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Abstract
In this paper, we establish the existence and uniqueness of a solution for a class of
initial value problems for implicit fractional differential equations with Caputo
fractional derivative. The arguments are based upon the Banach contraction principle,
the nonlinear alternative of Leray–Schauder type and Krasnoselskii fixed point
theorem. As applications, two examples are included to show the applicability of our
results.
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1 Introduction
For the past decades, fractional differential equations have been of increasing importance
due to their diverse applications in different fields, such as control theory, electrochem-
istry, viscoelasticity, electromagnetism, biology, economics, quantum calculus, etc. (see
[2–10, 15, 17, 29–31, 34] and the references therein). On the other hand, the theory of dif-
ferential equations on time scales has developed very intensively during the last decades
(see for example [11, 12, 18–22, 24–27, 33] and the references therein). In 1988, Stefan
Hilger [16, 28] introduced in his thesis the concept of “calculation of chains of measures”
in order to unify the discrete and continuous analysis. So, all results found will be valid in
the discrete case and in the continuous case.

In [32], using suitable fixed point theorems, Vipin and Muslim established the existence
and uniqueness of the solutions to the following nonlinear fractional differential equation
with nonlinear integral boundary conditions on time scales:

c�ϑu(θ ) = �
(
θ , u

(
α(θ )

))
, θ ∈ J = [0, T]T,ϑ ∈ (0, 1),

βu(0) + ηu(T) =
1

	(ϑ)

∫ T

0
(T – s)ϑ–1g

(
s, u(s)

)
�s,
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where c�ϑ is the Caputo delta-fractional derivative and 0, T ∈ T, β ,η ∈R such that β +η �=
0, α : J → J is a continuous function with α(θ ) ≤ θ ,� and g are some functions. In [32],
the authors discussed the existence, uniqueness, and stability for the nonlinear fractional
differential equations with impulses on time scales:

c�qϕ(η) = G
(
η,ϕ(η), c�qϕ(η)

)
, η ∈ J = [0, T]T,η �= ηl,

ϕ
(
η+

l
)

– ϕ
(
η–

l
)

= Il
(
ηl,ϕ

(
η–

l
))

, l = 1, 2, . . . , p,

ϕ(0) = ϕ0,

where T is a time scale with 0,ηl ∈ T, c�q is the Caputo fractional derivative with q ∈ (0, 1)
and l = 1, 2, . . . , p, the point of impulses ηk is right dense with 0 ≤ η0 < η1 < η2 < · · · < θp <
ηp+1 = T , ϕ(η–

k ) = limh→0+ ϕ(ηk – h),ϕ(η+
k ) = limh→0+ ϕ(ηk + h) denote the left and the right

limits of ϕ(η) at η = ηk , Ik ∈ C(J × R,R) and G : J × R × R → R are given functions.
In [23], Vivek et al. proved some existence and stability results of Hilfer-type fractional
differential equations on time scales

⎧
⎨

⎩

T�
α,β
0+ η(t) = F (t,η(t)), t = [0, T] := J ⊆ T, T > 0,

TI1–γ

0+ η(0) = η0, γ = α + β – αβ ,

where T�
α,β
0+ is the Hilfer fractional differential defined on a time scale T, 0 < α < 1, 0 ≤

β ≤ 1 and F : J ×T →R is a right-dense continuous function.
In [13], Ahmad and Ntouyas proved some existence results for the following initial value

problem of Caputo–Hadamard sequential fractional order neutral functional differential
equations:

⎧
⎪⎪⎨

⎪⎪⎩

Dp[Dq� (ϑ) – G(ϑ ,�ϑ )] = F(ϑ ,�ϑ ), ϑ ∈ J := [1, T],

� (ϑ) = φ(ϑ), ϑ ∈ [1 – σ , 1],

Dq� (1) = η ∈R,

where Dp,Dq are the Caputo–Hadamard fractional derivatives, 0 < p, q < 1, F , G : J ×
C([–σ , 0],R) →R are given functions, and φ ∈ C([1 – σ , 1],R), where σ > 0.

In this paper, we generalize the problem considered in [13] to time scales, and we dis-
cuss existence and uniqueness of solutions to the following Cauchy problem of Caputo
sequential fractional order neutral functional differential equations on time scale T:

c�ω
[c�� u(ϑ) – �(ϑ , uϑ )

]
= �(ϑ , uϑ ), ϑ ∈ J := [0, T]T = [0, T] ∩T, (1)

u(ϑ) = ζ (ϑ), ϑ ∈ [–ε, 0]T = [–ε, 0] ∩T, (2)
c�� u(0) = φ ∈R, (3)

where c�ω, c�� are the Caputo fractional derivatives, 0 < ω,� < 1, � ,� : J× C([–ε, 0]T,
R) →R are given functions, and ζ ∈ C([–ε, 0]T,R). For any function u defined on [–ε, T]T
and any ϑ ∈ J and ε > 0, we denote by uϑ the element of Cε := C([–ε, 0]T,R) defined by

uϑ (θ ) = u(ϑ + θ ), θ ∈ [–ε, 0]T.
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The present paper is organized as follows. In Sect. 2, some notations are introduced. In
Sect. 3, three results for problem (1)–(3) are proved by using the following fixed point
theorems: the Banach contraction principle, the nonlinear alternative of Leray–Schauder
type, and Krasnoselskii’s fixed point theorem. Finally, in the last section, we give two ex-
amples to illustrate the applicability of our results.

2 Preliminaries
In this section, we collect notations, definitions, and results which are needed in the se-
quel.

Let C(J,R) be the Banach space of all continuous functions from J into R with the norm

‖y‖∞ := sup
{∣∣y(ϑ)

∣
∣ : ϑ ∈ J

}
.

Also Cε is endowed with the norm

‖ζ‖C := sup
{∣∣ζ (ι)

∣
∣ : –ε ≤ ι ≤ 0

}
.

2.1 Some properties of time scale
A time scale T is an arbitrary nonempty closed subset of R (for more details, see [20–
22, 24–27]).

Definition 2.1 Let T be a time scale. For τ ∈ T, we define the forward jump operator
σ : T → T by σ (τ ) := inf{s ∈ T : s > τ }, and the backward jump operator ρ : T → T by
ρ(τ ) := sup{s ∈ T : s < τ }.

Remark 2.2 In Definition 2.1, we put inf∅ = supT (i.e., σ (m) = m if T has a maximum m)
and sup∅ = infT (i.e., ρ(m) = m if T has a minimum m), where ∅ denotes the empty set.

If σ (τ ) > τ , then we say that τ is right-scattered; if ρ(τ ) < τ , then τ is said to be left-
scattered. Points that are simultaneously right-scattered and left-scattered are called iso-
lated. If τ < supT and σ (τ ) = τ , then τ is called right-dense; if τ > infT and ρ(τ ) = τ , then τ

is called left-dense. The derivative makes use of the set Tκ , which is derived from the time
scale T as follows: if T has a left-scattered maximum m, then T

κ := T \ {m}; otherwise,
T

κ := T.

Definition 2.3 ([21, 22]) Assume h : T →R and let τ ∈ T
κ . We define

h�(τ ) := lim
s→τ

h(σ (s)) – h(τ )
σ (s) – τ

, τ �= σ (s),

provided the limit exists. We call h�(τ ) the delta derivative (or Hilger derivative) of h at τ .
Moreover, we say that h is delta differentiable on T

κ provided h�(τ ) exists for all τ ∈ T
κ .

The function h� : Tκ →R is then called the (delta) derivative of h on T
κ .

Definition 2.4 A function h : T→R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. Crd

denotes the set of rd-continuous functions h : T →R.
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Definition 2.5 Let [a, b] denote a closed bounded interval in T. A function H : [a, b] →R

is called a delta antiderivative of function h : [a, b) →R provided H is continuous on [a, b],
delta differentiable on [a, b), and H�(τ ) = f (τ ) for all τ ∈ [a, b). Then we define the �-
integral of h from a to b by

∫ b

a
h(τ )�τ := H(b) – H(a).

Lemma 2.6 ([14]) Suppose thatT is a time scale and h is an increasing continuous function
on the time-scale interval [a, b]. If H is the extension of h to the real interval [a, b] given by

H(s) :=

⎧
⎨

⎩
h(s) if s ∈ T,

h(τ ) if s ∈ (t,σ (τ )) /∈ T,

then

∫ b

a
h(τ )�τ ≤

∫ b

a
H(τ ) dτ .

2.2 Some properties of fractional calculus on time scales
We introduce a new notion of fractional derivative on time scales.

Definition 2.7 (Fractional integral on time scales) Suppose that T is a time scale, [a, b] ⊂
T, and ζ is an integrable function on [a, b]. Let 0 < ω < 1. Then the fractional integral of
order ω of ζ is defined by

TIω

a ζ (τ ) :=
1

	(ω)

∫ τ

a
(τ – s)ω–1ζ (s)�s,

where 	 is the gamma function.

Definition 2.8 (Caputo fractional derivative on time scales) Let T be a time scale, τ ∈ T,
0 < ω < 1, and ζ : T → R. The Caputo �– fractional derivative of order ω of ζ is defined
by

c�
ω
a+ζ (τ ) :=

1
	(n – ω)

∫ τ

a
(τ – s)n–ω–1ζ�n

(s)�s, (4)

where n = [ω] + 1 and [ω] denotes the integer part of ω.

Theorem 2.9 (Semigroup property) Let ω,� > 0 and ζ be an integrable function on [a, b].
Then

TIω

a
TI�

a ζ (τ ) = TIω+�

a ζ (τ ).

Lemma 2.10 (Nonlinear alternative of Leray–Schauder type [1, 4, 5]) Let E be a Banach
space, C be a closed, convex subset of E, U be an open subset of C, and 0 ∈ U . Suppose
that F : U → C is a continuous, compact map (that is, the image of any bounded subset is
relatively compact). Then either
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(i) F has a fixed point in U , or
(ii) there is u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

Lemma 2.11 (Krasnoselskii’s fixed point theorem [1, 4, 5]) Let S be a closed, bounded,
convex, and nonempty subset of a Banach space X. Let A, B be the operators such that (a)
Ax + Bx ∈ S whenever x, y ∈ S; (b) A is compact and continuous; (c) B is a contraction
mapping. Then there exists z ∈ S such that z = Az + Bz.

3 Existence results
Let Ẽ = {u : u ∈ C([–ε, T]T,R), c�ω(u) ∈ C([0, T]T,R), c�ω[u(·) – φ(·, u)] ∈ C([0, T]T,R)}.

Definition 3.1 A function u ∈ Ẽ is said to be a solution of (1)–(3) if u satisfies the equa-
tion c�ω[c�� u(ϑ) – �(ϑ , uϑ )] = �(ϑ , uϑ ) on J, the condition u(ϑ) = ζ (ϑ) on [–ε, 0]T and
c�� u(0) = φ.

Lemma 3.2 The function u ∈ Ẽ is a solution of the problem

c�ω
[c�� u(ϑ) – �(ϑ , uϑ )

]
= �(ϑ , uϑ ), ϑ ∈ J,

u(ϑ) = ζ (ϑ), ϑ ∈ [–ε, 0]T, (5)
c�� u(0) = φ ∈R,

if and only if

u(ϑ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ (ϑ) if ϑ ∈ [–ε, 0]T,

ζ (0) + (φ–�(0,ζ (0))
	(� )

∫ ϑ

0 (ϑ – s)�–1�s

+ 1
	(� )

∫ ϑ

0 (ϑ – s)�–1�(s, us)�s

+ 1
	(ω+� )

∫ ϑ

0 (ϑ – s)ω+�–1�(s, us)�s if ϑ ∈ [0, T]T.

(6)

Proof Using c�ω[c�� u(ϑ) – �(ϑ , uϑ )] = �(ϑ , uϑ ),ϑ ∈ J, we get

c�� u(ϑ) – �(ϑ , uϑ ) = α +
1

	(ω)

∫ ϑ

0
(ϑ – s)ω–1�(s, us)�s, (7)

where α ∈ R. From the condition D� u(0) = φ we find that α = φ – �(0, ζ (0)). Then

c�� u(ϑ) = φ – �
(
0, ζ (0)

)
+ �(ϑ , uϑ ) +

1
	(ω)

∫ ϑ

0
(ϑ – s)ω–1�(s, us)�s.

Thus

u(ϑ) = β +
(φ – �(0, ζ (0))

	(� )

∫ ϑ

0
(ϑ – s)�–1�s +

1
	(� )

∫ ϑ

0
(ϑ – s)�–1�(s, us)�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1�(s, us)�s.

We find β = ζ (0), and (6) is proved. The converse follows by direct computation. �

Assumptions: We need the following assumptions:
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(Ax.1) There exists λ > 0 such that

∣∣�(ϑ , x) – �(ϑ , x)
∣∣ ≤ λ‖x – x‖C for ϑ ∈ J and every x, x ∈ Cε ;

(Ax.2) There exists a nonnegative constant μ such that

∣∣�(ϑ , x) – �(ϑ , x)
∣∣ ≤ μ‖x – x‖C for ϑ ∈ J and every x, x ∈ Cε .

(Ax.3) � ,� : J× Cε →R are continuous functions;
(Ax.4) There exist a continuous nondecreasing function ψ : [0,∞)T → (0,∞) and a

function ϒ ∈ C(J,R+) such that

∣∣�(ϑ , x)
∣∣ ≤ ϒ(ϑ)ψ

(‖x‖C
)

for each (ϑ , x) ∈ J× Cε ;

(Ax.5) There exists a constant L > 0 such that

(	(� + 1) – μT� )L
H + ψ(L)Tω+�‖ϒ‖∞ 	(�+1)

	(ω+�+1)

> 1,

where

H = 	(� + 1)‖ζ‖C +
[|φ| + μ‖ζ‖C + 2�0

]
T� .

Remark 3.3 By (Ax.2), for each (ϑ , x) ∈ J,

∣∣�(ϑ , x)
∣∣ =

∣∣�(ϑ , x) – �(ϑ , 0) + �(ϑ , 0)
∣∣

≤ ∣
∣�(ϑ , x) – �(ϑ , 0)

∣
∣ +

∣
∣�(ϑ , 0)

∣
∣

≤ μ|x| + �0,

where �0 = sups∈[0,T]T |�(s, 0)|.

We establish our existence results for IVP (1)–(3). The first result is based on the Banach
contraction principle.

Theorem 3.4 Assume that (Ax.1)–(Ax.2) hold. If

Tω

(
μ

	(� + 1)
+

λT�

	(ω + � + 1)

)
< 1, (8)

then there exists a unique solution for IVP (1)–(3) defined on Ẽ.

Proof Define the operator � : C([–ε, T]T,R) → C([–ε, T]T,R) by

�(u)(ϑ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ (ϑ) if ϑ ∈ [–ε, 0]T,

ζ (0) + (φ–�(0,ζ (0))
	(� )

∫ ϑ

0 (ϑ – s)�–1�s

+ 1
	(� )

∫ ϑ

0 (ϑ – s)�–1�(s, us)�s

+ 1
	(ω+� )

∫ ϑ

0 (ϑ – s)ω+�–1�(s, us)�s if ϑ ∈ [0, T]T.

(9)
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Let u, v ∈ C([0, T]T,R). Then, by (Ax.1), (Ax.2), we get

∣
∣�(u)(ϑ) – �(v)(ϑ)

∣
∣ ≤ 1

	(� )

∫ ϑ

0
(ϑ – s)�–1∣∣�(s, us) – �(s, vs)

∣
∣�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1∣∣�(s, us) – �(s, vs)

∣
∣�s

≤ μ

	(� )

∫ ϑ

0
(ϑ – s)�–1‖us – vs‖C�s

+
λ

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1‖us – vs‖C�s.

On the other hand, by Lemma 2.6 we deduce

∣
∣�(u)(ϑ) – �(v)(ϑ)

∣
∣ ≤ μ

	(� )

∫ ϑ

0
(ϑ – s)�–1‖us – vs‖C ds

+
λ

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1‖us – vs‖C ds

≤ μϑ�

	(� + 1)
‖u – v‖[–ε,T]T +

λϑω+�

	(ω + � + 1)
‖u – v‖[0,T]T

≤ μT�

	(� + 1)
‖u – v‖[–ε,T]T +

λTω+�

	(ω + � + 1)
‖u – v‖[0,T]T .

Thus

∥∥�(u) – �(v)
∥∥

[–ε,T]T
≤ Tω

(
μ

	(� + 1)
+

λT�

	(ω + � + 1)

)
‖u – v‖[–ε,T]T .

By (8), the operator � is a contraction. Hence, by Banach’s contraction principle, � has a
unique fixed point, which is a unique solution on [–ε, T]T of problem (1)–(3). �

The second result is based on Leray–Schauder nonlinear alternative. Before the state-
ment, we recall the notion of completely continuous. A bounded linear operator T from
Banach space X to Banach space Y is called completely continuous if, for every weakly
convergent sequence (xn) from X, the sequence (Txn) is norm-convergent in Y .

Theorem 3.5 Assume that hypotheses (A2)–(A5) hold. If

μT�

	(� + 1)
< 1, (10)

then IVP (1)–(3) has at least one solution defined on Ẽ.

Proof We shall show that the operator � : C([–ε, T]T,R) → C([–ε, T]T,R) defined by (9)
is continuous and completely continuous.

Claim 1: � is continuous. Let {un} be a sequence such that un → y in C([–ε, T]T,R).
Then

∣∣�(un)(ϑ) – �(u)(ϑ)
∣∣
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≤ 1
	(� )

∫ ϑ

0
(ϑ – s)�–1∣∣�(s, uns) – �(s, us)

∣∣�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1∣∣�(s, uns) – �(s, us)

∣∣�s

≤ 1
	(� )

∫ T

0
(ϑ – s)�–1 sup

s∈[0,T]T

∣
∣�(s, uns) – �(s, us)

∣
∣�s

+
1

	(ω + � )

∫ T

0
(ϑ – s)ω+�–1 sup

s∈[0,T]T

∣∣�(s, uns) – �(s, us)
∣∣�s

≤ ‖�(·, un .) – �(·, u.)‖∞
	(� )

∫ T

0
(ϑ – s)ω–1�s

+
‖�(·, un .) – �(·, u.)‖∞

	(ω + � )

∫ T

0
(ϑ – s)ω+�–1�s.

And by Lemma 2.6 we deduce

∣
∣�(un)(ϑ) – �(u)(ϑ)

∣
∣

≤ ‖�(·, un .) – �(·, u.)‖∞
	(� )

∫ T

0
(ϑ – s)ω–1 ds

+
‖�(·, un .) – �(·, u.)‖∞

	(ω + � )

∫ T

0
(ϑ – s)ω+�–1 ds

≤ T�‖�(·, un .) – �(·, u.)‖∞
	(� + 1)

+
Tω+�‖�(·, un .) – �(·, u.)‖∞

	(ω + � + 1)
.

Since � ,� are continuous functions, we have

∥∥�(un) – �(u)
∥∥∞

≤ T�‖�(·, un .) – �(·, u.)‖∞
	(� + 1)

+
Tω+�‖�(·, un .) – �(·, u.)‖∞

	(ω + � + 1)
→ 0

as n → ∞.
Claim 2: � maps bounded sets into bounded sets in C([–ε, T]T,R). Indeed, it is sufficient

to show that for any κ > 0 there exists a positive constant λ̃ such that, for each u ∈ Bκ =
{u ∈ C([–ε, T]T,R) : ‖u‖∞ ≤ κ}, we have ‖�(u)‖∞ ≤ λ̃. By (A4) and (A5), for each ϑ ∈ J,
we have

∣
∣�(u)(ϑ)

∣
∣ ≤ ‖ζ‖C +

|φ| + μ‖ζ‖C + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1�s

+
1

	(� )

∫ ϑ

0
(ϑ – s)�–1∣∣�(s, us)

∣∣�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1∣∣�(s, us)

∣∣�s

≤ ‖ζ‖C +
|φ| + μ‖ζ‖C + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1�s

+
μ‖u‖[–ε,T]T + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1�s
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+
ψ(‖u‖[–ε,T]T )‖ϒ‖∞

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1�s,

and by Lemma 2.6 we get

∣∣�(u)(ϑ)
∣∣ ≤ ‖ζ‖C +

|φ| + μ‖ζ‖C + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1 ds

+
μ‖u‖[–ε,T]T + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1 ds

+
ψ(‖u‖[–ε,T]T )‖ϒ‖∞

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1 ds

≤ ‖ζ‖C +
[|φ| + μ‖ζ‖C + �0]T�

	(� + 1)

+
[μ‖u‖[–ε,T]T + �0]T�

	(� + 1)
+

[ψ(‖u‖[–ε,T]T )‖ϒ‖∞]Tω+�

	(ω + � + 1)
.

Thus

∥∥�(u)
∥∥∞ ≤ ‖ζ‖C +

[|φ| + μ‖ζ‖C + �0]T�

	(� + 1)

+
(μκ + �0)Tω

	(� + 1)
+

ψ(κ)‖ϒ‖∞Tω+�

	(ω + � + 1)
:= λ̃.

Claim 3: � maps bounded sets into equicontinuous sets of C([–ε, T]T,R). Let ϑ1,ϑ2 ∈ J,
ϑ1 < ϑ2, Bκ be a bounded set of C([–ε, T]T,R) as in Step 2, and let u ∈ Bκ . Then

∣∣�(u)(ϑ2) – �(u)(ϑ1)
∣∣

≤ |(φ – �(0, ζ (0))|
	(� )

∫ ϑ1

0

(
(ϑ2 – s)�–1 – (ϑ1 – s)�–1)�s

+
|(φ – �(0, ζ (0))|

	(� )

∫ ϑ2

ϑ1

(ϑ2 – s)�–1�s

+
1

	(� )

∫ ϑ1

0

[
(ϑ2 – s)�–1 – (ϑ1 – s)�–1]∣∣�(s, us)

∣∣�s

+
1

	(� )

∫ ϑ2

ϑ1

(ϑ2 – s)ω–1∣∣�(s, us)
∣
∣�s

+
1

	(ω + � )

∫ ϑ1

0

[
(ϑ2 – s)ω+�–1 – (ϑ1 – s)ω+�–1]∣∣�(s, us)

∣∣�s

+
1

	(ω + � )

∫ ϑ2

ϑ1

(ϑ2 – s)ω+�–1∣∣�(s, us)
∣∣�s,

and by Lemma 2.6, we get

∣
∣�(u)(ϑ2) – �(u)(ϑ1)

∣
∣

≤ |(φ – �(0, ζ (0))|
	(� )

∫ ϑ1

0

(
(ϑ2 – s)�–1 – (ϑ1 – s)�–1)ds

+
|(φ – �(0, ζ (0))|

	(� )

∫ ϑ2

ϑ1

(ϑ2 – s)�–1 ds
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+
1

	(� )

∫ ϑ1

0

[
(ϑ2 – s)�–1 – (ϑ1 – s)�–1]∣∣�(s, us)

∣∣ds

+
1

	(� )

∫ ϑ2

ϑ1

(ϑ2 – s)ω–1∣∣�(s, us)
∣∣ds

+
1

	(ω + � )

∫ ϑ1

0

[
(ϑ2 – s)ω+�–1 – (ϑ1 – s)ω+�–1]∣∣�(s, us)

∣
∣ds

+
1

	(ω + � )

∫ ϑ2

ϑ1

(ϑ2 – s)ω+�–1∣∣�(s, us)
∣
∣ds.

Thus

∣
∣�(u)(ϑ2) – �(u)(ϑ1)

∣
∣

≤ |φ| + μ‖ζ‖C + �0

	(� + 1)
[
ϑ�

2 – ϑ�
1

]

+
μκ + �0

	(� + 1)
[∣∣ϑ�

2 – ϑ�
1

∣
∣ + |ϑ2 – ϑ1|�

]

+
ψ(κ)‖ϒ‖∞

	(ω + � + 1)
[∣∣ϑω+�

2 – ϑω+�
1

∣
∣ + |ϑ2 – ϑ1|ω+�

]
.

As ϑ1 → ϑ2, the right-hand side of the above inequality tends to zero. The equicontinuity
for the cases ϑ1 < ϑ2 ≤ 0 and ϑ1 ≤ 0 ≤ ϑ2 is obvious. As a consequence of Steps 1 to 3, it
follows by the Arzelá–Ascoli theorem that � : C([–ε, T]T,R) → C([–ε, T]T,R) is contin-
uous and completely continuous.

Claim 4: We show that there exists an open set U ⊆ C([–ε, T]T,R) with u �= ��(u) for
� ∈ (0, 1) and u ∈ ∂U . Let u ∈ C([–ε, T]T,R) and u = ��(u) for some 0 < � < 1. Then, for
each ϑ ∈ J, we have

u(ϑ) = �

(
ζ (0) +

(
φ – �

(
0, ζ (0)

))
∫ ϑ

0 (ϑ – s)�–1�s
	(� )

+
1

	(� )

∫ ϑ

0
(ϑ – s)�–1�(s, us)�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1�(s, us)�s

)
.

By our assumptions, for each ϑ ∈ J, we obtain

∣
∣u(ϑ)

∣
∣ ≤ ‖ζ‖C +

[|φ| + μ‖ζ‖C + �0
]
∫ ϑ

0 (ϑ – s)�–1�s
	(� )

+
μ‖u‖[–ε,T]T + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1�s

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1ϒ(s)ψ

(‖us‖C
)
�s

≤ ‖ζ‖C +
[|φ| + μ‖ζ‖C + �0

]
∫ ϑ

0 (ϑ – s)�–1 ds
	(� )

+
μ‖u‖[–ε,T]T + �0

	(� )

∫ ϑ

0
(ϑ – s)�–1 ds

+
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1ϒ(s)ψ

(‖us‖C
)

ds
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≤ ‖ζ‖C +
[|φ| + μ‖ζ‖C + �0]T�

	(� + 1)

+
μ‖u‖[–ε,T]T + �0

	(� + 1)
T� +

‖ϒ‖∞ψ(‖u‖[–ε,T]T )
	(ω + � + 1)

Tω+� .

Then

‖u‖[–ε,T]T ≤ ‖ζ‖C +
[|φ| + μ‖ζ‖C + �0]T�

	(� + 1)

+
μ‖u‖[–ε,T]T + �0

	(� + 1)
T� +

‖ϒ‖∞ψ(‖u‖[–ε,T]T )
	(ω + � + 1)

Tω+� .

Thus

(
	(� + 1) – μT�

)‖u‖[–ε,T]T ≤ 	(� + 1)‖ζ‖C +
[|φ| + μ‖ζ‖C + 2�0

]
T�

+ Tω+�‖ϒ‖∞ψ
(‖y‖[–ε,T]T

) 	(� + 1)
	(ω + � + 1)

,

which can be expressed as

(	(� + 1) – μT� )‖u‖[–ε,T]T

H + Tω+�ψ(‖u‖[–ε,T]T )‖ϒ‖∞ 	(�+1)
	(ω+�+1)

≤ 1.

In view of (A6), there exists L such that ‖u‖[–ε,T]T �= L. Let us set

U =
{

u ∈ C
(
[–ε, T]T,R

)
: ‖u‖[–ε,T]T < L

}
.

Moreover the operator � : U → C([–ε, T]T,R) is continuous and completely continuous.
From the choice of U , there is no u ∈ ∂U such that u = ��u for some � ∈ (0, 1). Thus, by
the nonlinear alternative of Leray–Schauder type Lemma 2.10, we deduce that � has a
fixed point u ∈ U which is a solution of problem (1)–(3). �

The second existence result is based on Krasnoselskii’s fixed point theorem.

Theorem 3.6 Assume that (Ax.2)–(Ax.3), (10) hold, and
(Ax.6) |�(ϑ , x)| ≤ χ1(ϑ), |�(ϑ , x)| ≤ χ2(ϑ) for all (ϑ , x) ∈ J×R, where

χ1,χ2 ∈ C(J,R+).
Then problem (1)–(3) has at least one solution defined on Ẽ.

Proof Let the operators Q1 and Q2:

Q1u(ϑ) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ϑ ∈ [–ε, 0]T,

(φ – �(0, ζ (0)) 1
	(� )

∫ ϑ

0 (ϑ – s)�–1�s

+ 1
	(� )

∫ ϑ

0 (ϑ – s)�–1�(s, us)�s if ϑ ∈ [0, T]T,

(11)

Q2u(t) =

⎧
⎨

⎩
ζ (ϑ) if ϑ ∈ [–ε, 0]T,

ζ (0) + 1
	(ω+� )

∫ ϑ

0 (ϑ – s)ω+�–1�(s, us)�s if ϑ ∈ [0, T]T.
(12)
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Put

sup
ϑ∈[0,T]T

χ1(ϑ) = ‖χ1‖∞, sup
ϑ∈[0,T]T

χ2(ϑ) = ‖χ2‖∞

and

� ≥ ‖ζ‖C + T�

[
[|φ| + 2‖χ2‖∞]

	(� + 1)
+

Tω‖χ1‖∞
	(ω + � + 1)

]
, (13)

and define D� = {u ∈ C([ε, T]T,R) : ‖u‖∞ ≤ �}.
Claim 1: For any u, v ∈ D� : Q1u + Q2v ∈ D� : For any u, v ∈ D� , by (11), (12), and

Lemma 2.6, we have

∣
∣Q1u(ϑ) + Q2v(ϑ)

∣
∣

≤ sup
ϑ∈[0,T]T

{
(φ – �(0, ζ (0))

	(� )

∫ ϑ

0
(ϑ – s)�–1�s +

1
	(� )

∫ ϑ

0
(ϑ – s)ω–1�(s, us)�s

+ ζ (0) +
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1�(s, vs)�s

}

≤ sup
ϑ∈[0,T]T

{
(φ – �(0, ζ (0))

	(� )

∫ ϑ

0
(ϑ – s)�–1 ds +

1
	(� )

∫ ϑ

0
(ϑ – s)ω–1�(s, us) ds

+ ζ (0) +
1

	(ω + � )

∫ ϑ

0
(ϑ – s)ω+�–1�(s, vs) ds

}

≤ ‖ζ‖C + T�

[
[|φ| + 2‖χ2‖∞]

	(� + 1)
+

Tω‖χ1‖∞
	(ω + � + 1)

]

≤ �.

This shows that Q1y + Q2z ∈D� .
Claim 2: Q1 is a contraction mapping on D� :
Let u, v ∈D� . Then, by (11) and Lemma 2.6,

∣
∣Q1(u)(ϑ) – Q1(v)(ϑ)

∣
∣ ≤ 1

	(� )

∫ ϑ

0
(ϑ – s)�–1∣∣�(s, us) – �(s, vs)

∣
∣�s

≤ μ

	(� )

∫ ϑ

0
(ϑ – s)�–1‖us – vs‖C�s

≤ μ

	(� )

∫ ϑ

0
(ϑ – s)�–1‖us – vs‖C ds

≤ μϑ�

	(� + 1)
‖u – v‖[–ε,T]T

≤ μT�

	(� + 1)
‖u – v‖[–ε,T]T .

Thus

∥∥Q1(u) – Q1(v)
∥∥

[–ε,T]T
≤ μTω

	(� + 1)
‖u – v‖[–ε,T]T .

And by (10), Q1 is a contraction mapping.
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Claim 3: Q2 is continuous: Clearly Q2 is continuous because � is continuous. Moreover,
Q2 is uniformly bounded on D� as

‖Q2u‖ ≤ ‖ζ‖C +
Tω+�‖χ1‖∞
	(ω + � + 1)

.

Claim 4: Q2 is equicontinuous: Define

�0 = sup
(ϑ ,u)∈[0,T]T×D�

∣
∣�(ϑ , u)

∣
∣ < ∞.

For ϑ1,ϑ2 ∈ [0, T]T, ϑ1 < ϑ2, by (12) and Lemma 2.6, we have

∣
∣Q2u(ϑ2) – Q2u(ϑ1)

∣
∣

≤ �0

	(ω + � )

∫ ϑ1

0

∣∣(ϑ2 – s)ω+�–1 – (ϑ1 – s)ω+�–1∣∣�s

+
�0

	(ω + � )

∫ ϑ2

ϑ1

(ϑ2 – s)ω+�–1�s

≤ �0

	(ω + � )

∫ ϑ1

0

∣
∣(ϑ2 – s)ω+�–1 – (ϑ1 – s)ω+�–1∣∣ds

+
�0

	(ω + � )

∫ ϑ2

ϑ1

(ϑ2 – s)ω+�–1 ds

≤ �0

	(ω + � + 1)
[∣∣ϑω+�

2 – ϑω+�
1

∣
∣ + |ϑ2 – ϑ1|ω+�

]
.

As ϑ1 → ϑ2, the right-hand side of the above inequality tends to zero. Thus,Q2 is equicon-
tinuous. So Q2 is relatively compact on D� . Hence, by the Arzelá–Ascoli theorem, Q2

is compact on D� . So, by Lemma 2.11, problem (1)–(3) has at least one solution on
[–ε, T]T. �

4 Examples
Example 1 Let T be a time scale and let us consider the fractional functional differential
equation

c�1/3
[

c�1/2u(ϑ) –
1

1000
(
ϑ cos‖uϑ‖C – ‖uϑ‖C sinϑ

)
]

=
1

100eϑ

‖uϑ‖C

5 + ‖uϑ‖C
, (14)

ϑ ∈ J := [0, 1] ∩T,

u(ϑ) = ζ (ϑ), ϑ ∈ [–ε, 0] ∩T, (15)

D1/2u(0) = 1/3. (16)

Let

�(ϑ , x) =
1

100eϑ

x
5 + x

,

�(ϑ , x) =
1

1000
(ϑ cos x – x sinϑ), (ϑ , x) ∈ [0, 1] ∩T× [0,∞).
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For u, v ∈ [0,∞) and ϑ ∈ J, we have

∣
∣�(ϑ , u) – �(ϑ , v)

∣
∣ =

1
100eϑ

∣∣
∣∣

u
5 + u

–
v

5 + v

∣∣
∣∣

=
5|u – v|

100eϑ (5 + u)(5 + v)

≤ 1
500

|u – v|,

and

∣∣�(ϑ , u) – �(ϑ , v)
∣∣ ≤ 1

1000
|ϑ || cos u – cos v| +

1
1000

| sinϑ ||u – v|

≤ 1
1000

|u – v| +
1

1000
|u – v|

≤ 1
500

(|u – v|).

And

Tω

(
μ

	(� + 1)
+

λT�

	(ω + � + 1)

)
=

( 1
500

	(1/2 + 1)
+

1
500

	(1/3 + 1/2 + 1)

)

=
1

500

(
1

	(3/2)
+

1
	(11/6)

)

≈ 0.00438511892015845

< 1.

Hence conditions (A1) and (A2) hold with λ = μ = 1
500 . By Theorem 3.4, problem (14)–

(16) has a unique solution on [–ε, 1]T.

Example 2 Let T be a time scale and let us consider the fractional functional differential
equation

c�1/5
[

c�1/2u(ϑ) –
1

100eϑ (1 + ‖uϑ‖C)

]
=

e–ϑ

111 + eϑ

‖uϑ‖C

1 + ‖uϑ‖C
, (17)

ϑ ∈ J := [0, 1] ∩T,

u(ϑ) = ζ (ϑ), ϑ ∈ [–ε, 0] ∩T, (18)

D1/2u(0) = 1/3. (19)

Let

�(ϑ , x) =
e–ϑ

111 + eϑ

x
1 + x

, �(ϑ , x) =
1

100eϑ (1 + x)
, (ϑ , x) ∈ [0, 1] ∩T× [0,∞).

(Ax.2) is clearly satisfied. Indeed, for u, v ∈ [0,∞) and ϑ ∈ J, we have

∣
∣�(ϑ , u) – �(ϑ , v)

∣
∣ =

1
100eϑ

∣∣
∣∣

1
1 + u

–
1

1 + v

∣∣
∣∣
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=
|u – v|

100eϑ (1 + u)(1 + v)

≤ 1
100

|u – v|.

Clearly,

∣∣�(ϑ , x)
∣∣ ≤ e–ϑ

111 + eϑ
= χ1(ϑ),

∣
∣�(ϑ , x)

∣
∣ ≤ 1

100eϑ
= χ2(ϑ),

and

μT�

	(� + 1)
=

1
100	(3/2)

=
1

50
√

π
≈ 0.0112837916709551 < 1.

Clearly, the assumptions of Theorem 3.6 are satisfied. Consequently, by the conclusion of
Theorem 3.6, there exists a solution of problem (14)–(16) on [–ε, 1]T.
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