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MODIFIED ATANGANA-BALEANU FRACTIONAL

DIFFERENTIAL OPERATORS

RABHA W. IBRAHIM AND DUMITRU BALEANU

Abstract. Fractional differential operators are mostly investigated for
functions of real variables. In this paper, we present two fractional dif-
ferential operators for a class of normalized analytic functions in the
open unit disk. The suggested operators are investigated according to
concepts in geometric function theory, using the concepts of convex-
ity and starlikeness. Therefore, we reformulate the new operators in the
Ma-Minda class of analytic functions, in order to act on normalized ana-
lytic functions. Our method is based on subordination, superordination,
and majorization theory. As an application, we employ these operators
to generalize Bernoulli’s equation and a special class of Briot-Bouquet
equations. The solution of the generalized equation is formulated by a
hypergeometric function.

1. Introduction

Complex fractional differential and integral operators are suggested by Sri-
vastava and Owa [22]. These operators are generalized by Ibrahim using two
parameters for a variable in a complex domain [11]. These operators are utilized
to formulate different classes of analytic functions, which are called fractional
analytic functions [23]. Moreover, they are formulated in the general class of
algebraic fractional differential equations to study the stability [12, 13]. Recent
applications of the fractional calculus in science and engineering, including nu-
merical solutions for different types of fractional differential equations can be
located in [17]-[25].

We continue our study concerning the topic: fractional differential operators
of a complex variable. In this study, we extend the well known AB-fractional dif-
ferential operators to a complex domain. We desire to investigate the geometric
properties of these operators. Therefore, we act them on the class of normalized
analytic functions. As a result, we indicate that these operators are normalized
under some conditions. Consequently, we formulate them in the Ma-Minda class
of analytic functions using the subordination concept. This class will bring the
geometric properties of the suggested operators such as starlikeness and convexity
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in the open unit disk. As an application, we employ these operators to gener-
alize Bernoulli and Briot-Bouquet differential equations. We discover that the
solutions can be formulated by hypergeometric functions.

2. Methods

We utilize the following notions.

2.1. Geometric concepts. In this part, we illustrate some concepts in the
geometric function theory, which are located in [15]-[18]

Definition 2.1. Let U := {z ∈ C : |z| < 1} be the open unit disk. Two analytic
functions f1, f2 in U are subordinated ( f1 ≺ f2 or f1(z) ≺ f2(z), z ∈ U) if there
exists an analytic function ω, |ω| ≤ |z| < 1 satisfying

f1(z) = f2(ω(z)), z ∈ U.
And f1 is majorized by f2 ( f1 ≪ f2) if ω satisfies

f(z) = ω(z)f2(z), z ∈ U.

There is a connection between subordination and majorization [5] in the open
unit disk for some special classes including the convex class (C)

1 + ℜ
(
zv′′(z)

v′(z)

)
> 0, z ∈ U

and starlike functions (S∗)

ℜ
(
zv′(z)

v(z)

)
> 0, z ∈ U.

Definition 2.2. We assume the following class of normalized analytic functions

f(z) = z +
∞∑
n=2

anz
n, z ∈ U.

This class is symbolized by Λ and it represents the class of univalent functions
when f(0) = f ′(0)− 1 = 0.

Two functions f, g ∈ Λ are called convoluted ( f ∗ g) when

(f ∗ g)(z) =

(
z +

∞∑
n=2

an z
n

)
∗

(
z +

∞∑
n=2

gn z
n

)

= z +

∞∑
n=2

angnz
n.

Definition 2.3. The generalized Mittag-Leffler function is formulated by [24]

Eϑ
ν,µ(z) =

∞∑
n=0

(ϑ)n
Γ(νn+ µ)

zn

n!
,

where (ϑ)n indicates the Pochhammer symbol and

E1
ν,µ(z) = Eν,µ(z) =

∞∑
n=0

zn

Γ(νn+ µ)
.
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2.2. Complex fractional differential operator. A fractional differential op-
erator for the complex Atangana and Baleanu is defined as follows [7] (AB frac-
tional operator for a real variable can be located in [4]): the Hankel contour D
can be defined as the union of the following three subcontours:

• [D1] := {z + re−iπ(z − c) : 1 > r > ε},
• [D2] := {z + ε eiθ(z − c) : −π < θ < π},
• [D3] := {z + r eiπ(z − c) : ε < r < 1}

where ε is a small positive constant; the following fractional differential operators
are defined

ABC∆νh(z) =
α(ν)

2πi(1− ν)

∫
D
h′(ζ)Eν(−µν(z − ζ)ν)dζ, (2.1)

where α(ν) is normalized by α(0) = α(1) = 1 and Eν(ω) is the Mittag-Leffler
function taking the modified formula

Eν(χ) =
∞∑
n=0

Γ(−νn)χn.

Moreover, they introduced the following fractional differential operator

ABR∆νh(z) =
α(ν)

2πi(1− ν)

d

dz

∫
D
h(ζ)Eν(−µν(z − ζ)ν)dζ, (2.2)

(
µν =

ν

1− ν
, 0 ≤ ν ≤ 1}

)
.

To present the AB-modified fractional differential operators of a complex variable,
we shall use double Mittag-Leffler functions in Definition 2.3. The justification
for this modification is that in the geometric function theory, we deal with dif-
ferent classes of analytic functions, such as normalized, mutivalent, harmonic,
meromorphic, multivalent meromorphic, multivalent harmonic, ...etc. Therefore,
one of the suggested Mittag-Leffler functions should concern about the power
of the variable z in f(z) =

∑∞
n=0 anz

n. This technique is important to satisfy
the existence of the AB-fractional differential operator in the same class of the
function f .

Definition 2.4. For f ∈ Λ, the above operators (2.1) and (2.2) are extended to
the complex plane as follows:

ABC∆ν
zf(z) =

α(ν)

1− ν

∫ z

0
f ′(ζ)Eν,ω(−µνζν)Eν(−µν(z − ζ)ν)dζ, (2.3)

and

ABR∆ν
zf(z) =

α(ν)

1− ν

d

dz

∫ z

0
f(ζ)Eν,ω(−µνζν)Eν(−µν(z − ζ)ν)dζ, (2.4)

where ω indicates the power of z in the power series of f(z).
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Example 2.1. Assume that f(z) = z, According to [21]-Theorem 2.4 or [10]-
Theorem 11.2, we have

ABC∆ν
z(z) =

α(ν)

1− ν

∫ z

0
Eν(−µνζν)Eν(−µν(z − ζ)ν)dζ

=
α(ν)

1− ν

(
zE2

ν,2(−µν(z)ν)
)

=
α(ν)

1− ν

(
z

∞∑
k=0

(2)kz
k

k!Γ(kν + 2)

)
,

where (t)n = t(t+ 1)...(t+ n− 1). Now by virtue of [21]-Theorem 2.2, we attain

ABR∆ν
z(z) =

α(ν)

1− ν

d

dz

∫ z

0
Eν(−µνζν)Eν(−µν(z − ζ)ν)ζ dζ

=
α(ν)

1− ν

(
z2E2

ν,3(−µν(z)ν)
)′

=
α(ν)

1− ν

(
zE2

ν,2(−µν(z)ν)
)
.

Consequently, we receive

ABC∆ν
z(z) =

ABR∆ν
z(z).

In general, we get

ABC∆ν
z(z

n) =

(
α(ν)

1− ν

)
nzn

(
E2

ν,1+n(−µν(z)ν)
)
, n ≥ 1,

ABR∆ν
z(z

n) =

(
α(ν)

1− ν

)
zn
(
E2

ν,1+n(−µν(z)ν)
)
.

We then look at some of the above operators’ geometric behaviors.

Proposition 2.1. Let f ∈ Λ and b(ν) :=
α(ν)

1− ν
. Then

(A)

ABC∆ν
zf(z) :=

ABC∆ν
zf(z)

b(ν)E2
ν,2(−µν(z)ν)

∈ Λ

and

ABR∆ν
zf(z) :=

ABR∆ν
zf(z)

b(ν)E2
ν,2(−µν(z)ν)

∈ Λ;

(B) ABR∆ν
zf(z) ≪ ABC∆ν

zf(z);
(C) ABR∆ν

zf(z) ≺ ABC∆ν
zf(z), whenever

ABC∆ν
zf(z) is convex [8] for 0.28 <

|z| := ϱ ≤
√
2− 1 or a starlike function [8] for 0.21 < ϱ < 0.3;

(D)
(
ABR∆ν

zf(z)
)′ ≺ (

ABC∆ν
zf(z)

)′
, whenever ABC∆ν

zf(z) is locally univa-

lent in ϱ ≤ 3−
√
8;

(E) ABC∆ν
zf(z) = z

(
ABR∆ν

zf(z)
)′
, ν → 0.
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Proof. Let f ∈ Λ. Then a computation leads to

ABC∆ν
zf(z)

=
ABC∆ν

zf(z)

b(ν)E2
ν,2(−µν(z)ν)

=
z−νn ABC∆ν

zf(z)

z−νn b(ν)E2
ν,2(−µν(z)ν)

=
z−νnb(ν)E2

ν,2(−µν(z)ν) z +
∑∞

n=2 z
−νnanb(ν)n

(
E2

ν,1+n(−µν(z)ν)
)
zn

z−νnb(ν)E2
ν,2(−µν(z)ν)

= z +
∞∑
n=2

ann

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

⇒ ABC∆ν
zf(z) ∈ Λ.

In the same way, we get ABR∆ν
zf(z) ∈ Λ.

It is sufficient to prove [5]

|ABR∆ν
zf(z)| ≤ |ABC∆ν

zf(z)|.

A calculation yields

|ABR∆ν
zf(z)| =

∣∣∣z + ∞∑
n=2

an

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn
∣∣∣

≤
∣∣∣z + ∞∑

n=2

ann

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn
∣∣∣

= |ABC∆ν
zf(z)|.

The third part immediately follows by [5]-Corollary 1 and 2 respectively. For (D),
since ABR∆ν

zf(z) ≺ ABC∆ν
zf(z) when |z| ≤ 3−

√
8 then in view of [5]-Theorem

3, we have
(
ABR∆ν

zf(z)
)′ ≺ (

ABC∆ν
zf(z)

)′
. Lastly, a computation implies the

following conclusion

z
(
ABR∆ν

zf(z)
)′

= z

(
1 +

∞∑
n=2

ann

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn−1

)

= z +

∞∑
n=2

ann

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

=ABC ∆ν
zf(z), ν → 0.

□

Definition 2.5. Assume that f, g ∈ Λ. Then f is in the class Aν(α, g(z)), α ∈
[0, 1] if it achieves one of the following subordination inequalities [14] :

(1− α)ABC∆ν
zf(z) + αz[ABC∆ν

zf(z)]
′ ≺ g(z),

or

(1− α)ABR∆ν
zf(z) + αz[ABR∆ν

zf(z)]
′ ≺ g(z),
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which is equivalent to (Proposition 2.1-[(E)])

(1− α)ABR∆ν
zf(z) + α[ABC∆ν

zf(z)] ≺ g(z).

3. Results

We start with the following result:

Theorem 3.1. Consider the modified AB-operators ABR∆ν
zf(z) and

ABC∆ν
zf(z).

If f ∈ C then ABR∆ν
zf(z) ∈ C and ABC∆ν

zf(z) ∈ S∗, whenever ν → 0.

Proof. By the definition of the operators ABR∆ν
zf(z), we have

ABR∆ν
zf(z) = z +

∞∑
n=2

an

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

=

(
z +

∞∑
n=2

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

)
∗

(
z +

∞∑
n=2

anz
n

)

=

(
z +

∞∑
n=2

zn

)
∗

(
z +

∞∑
n=2

anz
n

)

=

(
z

(1− z)

)
∗ f(z)

:= k(z) ∗ f(z),
where k(z) ∈ C where C is the subclass of convex functions in U. Thus, in view
of the convolution properties [20], we have ABR∆ν

zf(z) ∈ C. Similarly, for the
operator ABC∆ν

zf(z), we obtain

ABC∆ν
zf(z) = z +

∞∑
n=2

ann

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

=

(
z +

∞∑
n=2

n

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
zn

)
∗

(
z +

∞∑
n=2

anz
n

)

≈

(
z +

∞∑
n=2

nzn

)
∗

(
z +

∞∑
n=2

anz
n

)

=

(
z

(1− z)2

)
∗ f(z)

:= K(z) ∗ f(z),
where K(z) is the Koebe function. Thus, in view of [20], the convolution prop-
erties imply that ABC∆ν

zf(z) ∈ S∗. □

In the sequel, we request the next lemma [18](P139-140).

Lemma 3.1. Let v ∈ Λ. Then

(a) v(z) + αξ v′(z) ≺ (1 + α)z + αz2 ⇒ v(z) ≺ z, when α ∈ (0, 1/3];
(b) zv′(z)[1+v(z)]+αv2(z) ≺ z+(1+α)z2 ⇒ v(z) ≺ z, when |1+α| ≤ 1/4;

(c) [zv′(z)− v(z)]eα(v(z)) + ev(z) ≺ ez ⇒ v(z) ≺ z, when |α− 1| ≤ π/2;
(d) zv′(z)(1 + αv(z)) + v(z) ≺ 2z + αz2 ⇒ v(z) ≺ z, when |α| ≤ 1/2;
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(e) zv′(z)eαv(z) + v(z) ≺ z(1 + αzeαz) ⇒ v(z) ≺ z, when |α| ≤ 1;

(f) v(z) +
zv′(z)

1 + α v(z)
≺ z ⇒ v(z) ≺ z, when |α| ≤ 1;

and the solution is sharp.

Theorem 3.2. Consider the operator ABR∆ν
zf(z) and

(
ABC∆ν

zf(z)
)
, ν → 0.

Then

(a)
(
ABR∆ν

zf(z)
)
+ a

(
ABC∆ν

zf(z)
)
≺ (1 + a)z + az2 ⇒

(
ABR∆ν

zf(z)
)
≺ z,

when a ∈ (0, 1/3];

(b)
(
ABC∆ν

zf(z)
)
[1 +

(
ABR∆ν

zf(z)
)
] + a

(
ABR∆ν

zf(z)
)2 ≺ z + (1 + a)z2 ⇒(

ABR∆ν
zf(z)

)
≺ z, when |1 + a| ≤ 1/4;

(c) [
(
ABC∆ν

zf(z)
)
−
(
ABR∆ν

zf(z)
)
]ea(

ABR∆ν
zf(z)) + e(

ABR∆ν
zf(z)) ≺ ez ⇒(

ABR∆ν
zf(z)

)
≺ z, when |a− 1| ≤ π/2;

(d)
(
ABC∆ν

zf(z)
)
(1 + a

(
ABR∆ν

zf(z)
)
) +

(
ABR∆ν

zf(z)
)
≺ 2z + az2 ⇒(

ABR∆ν
zf(z)

)
≺ z, when |a| ≤ 1/2;

(e)
(
ABC∆ν

zf(z)
)
ea (

ABR∆ν
zf(z)) +

(
ABR∆ν

zf(z)
)
≺ z(1 + azeaz) ⇒(

ABR∆ν
zf(z)

)
≺ z, when |a| ≤ 1;

(f)
(
ABR∆ν

zf(z)
)
+

(
ABC∆ν

zf(z)
)

1 + a (ABR∆ν
zf(z))

≺ z ⇒(
ABR∆ν

zf(z)
)
≺ z, when |a| ≤ 1;

and the solution is sharp.

Proof. According to Proposition 2.1, we obtain
(
ABR∆ν

zf(z)
)
∈ Λ; similarly, we

have
(
ABC∆ν

zf(z)
)
∈ Λ. Let

υ(z) :=
(
ABR∆ν

zf(z)
)

and

zυ′(z) :=
(
ABC∆ν

zf(z)
)
.

Then in view of Proposition 2.1-[(E)], we have all the above desire assertions. □

Corollary 3.1. If one of the subordination of Theorem 3.2 holds, then∣∣∣(E2
ν,1+n(−µν)
E2

ν,2(−µν)

)∣∣∣ ≤ n

|an|
, n ≥ 2, an ̸= 0. (3.1)

Proof. In virtue of Theorem 3.2, we have(
ABR∆ν

zf(z)
)
≺ z, z ∈ U.

But the function h(z) = z is starlike, where ℜ(zh′(z)/h(z)) > 0. Thus, in view
of results in [19] or [6], the inequality F ≺ G,G ∈ S (the class of univalent
functions) implies |ϕn| ≤ n, where ϕn is the coefficients of F. Hence, we obtain
the desired inequality, by letting

ϕn := an

(
E2

ν,1+n(−µν)
E2

ν,2(−µν)

)
.

□
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Remark 3.1. Corollary 3.1 can be generalized for a starlike function Ψ(z) such
that (

ABR∆ν
zf(z)

)
≺ Ψ(z) := z +

∑
n=2

ψnz
n, z ∈ U,

then we have (3.1). Moreover, if(
ABC∆ν

zf(z)
)
≺ Ψ(z), z ∈ U,

then ∣∣∣(E2
ν,1+n(−µν)
E2

ν,2(−µν)

)∣∣∣ ≤ 1

|an|
, n ≥ 2, an ̸= 0. (3.2)

Theorem 3.3. Suppose that g ∈ C and f1 ∈ Λ is the univalent solution of the
fractional D’Alembert’s equation

(1− α)ABC∆ν
zf(z) + αz[ABC∆ν

zf(z)]
′ = g(z). (3.3)

If f and f1 ∈ Aν(α, g) then f(z) ≺ f1(z).

Proof. Suppose that

Θ[f(z)] = (1− α)ABC∆ν
zf(z) + αz[ABC∆ν

zf(z)]
′.

Obviously, Θ[f(0)] = g(0) = 0. Since f, f1 ∈ Λ then f(0) = f1(0) = 0. Further-
more, we indicate that

Θ[f(z)] = (1− α)ABC∆ν
zf(z) + αz[ABC∆ν

zf(z)]
′ ≺ g(z)

and
Θ[f1(z)] = (1− α)ABC∆ν

zf1(z) + αz[ABC∆ν
zf1(z)]

′ ≺ g(z).

Therefore, according to [18]-Theorem 3.4.c, we get f(z) ≺ f1(z), where f1 is the
best dominant. □

Remark 3.2. The D’Alembert’s equation (3.3) describes the linear combination
of two functions formulating by

Υ = χF (dχ/dΥ) +G(dχ/dΥ).

This equation is rearranged in many formulas depending on its applications [2].
Theorem 3.2 showed that every solution of (3.3) is bounded by a univalent solu-
tion (if it exists).

We continue to study the results of fractional differential equation. Next out-
come displays that a resolution of the fractional differential equation can be
deliberated as a resolution of the Briot-Bouquet equation. The most motivating
consequence is that the equation has a univalent solution with a positive real
part.

Theorem 3.4. Assume that g is an analytic function and λ is a starlike function
in U. If f ∈ Λ is a solution of the Bernoulli’s equation

(1− α)ABC∆ν
zf(z) + αz[ABC∆ν

zf(z)]
′ = g(z),

such that

ℜ
(
(1− α)ABC∆ν

zf(z) + αz[ABC∆ν
zf(z)]

′
)
> 0. (3.4)
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then f is a solution of the Briot-Bouquet equation

f(z) +
f ′(z)λ(z)

f(z)λ′(ξ)
= g(z)

with ℜ(f(z)) > 0.

Moreover, if Θ[f(z)] ∈ S∗(α) then

f ∈ Aν

(
α,

z

(1− z)2−2α

)
, α ∈ [0, 1], |z| ∈ (0.21, 0.3)

and

(Θ[σ(z)])′ ≺
(

z

(1− z)2−2α

)′
.

Proof. By the starlikeness of λ, we have

ℜ
(
zλ′(z)

λ(z)

)
> 0, z ∈ U.

Formulate a function Ω : U → U as follows:

Ω(z) :=

(
zλ′(z)

λ(z)

)
Θ[f(z)].

Consequently, we get ℜ (Ω(z)) > 0. By using [18]-Theorem 3.4j, the Briot-
Bouquet equation

f(z) +
f ′(z)λ(z)

ϕ(z)λ′(z)
= g(z)

has a solution with the real positive part: ℜ(f(z)) > 0.

By the starlikeness of Θ[f(z)] and [20]-Corollary 2.2, we find that a probability
measure ω ∈ ∂U can be occurred such that

Θ[f(z)] =

∫
∂U

z

(1− tz)2−2α
dω(z).

Which means that Θ[f(z)] achieves the majority relation

Θ[f(z)] ≪ z

(1− z)2−2α
.

Since
z

(1− z)2−2α
is starlike in U then according to [5]-Corollary 2, we obtain

Θ[f(z)] ≺ z

(1− z)2−2α
, |z| ∈ (0.21, 0.3),

which implies that f ∈ Aν

(
α,

z

(1− z)2−2α

)
, α ∈ [0, 1], |z| ∈ (0.21, 0.3). Lastly,

the assertion is indicated by [5]-Theorem 3. □

Remark 3.3. The fractional operator ABC∆ν
zf(z) in Theorems 3.3 and 3.4 can be

replaced by ABR∆ν
zf(z).
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4. Conclusion

• Modified AB-Fractional differential operators are defined in a complex
domain (ABR∆ν

zf(z) and ABC∆ν
zf(z)) acting in the class of normalized

analytic functions. Proposition 2.1 showed the normalization formulas of
these fractional operators. Also, it indicated the relation between these
operators using the subordination and majorization concepts.

• Geometric interpolation is a difficult task in fractional calculus. As a
result, the abc-fractional differential operator is studied geometrically in
terms of a complex variable in this manner. This method reveals a variety
of qualities and opens the door for future generations to consider or change
it in order to obtain additional geometric data. Theorem 3.1, for example,
stated the necessary conditions for the abc-differential operator to be
starlike. Other properties talked about convexity.

• Geometric properties are illustrated. Differential inequalities are for-
mulated to include them. We explored that when f is convex then
ABR∆ν

zf(z) is also convex, while ABC∆ν
zf(z) is starlike (see Theorem 3.1).

Theorem 3.2 illustrated differential inequalities for formulas involving the
suggested fractional differential operators. The results are sharp.

• Applications presented the action of solutions. We indicated that the
solution can be formulated by a special function type generalized hyper-
geometric function.

• For future works, the formulated operators can be used to generalize
some classes of analytic functions or to define other kinds of differential
operators.
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