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In this research paper, we consider a class of boundary value problems for a nonlinear Langevin equation involving two
generalized Hilfer fractional derivatives supplemented with nonlocal integral and infinite-point boundary conditions. At first,
we derive the equivalent solution to the proposed problem at hand by relying on the results and properties of the generalized
fractional calculus. Next, we investigate and develop sufficient conditions for the existence and uniqueness of solutions by
means of semigroups of operator approach and the Krasnoselskii fixed point theorems as well as Banach contraction principle.
Moreover, by means of Gronwall’s inequality lemma and mathematical techniques, we analyze Ulam-Hyers and Ulam-Hyers-
Rassias stability results. Eventually, we construct an illustrative example in order to show the applicability of key results.

1. Introduction

In recent decades, the subject of fractional calculus (FC)
becomes a very significant tool to characterize memory phe-
nomena in many branches of engineering and sciences.
Some properties of solutions like the existence and unique-
ness of solutions for fractional boundary value problems
(FBVPs) have been widely investigated [1–5], and a broad
rundown of references is given in that regard. The impor-
tance of FBVPs comes from their applicability in several
fields like science and engineering. Langevin [6] devised an
equation to describe the progression of physical processes
in fluctuating settings in 1908, which is known as the Lange-
vin equation. Mainardi and Pironi in 1990 [7] presented the
fractional Langevin equation (FLE). Yukunthorn et al. [8]
via Banach’s, Krasnoselskii’s, and Leray-Schauder’s nonlin-
ear alternative and Leray-Schauder studied the existence
and uniqueness of solution for a sequential nonlinear frac-
tional Caputo-Langevin equation. Baghani [9] discussed
the solvability of initial value problems for nonlinear Lange-

vin equation involving two fractional orders. Fazli and Nieto
[10] by means of coupled fixed point theorems for mixed
monotone mappings in partially ordered metric spaces
investigated the existence and uniqueness of solutions for
the nonlinear Langevin equation involving two fractional
orders with antiperiodic boundary conditions. Salem et al.
[11] studied the existence and uniqueness of solution for
fractional integrodifferential Langevin equation involving
two fractional orders with three-point multiterm fractional
integral boundary conditions. For further works on charac-
teristics of solutions, such as existence, uniqueness, and sta-
bility results for fractional Langevin equations (FLE), see
[12–15]. We also include some recent works on qualitative
analysis of similar situations with the generalized fractional
operators (see [16–20]). Samet et al. [21, 22] introduced a
new concept of fixed point theorems for mappings in com-
plete metric spaces. System stability is one of the most essen-
tial qualitative characteristics of solutions to FDEs. However,
there are few results of Ulam-Hyers (UH) and generalized
Ulam-Hyers (GUH) stability of solutions of FDEs in the
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literature. On the other hand, Guo et al. [23] studied the
existence and Hyers-Ulam stability of the virtually periodic
solution to the fractional differential equation with impulse
and fractional Brownian motion under nonlocal conditions
via the semigroups of operator approach and the Mönch
fixed point method. Li et al. [24] by using Krasnoselskii’s
fixed point method investigated the existence and Hyers-
Ulam stability of random impulsive stochastic functional
differential equations with finite delay. Shu and Shi [25]
studied the mild solution of impulsive fractional evolution
equations under Caputo fractional derivative.

Recently, Almalahi and Panchal [26] by means of some
fixed point theorems studied the qualitative properties of
solution for the following problem:

HDq,δ;φ
a+ − β

� �
u ϰð Þ = f ϰ, u ϰð Þð Þ, σ ∈ J ≔ a, bð �,

u að Þ = 0, u bð Þ = 〠
m

i=1
κiI

ζ,ϕ
a+ u τið Þ, τi ∈ a, bð �,

8>><
>>:

ð1Þ

where HDq,δ;φ
a+ is the φ-Hilfer FD of order q ∈ ð1, 2Þ with type

δ ∈ ½0, 1�, γ = q + 2δ − qδ, β < 0, m ∈ℕ and Iζ,φa+ is the φ-RL
fractional integral of order ζ > 0, β, κi ∈ℝ,
a < τ1 < τ2<⋯⋯ <b, and φ ∈C1ðJ Þ is an increasing
function with φ′ðϰÞ ≠ 0, for all ϰ ∈ J .

The recent works regarding of the FLE can be found in
[27–29]. Li et al. [27] via some fixed point techniques and
degree theory obtained some existence results of Caputo-
type Langevin FBVPs with infinite-point boundary condi-
tions

cDq1
0+

cDq2
0+ − β

� �
u ϰð Þ = f ϰ, u ϰð Þð Þ, ϰ ∈ 0, 1ð �,

u 0ð Þ = 0,cDq2
0+u 0ð Þ = 0,cDq2

0+u 1ð Þ = 〠
m

i=1
κciD

q2
0+u τið Þ,

8>><
>>:

ð2Þ

where cDq1
0+ , cD

q2
0+ are the Caputo FDs of order q1 ∈ ð0, 1�, q2

∈ ð1, 2�.
Seemab et al. in [29] discussed the existence and unique-

ness of solution for the following problem:

cDq1;φ
0+

cDq2;φ
0+ − β

� �
u ϰð Þ = f ϰ, u ϰð Þ,cDθ,φ

0+ u ϰð Þ
� �

, ϰ ∈ 0, bð �,

u 0ð Þ = 0, u ηð Þ = 0, u bð Þ = μIσ,φ0+ u ϰð Þ, μ > 0,

8<
:

ð3Þ

where cDm,φ
a+ denotes the φ-Caputo FD of order to m ∈ fq1,

q2, θg, q1 ∈ ð1, 2�, q2, θ ∈ ð0, 1�:
Nuchpong et al. [28] by using Banach, Leray–Schauder,

and Krasnoselskii fixed point theorems discussed the exis-
tence and uniqueness results of φ-Hilfer-type Langevin

FBVP nonlocal integral boundary conditions

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ − β

� �
u ϰð Þ = f ϰ, u ϰð Þð Þ, σ ∈ J ≔ a, bð �,

u að Þ = 0, u bð Þ = 〠
m

i=1
κiI

ζ,ϕ
a+ u τið Þ, τi ∈ a, bð �:

8>><
>>:

ð4Þ

Motivated by the aforementioned discussions, in this
research paper, we study the existence and uniqueness as
well as Ulam-Hyers stability results for Langevin-type
generalized FDEs with infinite-point boundary conditions
of the form

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ − β

� �
u ϰð Þ = f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ

0+ u ϰð Þ
� �

, ϰ ∈ J ≔ 0, bð �,

u 0ð Þ = 0, HDq2,δ2;φ
0+ u 0ð Þ = 0, u bð Þ = 〠

∞

i=1
ηiI

σi,φ
0+ u λið Þ,

8>><
>>:

ð5Þ

where HDq1,δ1;φ
0+ , HDq2,δ2;φ

0+ are the φ-Hilfer FDs of order
q1 ∈ ð0, 1�, q2 ∈ ð1, 2�,2 < q1 + q2 ≤ 3 with type δ1, δ2 ∈ ½0, 1�
and Ik,φ0+ is a φ-RL fractional integral of order k ∈ fθ, σig
such that θ, σi > 0, β ∈ℝ,ηi ∈ ð0, 1Þ,0 < λ1 < λ2<⋯<1, and
φ ∈C1ðJ Þ is an increasing function with φ′ðϰÞ ≠ 0, for
all ϰ ∈ J , and f : ð0, b� ×ℝ3 ⟶ℝ is a given function.

Observe that the results that will be obtained according
to the problem (5) cover results of [27–29] as follows:

(i) Li et al. in [27] (for a = 0,δ1 = δ2 = 1, and φðϰÞ = ϰ)

(ii) Nuchpong et al. [28] results (for θ = 0,i = 1, 2, ::, n,
and 0 < q1, q2 ≤ 1)

(iii) Seemab et al., in [29] (for a = 0,δ1 = δ2 = 1, and θ
= 0, i = 1, η = μ)

We anticipate that the results presented in this paper will
be groundbreaking and contribute to the existence of knowl-
edge on the Langevin equation. The results acquired in this
study are applicable to a wide range by choosing suitable
values of function φ and may be used to a variety of other
challenges.

The arrangement of this paper is as per the following. In
Section 2, we will give some definitions and lemmas to dem-
onstrate our primary outcomes. In Section 3, Krasnoselskii
and Banach fixed point techniques are used to acquire the
existence and uniqueness of solutions of the suggested prob-
lem (5). In Section 4, we analyze the stability results in
Ulam-Hyers sense. In the last section, we introduce a
numerical model to represent the fundamental results.

2. Auxiliary Results

In this section, to analyze our main results, we present here
some important definitions and auxiliary lemmas. Assume
that J ≔ ½0, b� and CðJ Þ≔CðJ ,ℝÞ denote the Banach
space of all continuous functions defined from J into ℝ
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with the norm kuk = sup fjuðϰÞj: ϰ ∈ Jg. Let φ ∈C1ðJ Þ be
an increasing function with φ′ðϰÞ ≠ 0, for all ϰ ∈ J .

Definition 1 (see [4]). Let q > 0 and g : ½0,∞Þ⟶ℝ: Then,
the following representation

Iq,φ0+ g ϰð Þ = 1
Γ qð Þ

ðϰ
0
φ′ sð Þ φ ϰð Þ − φ sð Þð Þq−1g sð Þds ð6Þ

is called φ-RL fractional integral of g of order q.

Definition 2 (see [31]). Let q ∈ ðn − 1, n�, n ∈ℕ, and the func-
tions g, φ ∈CnðJ Þ. Then, the φ-Hilfer FD of g with order q
and type 0 ≤ δ ≤ 1 is defined by

HDq,δ,φ
0+ g ϰð Þ = Iδ n−qð Þ;φ

0+ g n½ �
φ I 1−δð Þ n−qð Þ,φ

0+ g ϰð Þ
= Iδ n−qð Þ;φ

0+ g n½ �
φ In−γ,φ0+ g ϰð Þ

= Iδ n−qð Þ;φ
0+ Dγ;φ

a+ g ϰð Þ, γ = q + δ n − qð Þ,
ð7Þ

where

Dγ;φ
0+ g ϰð Þ = g n½ �

φ I 1−δð Þ n−qð Þ;φ
0+ g ϰð Þ,

g n½ �
φ = 1

φ′ ϰð Þ
d
dϰ

 !n

:
ð8Þ

Remark 3. In Definition 2, type δ and function φ allow
HDq,δ,φ

0+ to interpolate continuously between the Riemann-
Liouville FD and the Caputo FD. More precisely, we have
the following:

(i) φ-Hilfer FD corresponds to the Riemann-Liouville
FD for (δ = 0,φðϰÞ = ϰ), i.e.,

HDq,0,ϰ
0+ g ϰð Þ = g n½ �

ϰ In−q,ϰ0+ g ϰð Þ =Dn In−q0+ g ϰð Þ, ϰ > 0 ð9Þ

(ii) φ-Hilfer FD corresponds to the Caputo FD for
(δ = 1,φðϰÞ = ϰ), i.e.,

HDq,1,ϰ
0+ g ϰð Þ = In−q,ϰ0+ g n½ �

ϰ g ϰð Þ = In−q0+ Dn g ϰð Þ, ϰ > 0 ð10Þ

(iii) φ-Hilfer FD corresponds to the φ-Riemann-Liou-
ville FD for δ = 0, i.e.,

HDq,0,φ
0+ g ϰð Þ = g n½ �

φ In−q,φ0+ g ϰð Þ = 1
φ′ ϰð Þ

d
dϰ

 !n

In−q,φ0+ g ϰð Þ

=Dn
φ I

n−q,φ
0+ g ϰð Þ, ϰ > 0

ð11Þ

(iv) φ-Hilfer FD corresponds to the φ-Caputo FD for δ
= 1, i.e.,

HDq,1
0+ ,φgðϰÞ = In−q,φ0+ g

½n�
φ gðϰÞ = In−q,φ0+ ðð1/φ′ðϰÞÞðd/dϰÞÞn

gðϰÞ = In−q,φ0+ Dn
φgðϰÞ, ϰ > 0

Theorem 4 (see [4]). Let g ∈CðJ Þ be a function. Then, Iq;φ0+
gð0Þ = lim

ϰ⟶0+
Iq;φ0+ gðϰÞ = 0.

Lemma 5 (see [4, 30]). Let q, δ > 0 and η > 0. Then,

Iq,φ0+ I
δ,φ
0+ g ϰð Þ = Iq+δ,φ0+ g ϰð Þ,

Iq,φ0+ φ ϰð Þ − φ 0ð Þð Þη−1 = Γ ηð Þ
Γ q + ηð Þ φ ϰð Þ − φ 0ð Þð Þq+η−1,

ð12Þ

HDq,δ,φ
0+ φ ϰð Þ − φ 0ð Þð Þγ−1 = 0, γ = q + δ n − qð Þ: ð13Þ

Lemma 6 (see [30]). If g ∈CnðJ Þ,q ∈ ðn − 1, nÞ, and 0 ≤ δ
≤ 1, then

Iq;φ0+
HDq,δ,φ

0+ g ϰð Þ = g ϰð Þ − 〠
n

k=1

φ ϰð Þ − φ 0ð Þð Þγ−k
Γ γ − k + 1ð Þ g n−k½ �

φ I 1−δð Þ n−qð Þ;φ
a+ g 0ð Þ,

HDq,δ,φ
0+ Iq;φ0+ g ϰð Þ = g ϰð Þ:

ð14Þ

Theorem 7 (see [31]) (Banach theorem). Let O be a closed
subset of Banach space H , and the operator Q : O⟶ O be
a strict contraction that means kQðuÞ −QðvÞk ≤Lku − vk
for some 0 <L < 1, u, v ∈ O: Then, Q has a fixed point in O.

Theorem 8 (see [32]) (Krasnoselskii’s theorem). Let O be a
nonempty, closed, convex, and bounded subset from Banach
space H . If there exist two operators Q,Q⋆ such that (i) for
all u, v ∈H , imply Qu +Q⋆v ∈H , (ii) Q is compact and con-
tinuous, and (iii) Q⋆ is a contraction mapping, then there
exists a function z ∈ O such that z =Qz +Q⋆z:

3. Equivalent Integral Equations for
Problem (5)

In order to convert the problem (5) into a fixed point
problem, we will present the following lemma with linear
function hðϰÞ.
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Lemma 9. For j = 1, 2, let γj = qj + jδj − qjδj, q1 ∈ ð0, 1�, q2
∈ ð1, 2�,δj ∈ ½0, 1�, h ∈CðJ Þ. Then, the function u ∈CðJ Þ
is a solution of the linear problem

HDq1 ,δ1 ;φ
0+

HDq2 ,δ2 ;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= h ϰð Þ, ϰ ∈ 0, bð �,

u 0ð Þ = 0,HDq2 ,δ2 ;φ
0+ u 0ð Þ = 0, u bð Þ = 〠

∞

i=1
ηiI

σi ,φ
0+ u λið Þ,

8>><
>>:

ð15Þ

if and only if

u ϰð Þ = φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

� 〠
∞

i=1
ηi I

q2+σi ,φ
0+ βu λið Þ + Iq1+q2+σi ,φ0+ h λið Þ� �

− Iq2 ,φ0+ βu bð Þ − Iq2+q1 ,φ0+ h bð Þ
" #

+ Iq2 ,φ0+ βu ϰð Þ + Iq2+q1 ,φ0+ h ϰð Þ,
ð16Þ

where

Θ = φ bð Þ − φ 0ð Þð Þγ2−1
Γ γ2ð Þ − 〠

∞

i=1
ηi

φ λið Þ − φ 0ð Þð Þγ2+σi−1
Γ γ2 + σið Þ ≠ 0:

ð17Þ

Proof. Let u ∈CðJ Þ be a solution of the problem (15). Take
Iq1,φ0+ taking into consideration that q1 ∈ ð0, 1� on both sides
of the following equation:

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= h ϰð Þ: ð18Þ

Using Lemma 6, we have

HDq2,δ2;φ
0+ u ϰð Þ = βu ϰð Þ + c0

Γ γ1ð Þ φ ϰð Þ − φ 0ð Þð Þγ1−1 + Iq1,φ0+ h ϰð Þ,

ð19Þ

where c0 is an arbitrary constant. By conditions uð0Þ = 0
and HDq2,δ2;φ

0+ uð0Þ = 0, we obtain c0 = 0 and hence, (19)
reduces to

HDq2,δ2;φ
0+ u ϰð Þ = βu ϰð Þ + Iq1,φ0+ h ϰð Þ: ð20Þ

Taking again Iq2,φ0+ taking into consideration that q2 ∈ ð1
, 2� on both sides of (20) and using Lemmas 6 and 5, we have

u ϰð Þ = c1
Γ γ2ð Þ φ ϰð Þ − φ 0ð Þð Þγ2−1 + c2

Γ γ2 − 1ð Þ φ ϰð Þ − φ 0ð Þð Þγ2−2

+ Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ h ϰð Þ:
ð21Þ

According to the condition uð0Þ = 0, we obtain c2 = 0
and hence, (21) reduces to

u ϰð Þ = c1
Γ γ2ð Þ φ ϰð Þ − φ 0ð Þð Þγ2−1 + Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ h ϰð Þ:

ð22Þ

By replacing ϰ with b in equation (22), we get

u bð Þ = c1
Γ γ2ð Þ φ bð Þ − φ 0ð Þð Þγ2−1 + Iq2,φ0+ βu bð Þ + Iq2+q1,φ0+ h bð Þ:

ð23Þ

Replacing again ϰ with λi in equation (22) with multipli-
cation by ∑∞

i=1ηiI
σi ,φ
0+ with the use of semigroup property

defined in Lemma 5, we get

〠
∞

i=1
ηiI

σi ,φ
0+ u λið Þ = 〠

∞

i=1
ηiI

σi ,φ
0+

c1
Γ γ2ð Þ φ λið Þ − φ 0ð Þð Þγ2−1

+ 〠
∞

i=1
ηiI

σi ,φ
0+ Iq2,φ0+ βu λið Þ + 〠

∞

i=1
ηiI

σi ,φ
0+ Iq2+q1,φ0+ h λið Þ:

ð24Þ

Now, by equations (23) and (24) and second condition
uðbÞ =∑∞

i=1ηiI
σi ,φ
0+ uðλiÞ, we get

c1
Γ γ2ð Þ φ bð Þ − φ 0ð Þð Þγ2−1 + Iq2,φ0+ βu bð Þ + Iq2+q1,φ0+ h bð Þ

= 〠
∞

i=1
ηiI

σi ,φ
0+

c1
Γ γ2ð Þ φ λið Þ − φ 0ð Þð Þγ2−1 + 〠

∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ

+ 〠
∞

i=1
ηiI

q2+q1+σi ,φ
0+ h λið Þ:

ð25Þ

Hence,

c1 =
1
Θ

〠
∞

i=1
ηi I

q2+σi ,φ
0+ βu λið Þ + Iq2+q1+σi ,φ0+ h λið Þ� �

− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ h bð Þ
" #

: ð26Þ
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Putting c1 into (22), we get (16). Conversely, we assume
that the solution u satisfies (16). Then, one can get uð0Þ = 0
and HDq2,δ2;φ

0+ uð0Þ = 0. Furthermore, applying Iσi ,φ0+ on both
sides of (16) replacing ϰ by λi and multiplying by ∑∞

i=1ηi,
we get

〠
∞

i=1
ηiI

σi ,φ
0+ u λið Þ = 〠

∞

i=1
ηi

φ λið Þ − φ 0ð Þð Þγ2+σi−1
ΘΓ γ2 + σið Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ h λið Þ − Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ h bð Þ

" #

+ 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ h λið Þ = 1

Θ

φ bð Þ − φ 0ð Þð Þγ2−1
Γ γ2ð Þ −Θ

 !

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ h λið Þ − Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ h bð Þ

" #

+ 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ h λið Þ = u bð Þ:

ð27Þ

Thus, all conditions are satisfied. Next, applying HDq2,δ2;φ
0+

on both sides of (16), we have

HDq2,δ2;φ
0+ u ϰð Þ= HDq2,δ2;φ

0+
φ ϰð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ

� 〠
∞

i=1
ηi I

q2+σi ,φ
0+ βu λið Þ + Iq2+q1+σi ,φ0+ h λið Þ� �

− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ h bð Þ
" #

+HDq2,δ2;φ
0+ Iq2,φ0+ βu ϰð Þ+HDq2,δ2;φ

0+ Iq2+q1,φ0+ h ϰð Þ:
ð28Þ

Using Lemmas 5 and 6, we get

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ = Iq1,φ0+ h ϰð Þ: ð29Þ

Applying HDq1,δ1;φ
0+ on both sides of equation (29), we

have

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= HDq1,δ1;φ

0+ Iq1,φ0+ h ϰð Þ: ð30Þ

Using Lemma 5, we get

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= h ϰð Þ: ð31Þ

The proof is completed.

Lemma 10. For j = 1, 2, let γ j = qj + jδj − qjδj, q1 ∈ ð0, 1�,
q2 ∈ ð1, 2�,δj ∈ ½0, 1�, and f : J ×ℝ3 ⟶ℝ be a continuous
function: Then, the solution of the problem (5) is given
by

In order to simplify our analysis, we will use the following
notation:

ΠB
A =

φ Að Þ − φ 0ð Þð ÞB
Γ B + 1ð Þ , ð33Þ

where A ∈ fλi, bg and B ∈ fq2 + σi, q2, q2 + q1 + σi, q2 + q1g:

4. Existence and Uniqueness Solution

In this section, we will discuss the existence and uniqueness
of solutions for φ-Hilfer FDE (5) by applying Theorems 8

and 7. To demonstrate our main results, the following
assumptions must be fulfilled.

(H1) f : J ×ℝ3 ⟶ℝ is a continuous and there exists a
constant number μf > 0 such that

f ϰ, u, v, zð Þ − f σ, û, v̂, ẑð Þj j
≤ μf u − ûj j + v − v̂j j + z − ẑj j½ �, ϰ ∈ J , u, û, v, v̂, z, ẑ ∈

ð34Þ

(H2) f : J ×ℝ3 ⟶ℝ is continuous and there exists

u ϰð Þ = φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ

0+ u λið Þ
� �

− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ
0+ u bð Þ

� �" #

+ Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �
:

ð32Þ
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ωf ∈CðJ Þ such that

f ϰ, u ϰð Þ, v ϰð Þ, z ϰð Þð Þj j ≤ ωf ϰð Þ, ϰ, u, v, zð Þ ∈ J ×ℝ3, ð35Þ

with sup
ϰ∈J

jωf ðϰÞj = ω∗
f .

Theorem 11. Assume that (H1) and (H2) hold. Then, the
problem (5) has at least one solution, provided that M +V

< 1, where

M = φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηi βj jΠq2+σi

λi
+ βj jΠq2

b ,

V = φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

� 〠
∞

i=1
ηiΠ

q2+q1+σi
λi

+Πq2+q1
b

 !
:

ð36Þ

Proof. Consider the continuous operator Q : CðJ Þ⟶Cð

J Þ, which is defined by

Q u ϰð Þð Þ = φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ f

"

� λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ
0+ u λið Þ

� �
− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ

0+ u bð Þ
� �i

+ Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �
:

ð37Þ

Clearly, the fixed points of the operator Q defined by
(37) is a solution of the problem (5). Now, we will prove that
the operator Q has a fixed point by using Theorem 8. Let Br
be a closed ball defined by

Br = u ∈C Jð Þ: uk k ≤ rf g, ð38Þ

with

Let Q1,Q2 ∈ Br be two operators such that Q1 +Q2 =Q,
where

In order to achieve conditions of Theorem 8, the proof is
divided into the following steps.

Step 1. Q ∈ Br for all u ∈ Br: For any u ∈ Br , ϰ ∈ J , we
have

r ≥
φ bð Þ − φ 0ð Þð Þγ2−1/ΘΓ γ2ð Þ∑∞

i=1ηiΠ
q2+q1+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1/ΘΓ γ2ð ÞΠq2+q1
b +Πq2+q1

b

� �
ω∗
f

1 − φ bð Þ − φ 0ð Þð Þγ2−1/ΘΓ γ2ð Þ∑∞
i=1ηiΠ

q2+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1/ΘΓ γ2ð ÞΠq2
b +Πq2

b

� �
βj j

: ð39Þ

Q1u ϰð Þ = Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �
,

Q2u ϰð Þ = φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ

0+ u λið Þ
� �

− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ
0+ u bð Þ

� �" #
:

ð40Þ

Q1u
�� �� = sup

ϰ∈J
Iq2,φ0+ βu ϰð Þ + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ

0+ u ϰð Þ
� �			 			

≤ sup
ϰ∈J

Iq2,φ0+ βj j u ϰð Þj j + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �			 			n o
≤ βj jΠq2

b uk k +Πq2+q1
b ω∗

f ,

Q2u
�� �� ≤ φ ϰð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηi β uk kΠq2+σi

λi
+ ω∗

f Π
q2+q1+σi
λi

� �
+ β uk kΠq2

b + ω∗
f Π

q2+q1
b

" #
:

ð41Þ
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Due to the fact that φðϰÞ is an increasing function, we
have ðφðϰÞ − φð0ÞÞγ2−1 ≤ ðφðbÞ − φð0ÞÞγ2−1 and hence,

Thus,

Thus, QðBrÞ ⊂Br:
Step 2. Q1 is compact and continuous.

Let un be a sequence such that un ⟶ u in Br: Then,

That means Q1 is continuous. Moreover, the operator
Q1 is bounded on Br due to Step 1. Thus, Q1 is uniformly

bounded on Br . Next, we will prove that Q1 is equicontin-
uous. Let ϰ1, ϰ2 ∈ J such that ϰ1 < ϰ2. Then,

Q2u
�� �� ≤ φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηi β uk kΠq2+σi

λi
+ ω∗

f Π
q2+q1+σi
λi

� �
+ β uk kΠq2

b + ω∗
f Π

q2+q1
b

" #
: ð42Þ

Quk k ≤ Q1u
�� �� + Q2u

�� �� ≤ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηi βj j uk kΠq2+σi

λi
+ φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηiω

∗
f Π

q2+q1+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ βj j uk kΠq2

b + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ ω∗

f Π
q2+q1
b + βj jΠq2

b uk k +Πq2+q1
b ω∗

f

≤
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηiΠ

q2+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ Πq2

b +Πq2
b

 !
βj j uk k

+ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiΠ

q2+q1+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ Πq2+q1

b +Πq2+q1
b

 !
ω∗
f ≤ r:

ð43Þ

Q1un −Q1u
�� �� ≤ Iq2,φ0+ β un ϰð Þ − u ϰð Þj j + Iq2+q1,φ0+ f ϰ, un ϰð Þ, Iθ,φ0+ un ϰð Þ,HDq1,δ1;φ

0+ un ϰð Þ
� �

− f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �			 			
≤Πq2

b un − uk k +
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1
b un − uk k⟶ 0 asun ⟶ u:

ð44Þ

Q1u ϰ2ð Þ −Q1u ϰ1ð Þ		 		 = Iq2,φ0+ βu ϰ2ð Þ − Iq2,φ0+ βu ϰ1ð Þ + Iq2+q1,φ0+ f ϰ2, u ϰ2ð Þ, Iθ,φ0+ u ϰ2ð Þ,HDq1,δ1;φ
0+ u ϰ2ð Þ

� �
− Iq2+q1,φ0+ f ϰ1, u ϰ1ð Þ, Iθ,φ0+ u ϰ1ð Þ,HDq1,δ1;φ

0+ u ϰ1ð Þ
� �			 			

≤
β

Γ q2ð Þ
ðϰ1
0
φ′ sð Þ φ ϰ2ð Þ − φ sð Þð Þq2−1 − φ ϰ1ð Þ − φ sð Þð Þq2−1
 �

u sð Þj jds + β

Γ q2ð Þ
ðϰ2
ϰ1

φ′ sð Þ φ ϰ2ð Þ − φ sð Þð Þq2−1 u sð Þj jds + 1
Γ q2 + q1ð Þ

�
ðϰ1
0
φ′ sð Þ φ ϰ2ð Þ − φ sð Þð Þq2+q1−1 − φ ϰ1ð Þ − φ sð Þð Þq2+q1−1
 �

f s, u sð Þ, Iθ,φ0+ u sð Þ,HDq1,δ1;φ
0+ u sð Þ

� �			 			ds + 1
Γ q2 + q1ð Þ

�
ðϰ2
ϰ1

φ′ sð Þ φ ϰ2ð Þ − φ sð Þð Þq2+q1−1 f s, u sð Þ, Iθ,φ0+ u sð Þ,HDq1,δ1;φ
0+ u sð Þ

� �			 			ds ≤ uk kβ
Γ q2 + 1ð Þ φ ϰ2ð Þ − φ 0ð Þð Þq2 − φ ϰ1ð Þ − φ 0ð Þð Þq2½ �

+
ω∗
f

Γ q2 + q1 + 1ð Þ φ ϰ2ð Þ − φ 0ð Þð Þq2+q1 − φ ϰ1ð Þ − φ 0ð Þð Þq2+q1½ �:

ð45Þ
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For ϰ2 ⟶ ϰ1 and continuity of φ, we obtain

Q1u ϰ2ð Þ −Q1u ϰ1ð Þ		 		⟶ 0 as ϰ2 ⟶ ϰ1: ð46Þ

Hence, Q1 is equicontinuous. As a result of the Arzelá-
Ascoli theorem, we deduce that the operator Q1 is compact
in Br . Thus, Q

1 is completely continuous.
Step 3. Q2 is contraction mapping. For u, û ∈ Br and ϰ

∈ J , we obtain

Q2u −Q2û
�� �� ≤ φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ β u λið Þ − û λið Þj j

"

+ 〠
∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ

0+ u λið Þ
� �			

− f λi, û λið Þ, Iθ,φ0+ û λið Þ,HDq1,δ1;φ
0+ û λið Þ

� �			 + Iq2,φ0+ β u bð Þj
− û bð Þj+Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ

0+ u bð Þ
� �			

− f b, û bð Þ, Iθ,φ0+ û bð Þ,HDq1,δ1;φ
0+ û bð Þ

� �			� ≤ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiβΠ

q2+σi
λi

u − ûk k + 〠
∞

i=1
ηi

μf

1 − μf

"

� 1 + 1
Γ θ + 1ð Þ

� �
Πq2+q1+σi

λi
u − ûk k + βΠq2

b u − ûk k

+
μf

1 − μf

1 + 1
Γ θ + 1ð Þ

� �
Πq2+q1

b u − ûk k
#
≤ M +Vð Þ u − ûk k:

ð47Þ

Thus, we conclude that Q2 is a contraction.
According to the above steps and Theorem 8, we infer

that problem (5) has at least one solution on J .

Theorem 12. Assume that (H1) holds. If

Q1 ≔
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηi βΠq2+σi

λi
+

μf

1 − μ f
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1+σi
λi

" #(

+ 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
βΠq2

b +
μ f

1 − μf

1 + 1
Γ θ + 1ð Þ

� �
Πq2+q1

b

" #)

< 1,

ð48Þ

then the problem (5) has a unique solution on J .

Proof. We noted that the fixed points of the operator Q

defined in (37) are a solution of problem (5). Define a closed
ball set Bϖ as

Bϖ = u ∈C Jð Þ: uk k ≤ ϖf g, ð49Þ

with ϖ ≥ ðQ2/ð1 −Q1Þ1 −Q1Þ, where

Q2 =
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηiΠ

q2+q1+σi
λi

 

+ 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
Πq2+q1

b

!
P ,

ð50Þ

and P = sups∈J j f ðs, 0, 0, 0Þj:

First, we show that QðBϖÞ ⊂Bϖ: By (33) and condition
(H1), we have

Iq2+σi ,φ0+ β u λið Þj j = β

Γ q2 + σið Þ
ðλi
0
φ′ sð Þ φ λið Þ − φ sð Þð Þq2+σi−1 u sð Þj jds

≤
β φ λið Þ − φ 0ð Þð Þq2+σi

Γ q2 + σi + 1ð Þ uk k = βΠq2+σi
λi

uk k,

Iq2+q1+σi ,φ
0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ

0+ u λið Þ
� �			 			

≤
1

Γ q2 + q1 + σið Þ
ðλi
0
φ′ sð Þ φ λið Þ − φ sð Þð Þq2+q1+σi−1

× f s, u sð Þ, Iθ,φ0+ u sð Þ,HDq1,δ1;φ
0+ u sð Þ

� �
− f s, 0, 0, 0ð Þ

			 			 + f s, 0, 0, 0ð Þj j
� �

ds

≤
1

Γ q2 + q1 + σið Þ
ðλi
0
φ′ sð Þ φ λið Þ − φ sð Þð Þq2+q1+σi−1ds

×
μf

1 − μf
uk k + Iθ,φ0+ uk k

h i
+P

 !
≤Πq2+q1+σi

λi

� μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

uk k +P

" #
:

ð51Þ

Thus, for u ∈ Bϖ, we obtain

Qu ϰð Þj j ≤ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηi I

q2+σi ,φ
0+ β u λið Þj j�"

+ Iq2+q1+σi ,φ0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ
0+ u λið Þ

� �			 			�
+ Iq2,φ0+ β u bð Þj j + Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ

0+ u bð Þ
� �			 			i

+ Iq2,φ0+ β u ϰð Þj j + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ
0+ u ϰð Þ

� �			 			
≤

φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηi β uk kΠq2+σi

λi

�"

+
μf

1 − μ f
1 + 1

Γ θ + 1ð Þ
� �

uk k +P

" #
Πq2+q1+σi

λi

!

+ β uk kΠq2
b +

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

uk k +P

" #
Πq2+q1

b

#

+ β uk kΠq2
b +

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

uk k +P

" #
Πq2+q1

b

≤
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηi βϖΠ

q2+σi
λi

h

+
μf

1 − μ f
1 + 1

Γ θ + 1ð Þ
� �

ϖ +P

" #
Πq2+q1+σi

λi

#

+ 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
βϖΠq2

b + 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
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� μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

ϖ +P

" #
Πq2+q1

b

≤
ϖ

ΘΓ γ2ð Þ〠
∞

i=1
ηi

� βΠq2+σi
λi

+
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1+σi
λi

" #

+ P

ΘΓ γ2ð Þ〠
∞

i=1
ηiΠ

q2+q1+σi
λi

+ 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
ϖ

� βΠq2
b +

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1
b

" #

+ 1 + φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

 !
PΠq2+q1

b ≤Q1ϖ +Q2 ≤ ϖ: ð52Þ

Thus, QðBϖÞ ⊂ Bϖ:
Next, we prove that Q is contraction map. Indeed, for

u, û ∈ Bϖ and ϰ ∈ J , we obtain

Qu −Qûk k ≤ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ β u λið Þ − û λið Þj j

"

+ 〠
∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, u λið Þ, Iθ,φ0+ u λið Þ,HDq1,δ1;φ

0+ u λið Þ
� �			

− f λi, û λið Þ, Iθ,φ0+ û λið Þ,HDq1,δ1;φ
0+ û λið Þ

� �			 + Iq2,φ0+ β u bð Þj
− û bð Þj + Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ,HDq1,δ1;φ

0+ u bð Þ
� �			

− f b, û bð Þ, Iθ,φ0+ û bð Þ,HDq1,δ1;φ
0+ û bð Þ

� �			� + Iq2,φ0+ β u ϰð Þj
− û ϰð Þj + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ

0+ u ϰð Þ
� �			

− f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ; ;HDq1,δ1;φ
0+ û ϰð Þ

� �			
≤

φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiβΠ

q2+σi
λi

u − ûk k + 〠
∞

i=1
ηi

μf

1 − μf

"

� 1 + 1
Γ θ + 1ð Þ

� �
Πq2+q1+σi

λi
u − ûk k + βΠq2

b u − ûk k

+
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1
b u − ûk k

#

+Πq2
b u − ûk k + μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Πq2+q1
b u − ûk k

≤Q1 u − ûk k:
ð53Þ

From (48), Q is a contraction map. Hence, in view of
Theorem 7, we conclude that the problem (5) has a unique
solution on J .

5. Stability Analysis

In 1940 [33], the problem of stability of functional equations
was created by Ulam’s question regarding the stability of
group homomorphisms. In the following year, Hyers [34]

gave a positive interpretation of the Ulam question within
the Banach spaces, and this was the first major advance
and a step towards more solutions in this field. Since then,
many papers have been published regarding various general-
izations of the Ulam problem and Hyers theory. In 1978,
Rassias [35] succeeded in extending Hyers’ theory of map-
pings between Banach spaces. Rassias’s result attracted many
mathematicians around the world who began their investi-
gations of the problems of stability of functional equations.

In this regard, we discuss the stability results in the frame
of Ulam-Hyers- (UH-) Rassias (UHR). Let ϵ > 0 and a con-
tinuous function αϕ : J ⟶ℝ+ such that it satisfies the fol-
lowing inequalities:

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ û ϰð Þ − βû ϰð Þ

� �
− f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ,HDq1,δ1;φ

0+ û ϰð Þ
� �			 			 ≤ ϵ

ð54Þ

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ û ϰð Þ − βû ϰð Þ

� �
− f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ,HDq1,δ1;φ

0+ û ϰð Þ
� �			 			 ≤ ϵαϕ ϰð Þ:

ð55Þ
Lemma 13 (see [36]). Let q > 0 and u, v be two nonnegative
functions locally integrable on J : Assume that g is nonnega-
tive and nondecreasing, and let φ ∈C1ðJ Þ be an increasing
function such that φ′ðtÞ ≠ 0 for all t ∈ J . If

u ϰð Þ ≤ v ϰð Þ + g tð Þ
ðϰ
0
φ′ sð Þ φ ϰð Þ − φ sð Þð Þq−1u sð Þds, ϰ ∈ J ,

ð56Þ

then

u ϰð Þ ≤ v ϰð Þ +
ðt
0
〠
∞

n=1

g ϰð ÞΓ pð Þ½ �n
Γ nqð Þ φ′ sð Þ φ ϰð Þ − φ sð Þð Þnq−1v sð Þds, ϰ ∈ J :

ð57Þ

If v is a nondecreasing function on J . then, we have

u ϰð Þ ≤ v ϰð ÞEq g ϰð ÞΓ pð Þ φ ϰð Þ − φ 0ð Þð Þqf g, ϰ ∈ J : ð58Þ

Definition 14.We say that the problem (5) is UH stable if for
everyû ∈CðJ Þthat satisfies an inequality (54) andu ∈CðJ Þ
is a solution of the problem (5), there exists a constant num-
ber 0 <T ∈ℝ such that

û ϰð Þ − u ϰð Þj j ≤T ϵ, ϰ ∈ J , ϵ > 0: ð59Þ

Definition 15. We say that the problem (5) is UHR stable
with respect to nondecreasing function αϕðϰÞ if for every û

∈CðJ Þ that satisfies an inequality (55) and u ∈CðJ Þ is a
solution of the problem (5), there exists 0 <N ∈ℝ such that

û ϰð Þ − u ϰð Þj j ≤N ϵαϕ ϰð Þ, ϰ ∈ J , ϵ > 0: ð60Þ

Remark 16. A function û ∈CðJ Þ satisfies an inequality (54)
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if and only if there exist a functions z ∈CðJ Þ such that

z ϰð Þj j ≤ ϵ, ϰ ∈ J ,
HDq1,δ1;φ

0+
HDq2,δ2;φ

0+ û ϰð Þ − βû ϰð Þ
� �

= f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ,HDq1,δ1;φ
0+ û ϰð Þ

� �
+ z ϰð Þ:

ð61Þ

Lemma 17. Let γj = qj + jδj − qjδjðj = 1, 2Þ, q1 ∈ ð0, 1�,
q2 ∈ ð1, 2�, and 0 ≤ δj ≤ 1: If a function û ∈CðJ Þ satisfies
(54), then û satisfies

û ϰð Þ −A û − Iq1+q2 ,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ,HDq1 ,δ1 ;φ
0+ û ϰð Þ

� �			 			 ≤ ϵP,

ð62Þ

where

A û ≔
φ ϰð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βû λið Þ

"

+ 〠
∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, û λið Þ, Iθ,φ0+ û λið Þ, HDq1 ,δ1 ;φ

0+ û λið Þ
� �

− Iq2 ,φ0+ βû bð Þ − Iq2+q1 ,φ0+ f b, û bð Þ, Iθ,φ0+ û bð Þ, HDq1 ,δ1 ;φ
0+ û bð Þ

� �i
+ Iq2 ,φ0+ βû ϰð Þ,

P≔
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηiΠ

q2+q1+σi
λi

+ φ bð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ + 1

 !
Πq2+q1

b :

ð63Þ

Proof. By Remark 16, we have

û ϰð Þ = φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiI

q2+σi ,φ
0+ βû λið Þ

"

+ 〠
∞

i=1
ηiI

q2+q1+σi ,φ
0+ f λi, û λið Þ, Iθ,φ0+ û λið Þ, HDq1,δ1;φ

0+ û λið Þ
� ��

+ z λið ÞÞ − Iq2,φ0+ βû bð Þ − Iq2+q1,φ0+

� f b, û bð Þ, Iθ,φ0+ û bð Þ, HDq1,δ1;φ
0+ û bð Þ

� �
+ z bð Þ

� �i
+ Iq2,φ0+ βû ϰð Þ + Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �

+ z ϰð Þ
� �

:

ð64Þ

Then, we get

û ϰð Þ −A û − Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 			
≤

φ ϰð Þ − φ 0ð Þð Þγ2−1
ΘΓ γ2ð Þ 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ z λið Þj j + Iq2+q1,φ0+ z bð Þj j

" #

+ Iq2+q1,φ0+ z ϰð Þj j:
ð65Þ

It follows that

û ϰð Þ −A û − Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 			 ≤ εP:

ð66Þ

Theorem 18. Let us assume that ðH1Þ holds: Then,

HDq1 ,δ1 ;φ
0+

HDq2 ,δ2 ;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð ÞHDq1 ,δ1 ;φ

0+ u ϰð Þ
� � ð67Þ

is UH stable:

Proof. Let ε > 0 and û ∈CðJ Þ be a function that satisfies an
inequality (54) and let u ∈CðJ Þ be a solution of

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ,HDq1,δ1;φ

0+ u ϰð Þ
� �

, ϰ ∈ 0, bð �,

u 0ð Þ = u 0ð Þ = 0, HDq2,δ2;φ
0+ u 0ð Þ = HDq2,δ2;φ

0+ û 0ð Þ = 0,

u bð Þ = û bð Þ = 〠
∞

i=1
ηiI

σi ,φ
0+ û λið Þ:

8>>>>>><
>>>>>>:

ð68Þ

Then, by using Theorem 12, we have

u ϰð Þ =Au + Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �
,

ð69Þ

where

Au ≔
φ ϰð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βu λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ f

"

� λi, u λið Þ, Iθ,φ0+ u λið Þ, HDq1,δ1;φ
0+ u λið Þ

� �
− Iq2,φ0+ βu bð Þ − Iq2+q1,φ0+ f b, u bð Þ, Iθ,φ0+ u bð Þ, HDq1,δ1;φ

0+ u bð Þ
� �i

+ Iq2,φ0+ βu ϰð Þ:
ð70Þ

Since

u 0ð Þ = û 0ð Þ = 0, HDq2,δ2;φ
0+ u 0ð Þ = HDq2,δ2;φ

0+ û 0ð Þ = 0,

u bð Þ = û bð Þ = 〠
∞

i=1
ηiI

σi ,φ
0+ û λið Þ,

8>><
>>:

ð71Þ

we can easily prove that Au =A û. Hence, according to (H1)
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and Lemma 17, then for each ϰ ∈ J ,

û ϰð Þ − u ϰð Þj j = û ϰð Þ −A û − Iq2+q1,φ0+ f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �			
− Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �

+ Iq2+q1,φ0+ f

� ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 ≤ û ϰð Þ −A û − Iq2+q1,φ0+ f
		

� ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 + Iq2+q1,φ0+ fj
� ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �

− f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �			
≤Pε + Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �			

− f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �			 ≤Pε

+
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Iq2+q1,φ0+ û ϰð Þ − u ϰð Þj j,

ð72Þ

Thus, by Lemma 13, we get

û ϰð Þ − u ϰð Þj j ≤Pε +
ðϰ
0

� 〠
∞

n=1

μf / 1 − μf

� �
1 + 1/Γ θ + 1ð Þð Þð Þ

h in
Γ n q2 + q1ð Þ½ � φ′ sð Þ φ ϰð Þ − φ sð Þð Þn q2+q1ð Þ−1

0
@

1
APεds

<PεEq2+q1
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

φ bð Þ − φ 0ð Þð Þq2+q1
" #

:

ð73Þ

It follows that

û ϰð Þ − u ϰð Þj j ≤T ε: ð74Þ

where T =PEq2+q1 ½μf /ð1 − μf Þð1 + ð1/Γðθ + 1ÞÞÞ
ðφðbÞ − φð0ÞÞq2+q1 �. Hence, the problem (5) is UH stable.

Corollary 19. Under the assumptions of Theorem 18, if there
exists a function ϕf ∈CðJ Þ, then the problem (5) is general-
ized UH stable.

In the forthcoming theorem, we discuss Ulam-Hyers-
Rassias stability. For that, the following hypothesis must be
satisfied.

(H3) There exists an increasing function αϕ ∈CðJ Þ, and
there exists R > 0 such that for any ϰ ∈ J ,

I
ξ,φ
0+ αϕ ϰð Þ ≤Rαϕ ϰð Þ, ð75Þ

where ξ ∈ fq1 + q2, q2 + q1 + σig:

Remark 20. A function û ∈CðJ Þ satisfies an inequality (55)
if and only if there exist a functions z ∈CðJ Þ such that

z ϰð Þj j ≤ εαϕ ϰð Þ, ϰ ∈ J ,

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ û ϰð Þ − βû ϰð Þ

� �
= f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �

+ z ϰð Þ:
ð76Þ

Lemma 21. Let γj = qj + jδj − qjδjðj = 1, 2Þ, q1 ∈ ð0, 1�,
q2 ∈ ð1, 2�, and 0 ≤ δj ≤ 1. If a function û ∈CðJ Þ satisfies
(55), then û satisfies

û ϰð Þ −A û − Iq1+q2 ,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1 ,δ1 ;φ
0+ û ϰð Þ

� �			 			
≤ εP1Rαϕ ϰð Þ,

ð77Þ

where

A û ≔
φ ϰð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ

� 〠
∞

i=1
ηiI

q2+σi ,φ
0+ βû λið Þ + 〠

∞

i=1
ηiI

q2+q1+σi ,φ
0+ f

"

� λi, û λið Þ, Iθ,φ0+ û λið Þ, HDq1 ,δ1 ;φ
0+ û λið Þ

� �
− Iq2 ,φ0+ βû bð Þ

− Iq2+q1 ,φ0+ f b, û bð Þ, Iθ,φ0+ û bð Þ, HDq1 ,δ1 ;φ
0+ û bð Þ

� �i
+ Iq2 ,φ0+ βû ϰð Þ,

P1 ≔
φ bð Þ − φ 0ð Þð Þγ2−1

ΘΓ γ2ð Þ 〠
∞

i=1
ηi + 1

 !
+ 1: ð78Þ

Proof. Indeed, by Remark 20 and Theorem 12, one can easily
prove that

û ϰð Þ −A û − Iq1+q2,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 			
≤ εP1Rαϕ ϰð Þ:

ð79Þ

Theorem 22. Assume that (H1) and (H3) hold. Then,

HDq1 ,δ1 ;φ
0+

HDq2 ,δ2 ;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1 ,δ1 ;φ

0+ u ϰð Þ
� �

,
ð80Þ

is UHR and generalized UHR stable.

Proof. By the same technique in Theorem 18, one can prove
that

û ϰð Þ − u ϰð Þj j ≤ û ϰð Þ −A û − Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ
0+ û ϰð Þ

� �			 			
+ Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �			

− f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �			
≤ εP1Rαϕ ϰð Þ + Iq2+q1,φ0+ f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �			

− f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �			 ≤ εP1Rαϕ ϰð Þ

+
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

Iq2+q1,φ0+ û ϰð Þ − u ϰð Þj j:

ð81Þ
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Thus, by (H3) and Lemma 13, we have

It follows that

û ϰð Þ − u ϰð Þj j ≤N εαϕ ϰð Þ: ð83Þ

where N =P1R½1 +∑∞
n=1

½ðμf /ð1 − μf Þ1 − μf Þð1 + ð1/Γðθ + 1ÞÞÞR�n�. Hence, the
problem (5) is UHR stable as well as generalized UHR stable.

6. An Example

Consider the Langevin-type fractional integrodifferential
equation

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ u ϰð Þ − βu ϰð Þ

� �
= f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ

0+ u ϰð Þ
� �

, ϰ ∈ 0, 1ð �,

u 0ð Þ = 0, HDq2,δ2;φ
0+ u 0ð Þ = 0, u bð Þ = 〠

∞

i=1
ηiI

σi ,φ
0+ u λið Þ,

8>><
>>:

ð84Þ

such that q1 = 1/2, δ1 = 1/3, q2 = 3/2, δ2 = 1/3, γ2 = 5/3, θ = 1
/2, β = 1/10, b = 1, λi = 1/2i, ηi = 2/8i, σi = 2/ð2i + 1Þ, φðϰÞ =
ϰ, and

f ϰ, u ϰð Þ, Iθ,φ0+ u ϰð Þ, HDq1,δ1;φ
0+ u ϰð Þ

� �
= ϰ

50 + ϰ
u ϰð Þ + I1/5,ϰ0+ u ϰð Þ + HD1/2,1/3;ϰ

0+ u ϰð Þ
� �

:
ð85Þ

Clearly, for each u, û ∈CðJ Þ, we have

f ϰ, u ϰð Þ, I1/5,ϰ0+ u ϰð Þ, HD1/2,1/3;ϰ
0+ u ϰð Þ

� �
− f ϰ, û ϰð Þ, I1/5,ϰ0+ û ϰð Þ, HD1/2,1/3;ϰ

0+ û ϰð Þ
� �			 			

≤
1
50 u ϰð Þ − û ϰð Þj j + I1/5,ϰ0+ u ϰð Þ − I1/5,ϰ0+ û ϰð Þ		 		

+ HD1/2,1/3;ϰ

0+ u ϰð Þ − HD1/2,1/3;ϰ
0+ û ϰð Þ

			 			i,
ð86Þ

with μf = 1/50. By the given data, we can get Θ ≈ 0:89 ≠ 0
and hence, Q1 ≈ 0:2148 < 1: Thus, all assumptions in Theo-
rem 12 hold. Then, problem (84) has a unique solution.
Moreover, we have

f ϰ, u ϰð Þ, v ϰð Þ, z ϰð Þð Þj j ≤ ϰ

50 + ϰ
= ωf ϰð Þ, for all ϰ, u, vð Þ ∈ J ×ℝ2:

ð87Þ

Thus, all the assumptions in Theorem 11 hold. Then,
problem (84) has at least one solution. Furthermore, for ε
> 0, we find that

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ û ϰð Þ − βû ϰð Þ

� �
− f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �			 			 ≤ ε

ð88Þ

is satisfied. Then, equation (67) is Ulam-Hyers stable with

û ϰð Þ − u ϰð Þj j ≤T ε, ð89Þ

where

T =PEq2+q1
μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

φ bð Þ − φ 0ð Þð Þq2+q1
" #

> 0,

ð90Þ

and Λf ≈ 0:042 < 1: Finally, we consider αϕðϰÞ = φðϰÞ − φð0
Þ, for ϰ ∈ 0, 1]. Then, αϕ : ½0, 1�⟶ℝ is nondecreasing con-
tinuous function. Hence, by Lemma 5, we get

Iξ,φ0+ αϕ ϰð Þ = Iξ,φ0+ φ ϰð Þ − φ 0ð Þ½ � = Iξ,φ0+ φ ϰð Þ − φ 0ð Þ½ �2−1

= Γ 2ð Þ
Γ ξ + 2ð Þ φ ϰð Þ − φ 0ð Þ½ �ξ+1 = φ ϰð Þ − φ 0ð Þ½ �ξ

Γ ξ + 2ð Þ αϕ ϰð Þ

≤
φ 1ð Þ − φ 0ð Þ½ �ξ
Γ ξ + 2ð Þ αϕ ϰð Þ =Rαϕ ϰð Þ, for all ϰ ∈ J ,

ð91Þ

where R = ½φð1Þ − φð0Þ�ξ/Γðξ + 2Þ > 0 for ξ ∈ fq1 + q2, q2 +
q1 + σig and φðϰÞ = ϰ: Therefore, Theorem 22 applicable.
Furthermore, for ε > 0 and a continuous function αϕ : J

⟶ℝ+, we find that

HDq1,δ1;φ
0+

HDq2,δ2;φ
0+ û ϰð Þ − βû ϰð Þ

� �
− f ϰ, û ϰð Þ, Iθ,φ0+ û ϰð Þ, HDq1,δ1;φ

0+ û ϰð Þ
� �			 			

≤ εαϕ ϰð Þ
ð92Þ

is satisfied. Then, equation (80) is UHR stable with

û ϰð Þ − u ϰð Þj j ≤N εαϕ ϰð Þ, ð93Þ

û ϰð Þ − u ϰð Þj j ≤ εP1Rαϕ ϰð Þ + εP1R
ðϰ
0

〠
∞

n=1

μf / 1 − μf

� �
1 − μf

� �
1 + 1/Γ θ + 1ð Þð Þð Þ

h in
Γ n q2 + q1ð Þ½ � φ′ sð Þ φ ϰð Þ − φ sð Þð Þn q2+q1ð Þ−1

0
@

1
Aαϕ sð Þds

≤ εP1Rαϕ ϰð Þ 1 + 〠
∞

n=1

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

R

" #n" #
:

ð82Þ
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where

N =P1R 1 + 〠
∞

n=1

μf

1 − μf
1 + 1

Γ θ + 1ð Þ
� �

R

" #n" #
> 0:

ð94Þ

7. Conclusion

Because the idea of fractional operators in the context of φ-
Hilfer is innovative and important, several academics have
explored and established various qualitative features of
FDE solutions incorporating such operators. To extend these
qualitative features, we developed and investigated sufficient
conditions for the existence and uniqueness of solutions, as
well as Ulam-Hyers stability results for a nonlinear fractional
integrodifferential Langevin equation involving φ-Hilfer FD
with respect to an increasing function, for a nonlinear frac-
tional integrodifferential Langevin equation involving φ-Hil-
fer FD.

Our technique was based on reducing the problem (5) to
a fractional integral equation and using certain conventional
Banach-type and Krasnoselskii-type fixed point theorems.
Furthermore, we investigated the stability data in the
Ulam-Hyers sense using mathematical analytic tools. To
support the main results, an example was given.

In fact, our outcomes generalize those in [26–29] and
cover many results not study yet. Due to the wide recent
investigations and applications of the Langevin equation,
we believe that acquired results here will be important for
future investigations on the theory of fractional calculus.
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