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With the study of extensive literature on the Laplace transform with one and two variables and its properties, applications are
available, but there is no work on n-dimensional Laplace transform. In this research article, we define n-dimensional fractional
frequency Laplace transform with shift values. Several theorems are derived with properties of the Laplace transform. The results

are numerically analyzed and discussed through MATLAB.

1. Introduction

The fractional calculus is a branch of mathematics that
focuses on arbitrary order integrals and derivatives. In spite
of that, this type of calculus is as older as the conventional
calculus, and it has attracted the interest of researchers for
the last few decades. This is because of the results reported by
these researchers as consequences of their attempts to model
real-world phenomena using the fractional operators [1-4].
The discrete version of these operators fetched the attention
of research studies as well. Many good results were reported
when fractional sums and differences were used in studying
related problems (see [5-17] and the references therein).
The integral transforms such as Mellin, Laplace, and
Fourier were applied to obtain the solution of differential
equations. These transforms made effectively possible
changes of a signal in the time domain into a frequency s-
domain in the field of digital signal processing (DSP) [18].
The delta Laplace transform was first defined in a very
general way by Bohner and Peterson [19]. In 2015, Ivic
discussed the discrete Laplace transforms in the view of fast
decay factor e ** and obtained the Laplace transform of

P(x) as _[go P(x)e”*dx = s~ 2Y 2 r (n)e” (i) 1n practice,
many applications of Laplace transform (LT),
L{f(x)] = _[;0 f (x)e”**dx, and the forward discrete Laplace
transform (DLT), L[f (n)] = Y20 f (n)e ", are discussed
and mentioned by several authors in [20-23]. For physical
applications of Laplace transform, refer [24-27].

In the existing Laplace transform, the shifting value of
time domains is one. In 2016, Britto Antony Xavier et al. [28]
defined the Laplace transform with shift value ¢ using the
generalized difference operator and obtained the outcomes
of polynomial and trigonometric functions. In this fractional
frequency  Laplace transform, the shift values
v]'»s,j =1,2,...,nliein the interval [0, 1]. In [29], the author
introduced the double Laplace transform and applied to
solve initial and boundary value problems.

In this research work, we extend the work of Laplace
transform into an n-dimensional space in discrete case. We
present several properties of the fractional transforms for
functions such as polynomial factorial, exponential, and
trigonometric functions. Also, we derive the relation be-
tween Laplace transform and Riemann zeta functions.
Furthermore, we present the inverse Laplace transform to



compare the results with the existing classical Laplace
transform for the particular value of .

2. Preliminaries

Here, we present some basic definitions and results which
will be used further.

Definition 1. Let u(t) be the function with n-variables and
h € R" be the shift values. Then, the n-dimensional partial
difference operator is defined as

Auc) =u(t1,t2,...,t,. +hi,..}.l,tn)—u(tl,tz,...,tn)’

b
(1)

i

where f = (t),t,,...,t,) and h = (h}, hy, ..., h,).

Definition 2 (see [30]). For h>0 and p € R, the rising
h-polynomial factorial function is defined as

[#] hﬂr((t/h) + ﬂ)

> 2
['(t/h) @
where t =1, I is the Euler gamma function, and (¢/h) +
U, (t/h) ¢ { -1,-2,-3,...} as the division at a pole yields
zero.

()22

,a,). In particular, if a = (0,0,...,0),

>”zh2)>-

(6)

HM8
HMS

where a = (ay,4,,...
we obtain

ol = (110 )(5 5 S

r=01,=0

rihrohy, .

Theorem 2. Lett € R",h;>0,j=1,2,...,n then,

no 1lvj

Aa” DSt
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Lemma 1 (see [31]). Let h>0 and u(t) and w(t) be real-
valued bounded functions. Then,

A wtw (b)) = u(t)A, wit) - A;l(A,jw(t +h)Au(t)).
(3)

Theorem 1 (see [31]). Let t € (0,00), h>0, and s > 0; then,

1 llvh
L (t(y)) W e’
hoy ( RU 1):‘“'1. (4)
e -

2.1. Notations

A Au®)=AA - AAu(tl,tz,...,t)
m hnhnfl 2 1
(ii) Aﬁu(f) = A;:Ahm --Ahz Ahl u(tyty, ..o t,)
(iii) #(D,) denotes the set of all
D, ={1,2,...,n}

(iv) n(D,, — 7) denotes the number of digits in D, — 7

subsets of

Definition 3 (infinite inverse principle law). For the function
u (), we define the infinite inverse principle law as follows:

u(a1 +r1h1,a2+r2h2,...,an+r2h2)>, (5)

no 1
e 1_[” h; a72i=‘sf g
=Y st j=1"J
a =%t = 3
n —sl,/vjh-
H. a’i -1
j=1

n 1/v
Proof. Taking u(t) =a~ s 't in (1) for the shift value
hy, we obtain

-1
A

(7)

17 no 1vj ) no v no Wy
a—(s1 (t]+h1)—zj:15j £ _a_Zi:ISJ' tj hla_zlesf £

hy

In (8), applying A}, on both sides, we get

) (a*imhl - 1>' ®
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no 1vj h n 1vj
A?A;Zlafz’” i = 1 A laizllJ !
2 1 _ l/v/lh
n l/t
= hl h2 a Z] 17j 7

9)

Proceeding like this for the induction on n, we get the
proof of (7).

Corollary 1. Let t € R",h;>0and j=1,2,...,n. Then, we

have
n l/t
no v <| |n ]’l-)e Zl“ g
-1 Z; s, 't j=1"J
A—e Ui = :
n I/v h
| | e’ -1
j=1

(10)

n(h)

Proof. In the proof of Theorem 2, replacing a by e, we
get (10).

Corollary 2. In Theorem 2, applying a = 3, we get
n l/v
Ry rAl_ h>3 ZJ 1 i
A13 z) 17 j = <H171 d 177} .
IT- (3 hy 1)
j=1

Example 1. Let n =2 in (11); we get the result for the shift
values h; and h, as

(11)

Lymylu@®]=U,5) =

n(h)

= <ﬁh1> Z Z Z rlhlﬂ'z 2,...,rnhn)e_z;ll;/y ’J'hj_
=1

r1=07r,=0 Ty

Remark 1

(i) The n-dimensional fractional frequency Laplace
transform satisfies the linear property.

(ii) In the aforesaid equation (16), we represent the Laplace
transform of the functions in two ways: one in the
closed-form solution and another one in the summation
form solution. In this paper, we numerically verified and
analyzed with MATLAB that both solutions are equal.

n l/'v
——u(fle X5t

h h 3*(51”1 t1+suvzt2)

SRR GEN)

(12)

1y 1/v
—1,-1 7(51 't +s, th) _
ALA'3 -

Summing from 0 to oo for ¢, and ¢, on both sides yields
o0 hyh,

o = <3—S:/Vlh1 3 1)(3_5;/‘/21’12 _ 1)

(13)

(o)

—-1,-1 —(s:/”t1+s;/"2t2)
Ah2 Ah] 3

For n = 2, the infinite principle law reads

[ce e
—1.-1 [eed]ey)

Ay, Ahl’“‘(tl’tz)|0 |0 = hyh, Z Z u(rihy,rhy).  (14)

r1=07r,=0
Equating v(13») and (14) for the function

u(ty,ty) =3 1% °0) we obtain
h h Z Z 3 Si 1r1h1+5;/"272h2) = W, h1h2 U, ,
r,=01,=0 (3_5' 1— 1)(3_52 2 - 1)

(15)
which is  verified for the particular  values

sy =2,5,=3,7=03,,=05h =04, and h, =07 by
MATLAB  coding as  follows: ((0.4). = (0.7)). =
symsum (symsum (3.A (= (2.A(1./0.3). = 0.4. * r1 + 3.A(L./
0.5). % 0.7. * r2)), r1,0,00),72,0,00)= (0.4. %« 0.7)/ ((3.A(-
(2.A(1./ 0.3).%0.4)) —1). * (3.A(=(3.A(1./0.5). *0.7))—
1)) = 0.2837.

3. n-Dimensional Fractional Frequency
Laplace Transform

Definition 4. For the function u(¥) with n-variables

1>ty - .., 1, the n-dimensional fractional frequency Laplace
transform is defined as

(o]

£;=0,j=1,2,...m

(16)

Theorem 3. Let € R, h>0, »
§;>0,j=12,...

; be a fraction, and
,n. Then, we have

n
l_[j 1hj

[T <e 5k —1)' 7

Jj=1

Proof. Taking u(f) = 1 in (16) yields



"o 0o
-l 722’:151‘ J
3”(1’1) [1] = An(h)e J
£;=0,j=1,2
1, n v, |00
-1 _-s, "t -1 -5t -1 -5/t
=A, e A, e 2 A e
n 2 1 0
h, hz hy

. P
gﬂ(h)[ ZJ ! ”] A—ezjzlujtje‘zjzls] It

/vy o

= A;nle*(sﬂ

un)tn

0

h

n
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(using Corollary 1), which completes the proof.

Theorem 4. Let f€ R, h>0, v
§;>0,j=12,...,n then,

an(h)[ez?:l“ftf] = [1.h

be a fraction, and

1/1/ : 19
H;? l(e(sf "“f‘)hf - 1) (19)
j=
Proof. Taking u(f) = eZJ':l“ftf in (16), we have
(e}
£/=0,j=1,2,...m
1 (20t o0 -1 —(s"-g))t o0
..Ahze(z Z)ZOAh1e(] 1)10 (20)
h, hy

() () (e

which gives (19).

Example 2. For n =2, the summation solution of the ex-
ponential function given by the infinite inverse principle law
and the closed form of the solution given as

gn( [ a1t1+a2tz] ]’l I’l Z Z e si -a, rlh +( —az)rzhz]

r,=0r,=0
_ hy h
<€ (5;/ 2_‘lz)hz — 1) <e_($:h/1 _“1)h1 _ 1>)
(21)
is numerically verified for the particular values
hy=7,h,=3,a, =5,a,=9,,=0.1,v, =0.3,s; =11, and
s, =13 by  MATLAB coding as follows:

21. * (symsum (symsum (exp (— (11.A (1./1.0) = 5). % 7. % rl
+(13.A (1./0.3) = 9. % 3. %72)), rl1,0,10),72,0,10))=21./
((exp(—(11.A(1./0.1) =5). % 7) — 1). % (exp (- (13.A (1./0.3)
-9). % 3) - 1)).

The following are the graphical representations of the
exponential function in time and frequency domains. Figure 1
is the graphical representation of the input function e>1**2 in
the time domain, and Figure 2 is the graphical representation of
the output in the frequency domain for the particular values of
v, = 0.0001, », = 0.0003. One can easily choose the values of
fraction vis to get the output in the frequency domain.

Theorem 5. Let fe€ R, h>0, v,

i be a fraction, and

$;>0,j=1,2,...,m then,
n
Z (h)[ e ,] HJ 1 JZ“] ( 1 (e €-i (ash;)Csp, sho, 5
n >
2"[nj:1(coshsj th - cos ajhj)]
(22)
Where e—z(a he ) _ e—i(a1h1+azhz+"-+a h f {1 2’ e, 1’1},
/v /v
ey gy =€ M e for D F = (1,2, n),

and e_i(aoho) = SUhU =1.
Proof. From the previous theorem, we obtain the Laplace

"
. s s i) ._ajt;
transform for the trigonometric function ¢ g

l—L 1 )
l—[;;l(e(s;/v;mj)hj _ 1)

The proof then can be continued by making use of
the conjugate and the product of each term in
n-variables.

i n at;
3n(h)[e 2% ]] = (23)

Theorem 6. Let f€ R, h>0, v,

i be a fraction, and
§;>0,j=12,...,m then,
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Input x10%0
' 6
x10%0 .
8 4 5
61 4
e
% 4
g 3
24
2
0
10

5

0 0 h

F1GURE 1: Time signal (function) >+,

Frequency domain

0 0

B v, = 0.001, v, = 0.0003

FIGURE 2: Frequency signal for v, = 0.0001 and v, = 0.0003.
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Sl/vzh . sl/vlh . .
(2 h1h2<e > " sinah; +€" "sinayh, —sin(a by + a2h2)>
Ly |sin Zajtj = 5 , > (24)
j=1 4<Hj=1<coshsj hj —cosajhj>)
1/v. v 2 vy
5 hlhz(cos<Zj_lajtj> —e Mcosah, — et M cosayh, + eLit’ hf)
Zah) |:C°S<Z“jtj>] = 2 v, : (25)
j=1 4<1—L.:1<coshsj h; —cosajhj>>

Proof. The proof follows by taking n = 2 in Theorem 5,
making the product by its conjugate terms and separating
the real and imaginary parts to get the double Laplace
transform for the sine and cosine terms.

32(11) |:Sin<

Now, (24) and (26) are numerically verified for the
particular values by =2,h, =3,a, = 1,a, =4,v, =04, v, =
0.6,s, =5, and s, =6 by MATLAB coding as follows:
6. % symsum (symsum (sin (2. s 1 + 12. % r2). * exp(—(5.A
(1./0.4). * 2. % r1 + 6.A(1./0.6). = 3. % 12)),r1,0,10), 72,0,
00) = (6. * (exp(6.A(1./0.6). * 3). * sin(2) — exp ((5.A(1./
0.4). * 2). * sin(12) — sin(14)))/ (4. * (cosh(6.A(1./ 0.6).
3) — cos(12)). * ((cosh(5.A(1./0.4)). * 2) — cos(2)))).

The following are the graphical representations of the
sine function in time and frequency domains. Figure 3
represents the input time-domain signal (function) for the
sine function. Figure 4 represents the output in the fre-
quency domain for the particular values of v, =04
and v, = 0.6. Figure 5 represents the output in the frequency

2
Y. ait;

j=1 r,=07r,=0

n

=& 1)

(

h

n
N

!‘j)e—z

J

(o)

= AI;: (tn);fny")E "ty .

1/,
U, +1 sy "h, Uy+1
_ e hy i

SR —(swlr hy+sy "2 r,h )
= h,h, Z Z sin(a,r hy + ayryhy)e 1 T SRR

j=17J

Example 3. Equation (24) is the closed-form solution of the
sine function. Now, for n = 2, the summation solution of the
sine function given by the infinite inverse principle law is

(26)

domain for the particular values of v, = 0.3andv, = 0.5.
Figure 6 represents the output in the frequency domain for
the particular values of v, = 0.1 and », = 0.7. Similarly, one
can analyze the solution in the frequency domain by
choosing diverse values of fraction vis.

Theorem 7. Let fe€ R, h>0, v,

i be a fraction, and

sj,yj>0,j =1,2,...,n; then,
Ui+l sl./vjh‘
n ( ) n h.J <!€J j
Hi) | _ J
3)n(h)[ (tj)hjj ] =l (27)
R A iy
Proof. Taking u(f) = [T}, (t]-)}(:j) in (16), we have
l/vjt. (o)
J
£=0,j=1.2,..
3 w) —sthr | (1) —s1g |
Ay, (), e o Bn, (t)y e 0 (28)

1/v 1/v
g% 2h, h’flJrl[/ll!esl 'hy

/vy

Sy s,

R

1/vy

/vy
1

) (A



Mathematical Problems in Engineering

sin (t; + 4k,)

sin (t; + 4k;)

FIGURE 3: Time signal for sin (¢, + 4t,).

Frequency domain

Bl v,=04,v,=06

FIGURE 4: Frequency signal for v, = 0.4and v, = 0.6.

by Lemma 1, which gives (4).

3.1. n-Kind Riemann Zeta Function in the Discrete Case.
In Theorem 7, when v; = land h; — O for j = 1,2,...,n,
we get

et T T()T ()
w1 -1 1] H U “y
L[] = ns’;"...s’fs’fl :

We know that the Riemann zeta function is defined as

(29)

1
s

[Nk

((w) =

I
—

S

Equation (29) can be written as

T(,) .- T ()T (1)

H,
S

Hy th
52781

= ALl it
=7, e

L=l =ity
At e |0 .

(30)

o =1 =1 —s5)t;|O°
0 "t Ahz £ e 0

(31)
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Frequency domain

00
Bl v,=03,v,=05

FIGURE 5: Frequency signal for v; = 0.3and v, = 0.5.

Frequency domain

B v,=01,v,=07

FI1GURE 6: Frequency signal for v, = 0.1and v, = 0.7.
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Taking summation on s, j = 1,2, ..., 00, on both sides,
we get
n o0 1 (e} 1 [ee] 1 1 B t et et
D) Do 2 g 2 g = Bt Z R NG Ze I Ze Y
j=1 s,=1 Sn s,=1 52 s;=1 S1 s,=1 s=1
o) )X ) = 51 e &)
J= j 2 h,‘n (et _ 1) z etz _ 1) (
t.“n_l o« 1 I t#z—l |00 1 . t.“l_l |OO
) C () (uy) = A P i )
(t4) (12)¢ (1) F( ) Ay P 1)|0 T (1) h (e — 1)|0 T (1) (et — 1)|0

which is the product of n'-kind Riemann zeta function in
the discrete case.

3.2. One-Dimensional Laplace Transform on the Fractional
Difference Equation. Let u(t) and v(t) be the two functions.
The  Leibniz  rule of noninteger order is

Alu(®v ()] = ¥,

present the product formula on the fractional difference

y \"-r r
- Au(t)Av(t+v—r). Here, we

(1-emY"

th [Azlu(t)] = h”l
1

Proof. Taking u(t;)=Au(t))
L, [Au(t)] = A [Au(t)e s 4]
hy 1 hy 0

(16),
. Now, applying (3)

in we get

and solving, we get

(1 - efsimhl>

A )] = u(0).

(34)

th [u(tl + hl

th[hAlu(tl)] =

1/v-
-5 hy

(1 e
L [ u(e)] =L
1

Continuing this process for integer n, we arrive at

(1 - e_si/vl hy )n

L, [Azlu(tl)] = o Ly, [u(t, +nhy)
1

Ly, [t(ty +9,hy)] -

) h, [u(t, +2h)] - <

operator as  Aj[u(t)v(t)] = Zf%( Z )AL’”u(t)AZV(H
(v=r)h).

The following theorem plays an important role in solving
the fractional difference equation by one-dimensional
Laplace transform.

Theorem 8. Let u(t,) be a real-valued function and
sy, by, vy > 0. Then, we have

o0

)

r=1

(33)

(1)
Ah

Vi—1
hy

u (v =r)hy).

Again taking u(t,) = Afllu(tl), using (3) and (16), and
applying (34) give

1/v

1-e 5 M )
- (35)
n u(hy) hAlu(O).
1 n-r,
n (1 —6_51 m ) .
Z n—rlAiﬁ u((n—rh). (36)
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Since the order is a fraction, we consider (36) for fraction
v as mentioned in (33).

4. n-Dimensional Inverse Laplace Transform

The n-dimensional inverse Laplace transform is defined by

Mathematical Problems in Engineering

Since we can easily represent the n-dimensional Laplace
transform of the functions mentioned, we can present some
results listed as follows:

no v cJ+ioo
LoV, @] =u® = 50, @2 | =12 n
(37)
} -
h,
-1 H] 1
Zow| =, T =1,
HJ 1< "= 1)
n
h n
-1 l_[] 17 _ _ajt;
Lot ) = 21
" n(D,-7) ]
= [T rer (o) (1) € (arh)®sp, 07| _ Y a, (38)
n(h) Y e Wj =l
2 [Hj:1<coshsj hj—cosa]-hj>] ]
IIth-
pites T N ()
— _ ‘M
gn(h H (m - (tj)h].}
=1 Sj _ 1) j=1
1 [T() - T(E)T (1) ] _ et .
1 2 )| _ -l fy=1
55,1(11)[ nsun g =t 6.ty
n 2

5. Results and Discussion

When n=2, v, =v, =1, and h;,h, — 0, in all the above
results, we have
(1) Z,[1] = 1/sys,.

(i) &Z,lenh* k] =1/(s; —a;) (s, — a,).

(iii) &, [sin(a,t, + axt,)] = aya,/ (s7 + a3) (s3 + a3).

(iv) &, [cos(at, + ayty)] = 515,/ (53 +a3) (s5 + a3).

Similarly, the following result for the hyperbolic func-
tions can be obtained:

(1) Z, [t = yllyz!/sﬁllﬂsgzﬂ.

These results match the formulas of the double Laplace
transform of functions available in the literature.

6. Conclusion

The fractional frequency is used to derive the n-dimensional
Laplace transform with shift values h;,j =1,2,...,n, that
presents more accuracy outputs of the input functions such

as exponential, polynomial factorial, polynomial, and trig-
onometric functions. Also, the numerical results and the
solutions are analyzed graphically by MATLAB. The major
application of this research work is also provided by con-
sidering the classical Laplace transform according to par-
ticular  values of n which are »;=1 and
hy—0,j=1,2...,n
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