently, investigated the heat source impact on unsteady flow of MHD viscous fluid near an exponentially 
accelerated vertical plate along with the exponentially variable velocity, temperature and mass diffusion through a porous media and 
results obtained via application of Laplace transformation from the proposed problem. Based on the above mentioned discussion, the 
prominent features of this derivation is to construct a new mathematical fractional model for second grade fluid, based on newly 
introduced Prabhakar fractional operator having kernel Mittag-Leffler, with generalized Fourier’s law and Fick’s law. This fractional 
model has been solved analytically and exact solutions for dimensionless velocity, concentration and energy equations are calculated 
in terms of Mittag-Leffler functions by employing the Laplace transformation method. Physical impacts of different parameters such as 
α, Pr, β, Sc, Gr, γ, Gm are studied and demonstrated graphically by Mathcad software. Furthermore, to validate our current results, some 
limiting models such as classical second grade model, classical Newtonian model and fractional Newtonian model are recovered from 
Prabhakar fractional second grade model. 
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2. Mathematical model 

Consider the time dependent, incompressible, electrically conducting natural convective movement of second grade fluid over 
erected plate which is also non conductive having length infinite along with the exponentially variable velocity, temperature and mass 
diffusion through a porous media. Initially, supposed that, at time t = 0, the fluid and plate both are static having fixed species 
concentration C∞ and the ambient temperature T∞. For time t = 0+, the plate accelerates exponentially through a speed velocity u =
u0exp (ζt) where u0 is characteristic velocity while the temperature is stabilized in the form T(0, t) = T∞ + (Tw − T∞) u0

2

υ t, whereas, 

concentration is maintained in the form C(0, t) = C∞ + (Cw − C∞) u0
2

υ t and geometry of the proposed problem configured in Fig. 1. In 
the present work, the fluid velocity, temperature and concentration are functions of φ and time t only, because the plate is infinite due 
to which the fluid properties only depends on φ and time t; so, velocity field, temperature and concentration takes the form as U→(φ,t) =

u(φ, t)̂i, T (φ, t) and C (φ, t) respectively, where ̂i represents the unit vector in the x direction and u (φ, t) is the x-component of the 
velocity. Further, the fluid velocity satisfies the continuity equation in the presence of these factors. 

The movement of the fluid and thermal transport for governing partial differential equations of the considered problem for MHD 
second grade fluid under Boussinesq’s approximation [38]. 

The momentum equation 

∂u(φ, t)
∂t

= υ
(

1 + λ
∂
∂t

)
∂2u(φ, t)

∂φ2 + gβT(T(φ, t) − T∞) + gβC(C(φ, t) − C∞)

−

[
σ0M2

0

ρ +
υψ
k0

(

1 + λ
∂
∂t

)]

u(φ, t).

(1) 

The energy balance equation 

Cp
∂T(φ, t)

∂t
= −

1
ρ

∂q(φ, t)
∂φ

. (2) 

The Fourier’s thermal flux Law 

q(φ, t) = − k
∂T(φ, t)

∂φ
. (3) 

The diffusion equation 

∂C(φ, t)
∂t

= −
∂χ(φ, t)

∂φ
. (4) 

The Ficks Law 

χ(φ, t) = − Dm
∂C(φ, t)

∂φ
. (5)  

with associated initial/boundary conditions 

u(φ, 0) = 0, T(φ, 0) = T∞, C(φ, 0) = C∞, φ ≥ 0,

u(0, t) = u0exp(ζt), T(0, t) = T∞ + (Tw − T∞)
u0

2

υ t,

C(0, t) = C∞ + (Cw − C∞)
u0

2

υ t, t ≥ 0,

u(φ, t) → 0, T(φ, t) → T∞, C(φ, t) → C∞ as φ → ∞.

(6) 

Fig. 1. Geometrical formation of the flow model.  
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To obtain the non-dimentionalize equations the following new on-dimensional quantities are introducd: 

t∗ =
u2

0t
υ , φ∗ =

u0φ
υ , u∗ =

u
u0
, υ =

μ
ρ, T∗ =

T − T∞

Tw − T∞
, C∗ =

C − C∞

Cw − C∞
,

λ∗ =
u2

0λ
υ , q∗ =

q
q0
, χ∗ =

χ
χ0
, q0 =

k(Tw − T∞)u0

υ , χ0 =
Dm(Cw − C∞)u0

υ ,

Gr =
gβT υ(Tw − T∞)

u3
0

, Gm =
gβCυ(Cw − C∞)

u3
0

, Pr =
μCp

k
, Sc =

υ
Dm

,

M =
σ0M2

0υ
ρu2

0
,

1
K
=

υ2ψ
k0u2

0
, λ∗ =

λρu2
0

μ2 , ζ∗ =
ζυ
u2

0
, a = M +

1
K
, b =

λ
K
.

(7) 

After substituting Eq. (7) into Eq. (1) − (5), and ignored the notation of asterisk * and get all equations in dimentionless form as: 

∂u(φ, t)
∂t

=

(

1 + λ
∂
∂t

)
∂2u(φ, t)

∂φ2 + GrT(φ, t) + GmC(φ, t) − au(φ, t) − b
∂u(φ, t)

∂t
, (8)  

∂T(φ, t)
∂t

= −
1

Pr
∂q(φ, t)

∂φ
, (9)  

q(φ, t) = −
∂T(φ, t)

∂φ
, (10)  

∂C(φ, t)
∂t

= −
1
Sc

∂χ(φ, t)
∂φ

, (11)  

χ(φ, t) = −
∂C(φ, t)

∂φ
. (12) 

Along with the set of initial and boundary conditions in non-dimensional form are stated as: 

u(φ, 0) = 0, T(φ, 0) = 0, C(φ, 0) = 0, for φ ≥ 0, (13)  

u(0, t) = eζt , T(0, t) = eζt , C(0, t) = eζt, for t ≥ 0, (14)  

u(φ, t) → 0, T(φ, t) → 0, C(φ, t) → 0 as φ → ∞. (15)  

3. Preliminaries 

The regularized Prabhakar derivative is described as: 

CDγ
α,β,℘f (t) = E− γ

α,m− β,℘f (m)(t) =
∫ t

0
(t − τ)m− β− 1E− γ

α,m− β(℘(t − τ)α
)f (m)(τ)dτ. (16)  

where 

Eγ
α,β,℘f (t) =

∫ t

0
(t − τ)β− 1Eγ

α,β(℘(t − τ)α
)f (τ)dτ.

represents the Prabhakar integral and 

Eγ
α,β(z) =

∑∞

n=0

Γ(γ + n)zn

n!Γ(γ)Γ(αn + β)
, α, β, γ, z ∈ C, Re(α) > 0  

is the three parameter Mittag-Leffler function. Also, the function tβ− 1Eγ
α,β(℘tα) with t ∈ R, α, β, γ, ℘ ∈ C, Re(α) > 0 is called the 

Prabhakar kernel. 
The Laplace transformation of the regularized Prabhakar derivative is described as: 

L

{
CDγ

α,β,℘f (t)
}
= ξβ− m(1 − ℘ξ− α)

γ
L

{
f (m)(t)

}
. (17)  

where α, β, γ represents the fractional parameters and ξ denoted by Laplace transform parameter. 

4. Solution of the problem 

In the present study, introducing a novel mathematical model named as Prabhakar’s fractional operator which generalized the 
thermal memory effects. The generalized Fouriers and Ficks laws are based on Prabhakar’s fractional derivative, are defined as: 
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q(φ, η) = − CDγ
α,β,℘

∂T(φ, η)
∂φ

, (18)  

χ(φ, η) = − CDγ
α,β,℘

∂C(φ, η)
∂φ

. (19)  

where CDγ
α,β,℘ represents Prabhakar fractional operator and detailed discussion with properties are given in Ref. [38]. Further, the 

classical Fourier’s law will be obtained for β = γ = 0. 

4.1. Exact solution of temperature 

Applying Laplace transformation on Eq. (9) and Eq. (18) to get the solution with conditions given in Eq. (13) − (15), we have 

PrξT(φ, ξ) = −
∂q(φ, ξ)

∂φ
. (20)  

and 

q(φ, ξ) = − ξβ(1 − ℘ξ− α)
γ∂T(φ, ξ)

∂φ
. (21)  

with 

T(0, ξ) =
1

ξ − ζ
and T(φ, ξ) → 0 as φ → ∞. (22)  

where ζ(φ, ξ) represents the Laplace transformation of the function ζ(φ, t) and defined as: ζ(φ, ξ) =
∫∞

0 ζ(φ, t)e− ξtdt and ξ is the 
transformed variable. 

Using Eq. (21) into Eq. (20), we get 

PrξT(φ, ξ) = ξβ(1 − ℘ξ− α)
γ∂2T(φ, ξ)

∂φ2 , (23)  

∂2T(φ, ξ)
∂φ2 =

Prξ
ξβ(1 − ℘ξ− α)

γ T(φ, ξ), (24)  

∂2T(φ, ξ)
∂φ2 − A(ξ)T(φ, ξ) = 0. (25) 

The solution for Eq. (25) is written as: 

T(φ, ξ) = e1eφ
̅̅̅̅̅̅
A(ξ)

√
+ e2e− φ

̅̅̅̅̅̅
A(ξ)

√
. (26) 

To determine the unknown constants e1 and e2, employing the stated conditions in Eq. (22) for temperature, we have 

T(φ, ξ) =
1

ξ − ζ
e− φ

̅̅̅̅̅̅
A(ξ)

√
. (27)  

where A(ξ) = Prξ
ξβ(1− ℘ξ− α)γ 

write Eq. (27) in series form by using the series formula for exponential function, then its equivalent form are expressed as: 

T(φ, ξ) = f (ξ)
∑∞

n=0
(− φ

̅̅̅̅̅̅̅̅̅
A(ξ)

√
)

n

n!
,

= f (ξ)
∑∞

n=0
(− φ

̅̅̅̅̅
Pr

√
)

n

n!ξ(β− 1)n
2(1 − ℘ξ− α)

γn
2
.

(28) 

Taking inverse Laplace transformation of Eq. (28), the required solution for temperature is written as: 

T(φ, t) = f (t) ∗
∑∞

n=0

(− φ)n

n!
(Pr)

n
2t(β− 1)n

2− 1Eα,(β− 1) n
2

γn
2 (℘tα). (29)  

where f(t)= L
− 1
{

1
ξ− ζ

}
= eζt, L − 1

{
1

ξβ(1− ℘ξ− α)γ

}
= L

− 1
{

ξαγ− β

(ξα − ℘)
γ

}
= tβ− 1Eγ

α,β(℘tα) and ‘*’ represents convolution product. 

4.2. Exact solution of diffusion equation 

Applying Laplace transformation on Eq. (11) and Eq. (19) to get the solution with conditions given in Eq. (13) − (15), we have 
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ScξC(φ, ξ) = −
∂χ(φ, ξ)

∂φ
. (30)  

and 

χ(φ, ξ) = − ξβ(1 − ℘ξ− α)
γ∂C(φ, ξ)

∂φ
. (31)  

with 

C(0, ξ) =
1

ξ − ζ
and C(φ, ξ) → 0 as φ → ∞. (32)  

using Eq. (31) into Eq. (30), we get 

ScξC(φ, ξ) = ξβ(1 − ℘ξ− α)
γ∂2C(φ, ξ)

∂φ2 , (33)  

∂2C(φ, ξ)
∂φ2 =

Scξ
ξβ(1 − ℘ξ− α)

γ C(φ, ξ), (34)  

∂2C(φ, ξ)
∂φ2 − B(ξ)C(φ, ξ) = 0. (35) 

The solution for Eq. (35) is written as: 

T(φ, ξ) = e3eφ
̅̅̅̅̅̅
B(ξ)

√
+ e4e− φ

̅̅̅̅̅̅
B(ξ)

√
. (36) 

To determine the unknown constants e3 and e4, employing the stated conditions in Eq. (32) for concentration, we have 

C(φ, ξ) =
1

ξ − ζ
e− φ

̅̅̅̅̅̅
B(ξ)

√
. (37)  

where B(ξ) = Scξ
ξβ(1− ℘ξ− α)γ 

write Eq. (37) in series form by using the series formula for exponential function, then its equivalent form are expressed as: 

C(φ, ξ) = f (ξ)
∑∞

k=0
(− φ

̅̅̅̅̅̅̅̅̅
B(ξ)

√
)

k

k!
,

= f (ξ)
∑∞

k=0
(− φ

̅̅̅̅̅
Sc

√
)

k

k!ξ(β− 1)k
2+1(1 − ℘ξ− α)

γk
2
.

(38) 

Taking inverse Laplace transformation of Eq. (38), the required solution for concentration is written as: 

C(φ, t) = f (t) ∗
∑∞

k=0

(− φ)k

k!
(Sc)

k
2t(β− 1)k

2Eα,(β− 1) k
2+1

γk
2 (℘tα). (39)  

4.3. Exact solution of fluid velocity 

The velocity field solution from Eq. (8) with the help of Laplace transformation is calculated as: 

ξu(φ, ξ) = (1 + λξ)
d2u(φ, ξ)

dφ2 + GrT(φ, ξ) + GmC(φ, ξ) − au(φ, ξ) − bξu(φ, ξ), (40)  

with 

u(0, ξ) =
1

ξ − ζ
and u(φ, ξ) → 0 as φ → ∞. (41)  

substituting the value of T(φ, ξ) from Eq. (27) and the value of C(φ, ξ) from Eq. (37) in Eq. (40), then after manipulation the solution 
written in the form 

u(φ, ξ) = e5eφ
̅̅̅̅̅̅
a+δξ
1+λξ

√

+ e6e− φ
̅̅̅̅̅̅
a+δξ
1+λξ

√

−
Gr

ξ − ζ

[
e− φ

̅̅̅̅̅̅
A(ξ)

√

(1 + λξ)A(ξ) − (a + δξ)

]

−
Gm

ξ − ζ

[
e− φ

̅̅̅̅̅̅
B(ξ)

√

(1 + λξ)B(ξ) − (a + δξ)

]

.

(42) 
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The involving constants e5 and e6 in the above Eq. (42) are determined with the help of stated conditions in Eq. (41), then solution is 
written as: 

u(φ, ξ) =
e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

ξ − ζ
+

Gr
ξ − ζ

⎡

⎣ e− φ
̅̅̅̅̅̅
A(ξ)

√
− e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

(a + δξ) − (1 + λξ)A(ξ)

⎤

⎦+
Gm

ξ − ζ

⎡

⎣ e− φ
̅̅̅̅̅̅
B(ξ)

√
− e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

(a + δξ) − (1 + λξ)B(ξ)

⎤

⎦. (43) 

Eq. (43) can also be written in more precise form as: 

u(φ, ξ) = Ψ(φ, ξ) + GrΩ(φ, ξ)[T(φ, ξ) − Ψ(φ, ξ)] + GmΦ(φ, ξ)[C(φ, ξ) − Ψ(φ, ξ)]. (44) 

Taking Laplace inverse transformation along with the convolution theorem, the velocity field solution is finally obtained as: 

u(φ, t) = Ψ(φ, t) + GrΩ(φ, t) ∗ [T(φ, t) − Ψ(φ, t)] + GmΦ(φ, t) ∗ [C(φ, t) − Ψ(φ, t)]. (45)  

where 

Ψ(φ, t) = L
− 1
{Ψ(φ, ξ)}= L

− 1

⎧
⎨

⎩

e− φ
̅̅̅̅̅̅
a+δξ
1+λξ

√

ξ − ζ

⎫
⎬

⎭
,

= L
− 1

{
∑∞

k=0

∑∞

r=0

∑∞

n=0

(− 1)n
(− φ)k

(aλ − δ)r
(δ)k− rΓ(r + n)

r!n!(λ)k+r+nΓ(r)Γ(k − r + 1)
1

ξn+r(ξ − ζ)

}

,

=
∑∞

k=0
∑∞

r=0
∑∞

n=0
(− 1)n

(− φ)k
(aλ − δ)r

(δ)k− rΓ(r + n)
r!n!(λ)k+r+nΓ(r)Γ(k − r + 1)

tn+rE1,1+n+r(ζt),

Ω(φ, t) = L
− 1
{Ω(φ, ξ)}= L

− 1
{

1
(a + δξ) − (1 + λξ)A(ξ)

}

,

= L
− 1

{
∑∞

k=0

∑∞

r=0

∑∞

n=0

(− 1)n
(Pr)k

(λ)k− r
(δ − aλ)rΓ(k + 1)Γ(r + n + 1)

r!n!(a)n+r+1
(δ)k− nΓ(k − r + 1)

1
ξ(βk− k− n)(1 − ℘ξ− α)

γk

}

,

=
∑∞

k=0
∑∞

r=0
∑∞

n=0
(− 1)n

(Pr)k
(λ)k− r

(δ − aλ)rΓ(k + 1)Γ(r + n + 1)
r!n!(a)n+r+1

(δ)k− nΓ(k − r + 1)
tβk− k− n− 1Eγk

α,βk− k− n(℘tα),

Φ(φ, t) = L
− 1
{Φ(φ, ξ)}= L

− 1
{

1
(a + δξ) − (1 + λξ)B(ξ)

}

,

= L
− 1

{
∑∞

k=0

∑∞

r=0

∑∞

n=0

(− 1)n
(Sc)k

(λ)k− r
(δ − aλ)rΓ(k + 1)Γ(r + n + 1)

r!n!(a)n+r+1
(δ)k− nΓ(k − r + 1)

1
ξ(βk− k− n)(1 − ℘ξ− α)

γk

}

,

=
∑∞

k=0
∑∞

r=0
∑∞

n=0
(− 1)n

(Sc)k
(λ)k− r

(δ − aλ)rΓ(k + 1)Γ(r + n + 1)
r!n!(a)n+r+1

(δ)k− nΓ(k − r + 1)
tβk− k− n− 1Eγk

α,βk− k− n(℘tα),

and δ = 1 + b.

4.3.1. Classical second grade fluid 
To get the Ordinary second grade fluid, substituting β = 0 and γ = 0 in Eq. (43), then the transformed velocity expression becomes 

u(φ, ξ) =
e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

ξ − ζ
+

Gr
ξ − ζ

⎡

⎣ e− φ
̅̅̅̅̅
Prξ

√
− e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

(a + δξ) − (1 + λξ)Prξ

⎤

⎦+
Gm

ξ − ζ

⎡

⎣ e− φ
̅̅̅̅̅
Scξ

√
− e− φ

̅̅̅̅̅̅
a+δξ
1+λξ

√

(a + δξ) − (1 + λξ)Scξ

⎤

⎦. (46)  

4.3.2. Fractionalized viscous fluid 
For this case, taking λ = 0 in Eq. (43) then the velocity expression for viscous fluid is written as 

u(φ, ξ) =
e− φ

̅̅̅̅̅̅̅
a+δξ

√

ξ − ζ
+

Gr
ξ − ζ

[
e− φ

̅̅̅̅̅̅
A(ξ)

√
− e− φ

̅̅̅̅̅̅̅
a+δξ

√

(a + δξ) − A(ξ)

]

+
Gm

ξ − ζ

[
e− φ

̅̅̅̅̅̅
B(ξ)

√
− e− φ

̅̅̅̅̅̅̅
a+δξ

√

(a + δξ) − B(ξ)

]

. (47)  

4.3.3. Ordinary viscous fluid 
For this case, taking λ = 0 in Eq. (46) then the velocity expression for classical viscous fluid is written as 

u(φ, ξ) =
e− φ

̅̅̅̅̅̅̅
a+δξ

√

ξ − ζ
+

Gr
ξ − ζ

[
e− φ

̅̅̅̅̅
Prξ

√
− e− φ

̅̅̅̅̅̅̅
a+δξ

√

(a + δξ) − Prξ

]

+
Gm

ξ − ζ

[
e− φ

̅̅̅̅̅
Scξ

√
− e− φ

̅̅̅̅̅̅̅
a+δξ

√

(a + δξ) − Scξ

]

. (48) 

Eq. (48) represents the same velocity field expressions as derived by A. Selvaraj et al. [37]. 
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5. Results and discussion 

In the present work, the time dependent, in-compressible, electrically conducting natural convective movement of second grade 
fluid over an exponentially accelerated erected plate having infinite length along with exponentially variable velocity, temperature 
and mass diffusion were investigated. For the sake of generalized memory effects, a fractional model developed by applying the newly 
introduced Prabhakar fractional operator having Mittag-Leffler kernel in the constitutive equations. This fractional model has been 
solved analytically and exact solutions for dimensionless velocity, concentration and energy equations were calculated in terms of 
Mittag-Leffler functions by employing the Laplace transformation. The influence of the various system parameters such as α, Pr, β, Sc, 
Gr, γ, Gm that are used to discuss the physical interpretation of the derived results. The analytical solutions for energy, concentration 
and momentum equations are graphically portrayed in Figs. 2–9. 

Fig. 2(a), (b) and 2(c) portrays the effect of fractional parameters α, β and γ on temperature profile by taking two distinct values of 
fractional parameters at two different value of time. From these graphs it is observed that rise in temperature profile corresponding to 
large values of fractional parameters α and β but opposite behavior for fractional parameter γ is displayed. Also, it is analyzed that 
fractional parameters have significant effect on thermal flux for smaller values of time, but the effect is more significant on thermal flux 
for large values of time. 

Fig. 2(d) display the impact of Prandtl number Pr over the temperature profile by taking the various values of Pr at two different 
levels of time. It is seen that decay in temperature profile while increasing the values of Prandtl number. Physically, when the values of 
Pr increases then the thermal boundary layer thickness decreases rapidly that cause to decrease in energy profile. 

Fig. 3(a), (b) and 3(c) illustrates the behavior of α, β and γ respectively, on mass profile by taking two distinct values of time. From 
these curves it is noted that decay in concentration profile corresponding to large value of fractional parameter γ, but for large values of 
α and β concentration profile elevated. Also, it is seen that fractional parameters have significant effect on mass profile for smaller 
values of time, but the effect is more significant for large values of time. 

Fig. 3(d) display the influence of Schmidt number Sc over the concentration profile by taking the various values of Sc corresponding 
to small and large values of time. It is noted that decay in mass profile while increasing the values of Schmidt number. 

Fig. 4(a), (b) and 4(c) plotted to analyze the behavior of α, β and γ on velocity contour against two dissimilar values of time. It is 
depicted from these graphs velocity profile increases due to enhance the values of fractional parameters α and β but the graph of 

Fig. 2. (a) Graphical representations of temprature profile by taking the distinct values of α when Pr = 12, β = 0.3, ℘ = 0.4, ω = 0.5, and γ = 0.5 (b) Graphical 
representations of temperature profile by taking the distinct values of β when Pr = 12, ω = 0.5, ℘ = 0.4, α = 0.3 and γ = 0.5 (c) Graphical representations of 
temperature profile by taking the distinct values of γ when Pr = 12, ω = 0.5, ℘ = 0.4, β = 0.3 and α = 0.5 (d) Graphical representations of temperature profile by 
taking the distinct values of Pr when α = 0.4, β = 0.3, ℘ = 0.4, ω = 0.5 and γ = 0.5. 
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velocity decline with an increase in γ. Further, it is remarkable to mention that the graph of fluid velocity higher for large time as 
compared to the graph of fluid velocity for smaller time. 

Fig. 4(d) display the velocity graph to interpret the impact of mass grashof numbers Gm. An increase in the velocity contour have 
portrayed due to rising the values of Gr. Fig. 5 display the impact of Prandtl number Pr over the velocity field by taking the various 
values of Pr at two different levels of time. It is noted that decay in velocity profile while increasing the values of Prandtl number. 
Physically, when the values of Pr increases then the thermal boundary layer thickness decreases rapidly that cause to decrease in 
momentum profile. 

Fig. 6 exemplify the velocity graph to interpret the impact of thermal grashof numbers Gr. An increase in the velocity curve have 
appeared due to boost in the values of Gr. 

Fig. 7 represents the influence of Schmidt number Sc over the Velocity profile by taking the various values of Sc corresponding to 
small and large values of time. It is detected that decline in velocity profile while increasing the values of Schmidt number. 

Fig. 8 represents the velocity outlines for different ideals of time. From this graph the velocity is discovered to growth with raise in 
time duration t of the plate. 

Fig. 9 plotted to make comparison among different fluids such as the fractional second grade, classical second grade, fractional 
viscous and classical viscous fluid models for two distinct levels of time. It is eminent to point out that the movement of the viscous 
fluids for both fractional and classical cases are faster as compared to second grade fluids for ordinary as well as fractional cases. Also, 
from these graphs, it is visualized that ordinary second grade fluid and ordinary viscous fluid have relatively higher velocity as 
compared to fractional second grade fluid and fractional viscous fluid. Additionally, it is important to mention that for classical and 
fractional models, the velocity field perceive the identical behavior. 

6. Conclusion 

The prominent features of this work is to introduce the time dependent, in-compressible, natural convective flow of second grade 
fluid on an exponentially accelerated vertical plate with generalized Mittag-Leffler. For the sake of generalized memory effects, a 
fractional model developed by applying the newly introduced Prabhakar fractional operator having Mittag-Leffler kernel in the 

Fig. 3. (A) Graphical representations of concentration profile by taking distinct values of α at two different levels of time, when Sc = 9, ℘ = 0.4, β = 0.3 and γ = 0.5 (b) 
Graphical representations of concentration profile by taking distinct values of β when Sc = 9, ℘ = 0.4, α = 0.3 and γ = 0.5 (c) Graphical representations of con-
centration profile by taking distinct values of γ when Sc = 9, ℘ = 0.4, β = 0.3 and α = 0.5 (d) Graphical representations of concentration profile by taking distinct 
values of Sc when α = 0.5, ℘ = 0.4, β = 0.3 and γ = 0.5. 
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constitutive equations. The work presented in this article is new. Fractionalized diffusion equation is introduced in this model by 
employing Prabhakar fractional operator with generalized Fick’s law. This Prabhakar-like non integer model has been solved 
analytically and exact solutions for dimensionless velocity, concentration and energy equations are calculated in terms of Mittag- 
Leffler functions by employing the Laplace transformation technique. The influence of the various system parameters such as α, Pr, 
β, Sc, Gr, γ, Gm that are used to discuss the physical interpretation of the derived results. Some essential findings obtained from graphs 

Fig. 4. (A) Graphical representations of velocity profile by taking the dissimilar values of α when Gr = 5, Gm = 3.5, ℘ = 0.4, Pr = 12, ω = 0.5, λ = 0.6, Sc = 9, γ = 0.3 
and β = 0.5 (b) Graphical representations of velocity profile by taking the dissimilar values of β when Gr = 5, Gm = 3.5, ℘ = 0.4, Pr = 12, ω = 0.5, Sc = 9, λ = 0.6, γ =
0.3 and α = 0.5 (c) Graphical representations of velocity profile by taking the dissimilar values of γ when Gr = 5, Gm = 3.5, ℘ = 0.4, Pr = 12, λ = 0.6, ω = 0.5, Sc = 9, 
β = 0.3 and α = 0.5 (d) Graphical representations of velocity profile by taking the dissimilar values of Gm when Gr = 5, Pr = 11, ℘ = 0.4, ω = 0.5, λ = 0.6, Sc = 9, α =
0.5 β = 0.3 and γ = 0.4. 

Fig. 5. Graphical representations of velocity profile by taking the dissimilar values of Pr at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4, λ = 0.6, ω =
0.5, Sc = 9, α = 0.5 β = 0.3 and γ = 0.4. 

A.U. Rehman et al.                                                                                                                                                                                                    



Case Studies in Thermal Engineering 34 (2022) 102018

11

Fig. 6. Graphical representations of velocity profile by taking the dissimilar values of Gr at two different levels of time, when Pr = 12, Gm = 3.5, ℘ = 0.4, ω = 0.5, Sc 
= 9, λ = 0.6, α = 0.5 β = 0.3 and γ = 0.4. 

Fig. 7. Graphical representations of velocity profile by taking the dissimilar values of Sc at two different levels of time, when Gr = 5, Gm = 3.5, ℘ = 0.4, λ = 0.6, ω =
0.5, Pr = 9, α = 0.5 β = 0.3 and γ = 0.4. 

Fig. 8. Graphical representations of velocity profile by taking the dissimilar values of t, when Pr = 12, Gr = 5, ℘ = 0.4, Gm = 3.5, λ = 0.6, ω = 0.5, Sc = 9, α = 0.5 β =
0.3 and γ = 0.4. 
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are given below:  

● It is observed that velocity, temperature and concentration profiles increased when the values of fractional parameters α and β are 
elevated, but opposite behavior observed for fractional parameter γ.  

● It is seen that temperature and concentration graphs decline corresponding to large values of Pr and Sc respectively.  
● It is detected that for rising values of Sc and Pr the velocity profile decreasing.  
● It is examined that the velocity field elevated for increasing the values of time.  
● The greater values of the grashof numbers Gr and Gm stimulates the velocity contour.  
● It is visualized that ordinary second grade fluid and ordinary viscous fluid have relatively higher velocity as compared to fractional 

second grade fluid and fractional viscous fluid.  
● It is noted that for classical and fractional models, the velocity field perceive the identical behavior. 
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