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Different types of soliton wave solutions for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized
Boussinesq equations are investigated via the solitary wave ansatz method. These solutions are classified into
three categories, namely solitary wave, shock wave, and singular wave solutions. The corresponding integr-
ability criteria, termed as constraint conditions, obviously arise from the study. Moreover, the influences of the
free parameters and interaction properties in these solutions are discussed graphically for physical interests and

Introduction

Traveling wave solutions of the nonlinear evolution equations
(NLEEs) are of utmost important through the wave phenomena since
they act as a bridge between mathematics and its applications in dif-
ferent branches of science [1-13].

In the last decay, soliton wave solutions and its characteristics have
been investigated and applied in many fields, such as ocean engineering
[14,15], optical fibers [16,17], materials [18,19], fluid dynamics [20],
and so on. This kind of wave solutions has various forms such as solitary
waves, shock waves, singular waves, cnoidal waves, snoidal waves,
cuspons, and peakons.

The most appropriate way to comprehend the dynamics of the
NLEE:s is to find their exact solutions [21-32]. Different approaches are
used in literature for calculating the exact solutions for the NLEEs.
Among these method; the improved fractional sub-equation method
[33,34], Kudryashov method and its extended form [35-38], the uni-
fied method [39-41] and its generalized scheme [42-47], the homo-
topy perturbation method [48,49], and the new extended trial equation
method [50,51].

The main purpose of this paper is to find the solitary wave (which is
sufficiently short in duration and locally irregular given in space dis-
turbances), shock wave (it is a type of propagating disturbance that
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moves faster than the other waves in the medium), and singular wave
(this is a type of traveling wave solutions has blow up phenomenon)
solutions for the (3 + 1)-dimensional Kadomtsev-Petviashvili [52-54]
and the generalized Boussinesq [54,55] equations via the solitary wave
ansatz method [56,57].

The governing equations are:

The (3 + 1)-dimensional Kadomtsev-Petviashvili equation (3D-KPE)
[52-54]

The 3D-KPE was first introduced in 1970 by Boris B. Kadomtsev and
Vladimir I. Petviashvili [58]. The 3D-KPE describes the water waves of
long wavelength with weakly nonlinear restoring forces, waves in fer-
romagnetic media, and two-dimensional matter-wave pulses in Bose-
Einstein condensates. Due to its significance, it have been studied ex-
tensively in the literature [52-54].

Upe + V1 (Ulye)x + Voo + V3llyy + Vyligy = 0, 1)
whereu = u(x, y, g, t) is a real valued function in its arguments and the
coefficients v, =6,v,=1, and v;=1w =+3. The coefficients

v; = 1 = +3 are used for weak surface tension and strong surface ten-
sion, respectively [59-61].
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The generalized Boussinesq equation (GBE) [54,55]

The GBE was used in coastal engineering as a computer model for
the simulation of water waves in shallow seas and seaports [62]. Fur-
thermore, the GBE arises in the study of water waves [63], anharmonic
lattice waves [64], and dense lattices [65].

Vi — 81 (W) — SaVir — S3Vioee — S4Vyy — S5V = 0, )

where v = v(x, y, z, t) is an elevation on the free surface of fluid, the
coefficients 6;, 8,, 83, 84, and &s are real constants depend on the depth
of fluid and characteristic speed of long waves.

This article has been arranged as follows: in Section “Solution to the
3D-KPE” and “Solution to the GBE”, various soliton solutions for the
above two equations have been investigated and the properties for
these solutions are described with some figures. In Section
“Conclusions”, the conclusions have been drawn.

Solution to the 3D-KPE

In this section, the solitary wave, shock wave and singular wave
solutions for (1) are calculated.

Solitary wave solutions
In order to calculate the solitary wave solution, suppose

A
here =ax + + yz — t,
cosh’¢ W 4 ytye—v 3

u,y,z,t) =

where a, 3, y are the inverse widths, A is the amplitude and v is the
velocity of the solitary wave, 4 is a constant to be determined later. By
using (3)

Uy = AALQ+ Dy Alx
coshA*2¢ cosh?y’
(utty), = 2420%2  A2AQA+1D)a?
cosh?4 ¢ cosh?4+2y
u _ Al 240+ 1) + 24+ 2)at ALA+ DA +2)A +3)a?
fad cosh/llp cosh}‘+2¢ cosh}‘“‘lp ’
_APp? AL+ 1)B?
Uyy = cosh? - coshA+2y
_ A AL+ Dy?
® T coshty coshA*2y

substituting above values into (1)

ALA+ Dav  AX 28%a%  APA(2A + Da*
cosh*+2y cosh’yp = ‘cosh?p | cosh??y
240 + D2 + 20+ Dt AL+ DA + 2)(A + 3a
+ v, + v,
cosh**+23) cosh**+43)
Ala AB? AAA+ D ARy
V3 — V3 Vs — W
cosh*¢ cosh*¢ cosh*2y cosh? ¢
AL+ Dy 0
cosh**2yp

By comparing the powers 24, A + 2 and 1 + 4, 24 + 2

AL + Dav + 21 A2 %% — 20,AA (A + 1)(A% + 21 + 2)a* — v;AL
A+ DR?— Al + Dy? =0,

- A2 + Da? + 1, ALA + DA + 2)(A + 3)a* =0,

set 1 =2
A= 1202y, L= 4oy, + 521/3 + 7/21/4-
i a
Thus
A
wx,y,z,t) =

cosh?(ax + By + yz — vt)’ @
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Shock wave solutions
To calculate the shock wave soliton, suppose

and 1> 0,
(5)

u(x,y, z,t) = Atanh*®) where = ox + By +yz — vt

from (5)

U, = —AA(A — Davtanh*~21) + 244%avtanh? ¢
— AA(A + 1)avtanhi*24,
(uuy), = A1 (21 — 1a*tanh?—27 — 4422 %q’tanh*
+ A22(2A4 + 1)a?tanh®+27),

U = AL = 1)(A = 2)(A — 3a*tanhi 49 — 4AA(A — (A% — 24

+ 2)a*tanh?~2¢ — 441 (A + 1)(A% + 24 + 2)a*tanh?*2y

+ 2422322 + S)attanhi P + AL(A + DA + 2)(A

+ 3)a*tanh***),
uy, = A1(A — 1)B*tanh*~23p — 242%B%tanh* 9 + AA(1 + 1)B*tanhi+2y,
Uz = AL(A — 1)y*tanh*~29 — 242%2tanh* 9 + AL (A + 1)ytanh*+29),

substituting above values into (1)

— AZ(A — Davtanh*=23 + 242 %avtanh*yp — AL(A + 1)
avtanh**21 + v, 221 (21 — 1)a’tanh® 29 — 49, A2 %a?
tanh? § + »A22(24 + Dattanh?+2¢ + 1,A2(A — DA — 2)(A — 3)
a*tanh* 49 — 409,414 — 1)(A% — 21 + 2)a*tanh?~2¢) — 49,41
A+ D2 + 22 + 2a*tanhd*2y + 20, A2(322 + 5)
a*tanh?y + 1,414 + 1A + 2)(A + 3)a*tanh?+4 ¢ + v, A1 (A4 — 1)
Btanh*=21) — 2v;AA%B%tanh* P + v341(1 + 1)B%tanh**29 + AL
(A — 1)y*tanh*~23) — 2y, AA%%tanh* 9 + B AL(A + 1)y*tanh*+29)

=0.

By comparing the powers 24, 1 + 2 and 1 + 4, 24 + 2

— AL + Dav — 49, A22%a% — 4v,AA (A + 1A% + 21 + 2)a* + v;AL
A+ B>+ nAL(A + 1)y2 =0,
MALQ2A + Da? + 1, ALA + DA + 2)(A + 3)a* =0,

set A =2
A _120{21;2’ _ —8a‘y, + fv; + y2v4‘
" a
Thus
U (x, y, 2, t) = Atanh?(ax + By + yz — vt). (6)

Singular wave Form-1
For the singular wave Form I solution, suppose

u(x,y, z,t) = Acoth*y) where Y =ax+pfy+yz—v and 1> 0,
@)

from (7)



D. Lu, et al.

u(x,y,2,t)

uy(x,y.z,t)
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Fig. 1. u;(x, y, 2, t) when z = 0, t = 2 in 3D- and 2D-plots.

Uy = —AAL(A — Davcoth? =29 + 2A%avcoth? i — AL(A + 1)avcoth*+23),
(U, = A1 (21 — Dacoth? 21 — 442 %acoth?* 3
+ A22(2A4 + 1)a?coth?+29,

U = AA( — 1)(A = 2)(A — Datcothi=4y — 4421 — D22 — 24

+ 2)a*coth 29 — 4A1 (A + 1)(A% + 24 + 2)a’coth?*+2y)

+ 2A22(322 + 5)a*coth?yh + AL(A + 1)(A + 2)(A

+ 3)a*coth*+44p,
Uy, = AL(A — 1)B%coth?=2¢ — 242°Bcoth* i + AA(A + 1)B2coth?+2q,
Uy = AL(A — 1)y2coth?=23) — 24%y%coth* 9 + AL(A + 1)y%coth**+2y,

substituting above values into (1)

— AL(A — Daveothi—29 + 242%avcothp — AAL(A + 1)
avcoth?+21) + v, A22 (21 — 1)a’coth?—2¢) — dv A2A%a?
coth ¢ + v, A21(24 + 1)aPcoth?*2¢p + v,AL(A — 1)(A — 2)(A — 3)
atcoth?~*1h — 49,AL (A — 1)(A2 — 24 + 2)a’*coth?~23) — 4v, AN
A + DA% + 21 + 2)atcoth**2y + 21,A2%(322 + 5)a*coth? i + 1, A
A4 + DA + 2)A + 3)a*coth*** + v;AL(A — 1)B%coth? =2 — 2
Vs AAZB2coth  + v AR (A + 1)B2Cothi*2g + AL — 1)
y2coth? =29 — 21, A2%y?coth? i + 1 AL(A + 1)y>coth*+23) = 0.

By comparing the powers 24, A + 2 and 1 + 4, 24 + 2

— A2 + Dav — 0, A22%a% — 49,AA (A + 1)(A% + 21 + 2)a* + v3AA
A+ DR?+nuAl(A + Dy? =0,
A2 + Da? + AL + 1A + 2)(A + 3)a* =0,

setA=2
A _120(21/2’ v —8a*v, + fvs + y2v4'
141 a
Thus
us(x, y, z, t) = Acoth?(ax + By + yz — vt). 8)
w(x,y.2,t)

up(x,y.2.t)

»

Singular wave Form-II

For the singular wave Form II solution, suppose

u(x,y,z, t) = Acsch’s) where Pp=ax+By+yz—vt and 1>0,
©)
from (9)
Uy = —AA(A + Davesch?*2) — AA%avcschep,
(uuy), = 2A%%a%csch?p + A2 (24 + 1)alcsch? %),
Urooe = AX%a*cschh + 2424 + 1)(A% + 24 + 2)adcsch 2
+ AL+ DA + 2)(4 + 3)adeschi+4y,

Uy, = AL(A + 1)B2csch**%) + A2%B%cschiyp,
Uy = AL(A + 1)y%csch**2) + AA%y%cschiep,

substituting above values into (1)

— AA(A + Davesch*+2p — A%aveschhyh + 2v, A2 %a2csch?le) + v, A2
(24 + Da?esch?* 2 + vy Ad%a*cschty + 20,A1(4 + 1)(A% + 24 + 2)
atcsch™*2) + 1,AL(A + DA + 2)(A + 3)a‘csch*+*p + ;A1 (A + 1)
Besch* 2 + v;A2%B%cschty + AL (A + 1)y%esch**2) + 1 A1%y?
csch*p = 0.

By comparing the powers 24, 4 + 2 and A + 4, 21 + 2

— AL + Dav + 20,2222 + 20,AA (A + 1)(A% + 21 + 2)a* + v; AL
A+ DB% + nAL(A + 1)y?
=0. 1A12A+ Da? + vALA + 1A + 2)(A + 3)a* =0,

set 1 =2
12 4 4, 2. 2
A=— oczvz’ b av2+ﬁv3+yv4‘
141 a
Thus

us(x, y, 2, t) = Acsch?(ax + By + yz — vt). (10)

Figs. 1-4 depicts the 3D and 2D charts of the solution given by
ui(x,y,z,t),i=1,2,3,4 respectively ~ with  the  parameters
a=05 =01,y=01,v,=2, v, =5 and v =y = 3.

Fig. (1)(a) and (b) represent a bright soliton wave which is a stable

(b)
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Fig. 2. u;(x, y, z, t) when z = 0, t = 2 in 3D- and 2D-plots.
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Fig. 7. v3(x,y, 2, t) when 2 = 0, t = 2 in 3D- and 2D-plots.
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va(x,y,z,t)
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(b)

Fig. 8. v (x, y, z, t) when z = 0, t = 2 in 3D- and 2D-plots.

solution while Fig. (2)(a) and (b) represent a dark soliton wave which is
also a stable solution (shock wave solution).

Figs. (3)(a), (b), (4)(a), and (b) represent singular wave solutions
which are not stable.

Solution to the GBE

In this section, the solitary wave, shock wave and singular wave
solutions for (2) are obtained.

Solitary wave solutions
In order to calculate the solitary wave solution, suppose

A
v(x,y,2,t)= ——— where ¥ =ax+ fy+ yz—t,
c

osh* ¢ an
from (11)
Vi = A2 _ AL(A+ 102
7 coshdy cosh#*2y
)y = 42222 242020+ 1)a?
X coshy cosh?4+2y
S A AL+ 1D)a?
X coshty cosht*2y
. _ At 2@+ D@2+ 20+ 2)at AL+ DA +2)A + 3at
XX coshA cosh?+2 coshA+4y ’
— AP A+ DB
W coshty coshA*2¢ ’
v = A2 A+ D)y?
& cosh’1¢ cosh“’zz/) ’
substituting above values into (2)
APV A+ v 4Aa? 24°2(24 + Da® s
cosh* ¢ cosh**+29 Yeosh?y | ' cosh?*2yp 2
AN%a? AL(A + Da? Aot
cosh* cosh**29 cosh*
2A0(A + D(A* + 22 + 2)at s AL + DA +2)(A + 3)at s
cosh*23) } cosh**+43) ¢
AN*B? AL(A + 1)B? s AN%y? AL+ Dy?
coshiyp ' coshi*23p > cosh? cosh*2)

By comparing the powers 24, 4 + 2 and A + 4, 21 + 2

— AL + 1)v? — 45, 220%% + 5,AAL(A + 1)a? + 28;AA(A + 1)
(A + 24 + 2)a* + §,A (A + 1)B? + 841 (A + 1)y? =0,
2602222 + 1a? — 53414 + DA + 2)(A + 3)a* =0,

set 1 =2

A= 6“253
&

. v = 2Ja, + 4as; + 76, + ¥3s.

Thus

40
30
= — y=-3
;E 20 y=-1
N y=1
10 y=3
0 L L L L
[1] 5 10 15
X-axis
A
vl(x’y’z’ t)= .
cosh?(ax + fBx + yy — vt) 12)
and the condition for the existence of the solution is

(a252 + 40(453 + 5264 + }/255) > 0.
Shock wave solitons

In order to calculate the shock wave soliton, suppose

v(x,y, 2, t) = Atanh*yp where Pp=ax+pfy+yz—v and 1> 0,
13)
from (13)
vy = AL(A — 1)v?tanh*~2¢) — 2421%v%tanh* ¢ + AA(A + 1)v3tanh?+23),
(V) = 2421 (21 — 1)a®tanh®23) — 84212a%tanh* ¢
+ 2421 (22 + 1)a’tanh?+29),
Vo = AA(A — 1)atanh*~21) — 24%a%tanh? ¢ + AL(A + 1)a’tanh?+23).

Veoe = AL(A — 1)(A — 2)(A — 3)a*tanh? 4 — 41 (4 — 1)(A2 — 24

+ 2)attanh?=29 — 4A1(1 + 1)(A% + 21 + 2)a*tanh**2y

+ 2A2%(32% + 5)a*tanh?y + AL(A + DA + 2)(4

+ 3)a*tanh*+4 ),
vy = AL(A — 1)B*tanh*~21p — 242%B*tanht 3 + AA(A + 1)Btanh**+2¢p,
Ve = AL(A — Dy?tanh* =29 — 242%%tanh* ¢ + AL(A + 1)y’tanh**2y,

substituting above values into (2)

AA(A — 1)v*tanh*~2¢) — 2424%v%tanh? ¢ + AL (A + 1)v3tanh?*23) — 25, 4%
224 — Da*tanh®~27 + 85,42 %a’tanh? i — 25, A2 (22 + 1)
a?tanh?+29) — §,AA (A — 1)a’tanh?~2¢ + 25,A%a’tanh* i — 5,A1
(A + Da’tanh**2yh — 5341 (4 — 1)(A — 2)(A — 3)a*tanh*~*3) + 4531
(A — D2 — 21 + Da*tanh=2¢ + 46,404 + DA + 24 + 2)
attanhi*2y — 25,A22(32% + S)atanhiy — 85,404 + DA + 2)

(A + attanh 4y — 5,414 — 1)fanhi—2y + 26,A23
tanh’y — §,bAL(A + 1)B2tanh?*21h — §5AA(1 — 1)y%tanh*~2¢) + 2
8,AN%2tanh? i — S;AL(A + 1)y*tanhi+24 = 0.

By comparing the powers 24, 4 + 2 and A + 4, 21 + 2

AL + D2 + 85,4222a% — 5,AL(A + 1)a® + 46;AA (A + 1)
P + 24 + 2)a* — 8, AL + DP? — SAL(A + D)2 = 0,
+26, 42124 + Da? + 53AA(A + 1)(A + 2)(A + 3)a* =0,

setA=2
2

A= —6(:;53, V= i\/ofzéz - 8“453 + 6254 + ]/255.
1

Thus



D. Lu, et al.

vy (x, ¥, Z, t) = Atanh?(ax + By + yz — vt), (14)

and the condition for the existence of the solution is

(a252 - 80{453 + ﬁ254 + }/265) > 0.
Singular wave Form-I

To calculate the singular wave Form I solution, suppose

and 1> 0,
(15)

v(x, ¥, 2, t) = Acoth*yp where ¢ = ax + fy + yz — vt

from (15)

vy = AL(A — 1)v2coth? =29 — 24A%»%coth? 9 + AL (A + 1)v2cothi*2y,
(V) = 2424 (21 — D)a®coth?~2¢) — 8421 %a2coth? ¢
+ 2422 (24 + 1)aPcoth?+2¢),

Ve = AL(A — Dacoth?~2¢ — 24%a%coth? ¢ + AA(A + 1)a2cothi+23),
Veor = AL(A — DA — 2)(A — 3)a’*coth*~*3 — 41(A — 1)(A2 — 2

+ 2)a*coth?=21) — 444 (A + 1)(A2 + 24 + 2)a*coth*+2¢)

+ 2A2%(32% + 5)atcoth* ) + AA(A + 1)(A + 2)(A

+ 3)a*cotht+4y,
vy = AL(A — 1)B%coth*~24) — 242°B2coth?yp + AL(A + 1)B%coth**+2¢p,
Ve = AL(A — D)y?coth?=29 — 242%/2coth* i + AL (A + 1)ycotht+24p,

substituting above values into (2)

AA(A — 1)v2coth?—2¢p — 24A%%coth? ¢ + AL (A + 1)v2coth?*23h — 25, A%
A2 — D)a®coth?~29) + 85, 42%a%coth? ¢p — 28, A2A (21 + 1)
a?coth®*+21) — §,AA(A — 1)a’coth*—29 + 25,A%a>coth?yh — §,A4
(A + Dacoth*+2h — 53424 — 1)(A — 2)(A — 3)a*coth* 49 + 4651
(A — 1D(A2 — 21 + 2)a*coth* 29 + 4644 (A + 1)(A% + 21 + 2)
atcotht*2) — 28,422(312 + S)atcothih — 8,44 + DA + 2)

(4 + Dadcothi+4 9 — 8, AL(A — 1)BPcothi~-21) + 25, A128?
coth*yh — §,AL(A + 1)B2coth*+29h) — 544 (4 — 1)y2coth? 21 + 2654
A2y%coth?p — §5A1(A + 1)y2coth*+23) = 0.

By comparing the powers 24, 4 + 2 and 4 + 4, 24 + 2

AL (A + DV + 85, 42%a% — 5, AL (A + 1)a? + 46;A1 (X + 1)
(A2 + 24 + 2)a* — §,AL(A + 1)B? — 841 (A + 1)y? =0,
+26, 42124 + Do + 53AA(A + 1A + 2)(A + 3)a* =0,

setA=2
2
A= —6253, V= i\/oc252 - 8“453 + 5254 + 7/255
1
Thus
vs3(x, y, 2, t) = Acoth?(ax + By + yz — vt). (16)
and the condition for the existence of the solution is

(a252 - 80(453 + ﬁ254 + }/255) > 0.

Singular wave Form-II

To calculate the singular wave Form II solution, suppose

and 1> 0,
a7)

v(x,y, z, ) = Acschp where 9 = ax + By + yz — vt

from (17)

Results in Physics 14 (2019) 102491

vy = Al%v%cschp + AA(A + 1)v3cschi+2y,

(V) = 4A222%a%csch?p + 2421 (24 + 1)a2csch® 2,

Ve = AA(A + Da?esch?**2) + AA%a%cschy,

Voo = Al%acschhy + 2444 + 1)(A% + 24 + 2)adcsch 2

+ AL + DA + DA + 3)adeschi+y,

vy = AA(A + 1)B%csch**2p + AA%B%cschhyp,

Ve = AA(A + 1)y?csch**2) + AA%y2cschy,

substituting above values into (2)

A2v%csch*) + AL(A + D)v2esch*+2y) — 48, A2 %a’csch?Myp — 26,420
(24 + Da?csch?* %) — 5, AL (A + 1)alcsch 2 — §,AN%a?
csch*p — §3AA%%cschip — 28 A4 (A + 1)(A% + 21 + 2)
atesch?*2) — 534414 + 1) + 2)(A + 3)a*esch? 4 — 5,AA(A + 1)
B2cschtt2h — §,AA%B2cschhp — 8544 (A + 1)y2cschi+2p — 554422
csch*yp = 0.

By comparing the powers 24, 1 + 2 and 1 + 4, 24 + 2

AL+ D2 — 48,2022 — 8, AX(A + D)a? — 28,A0(A + 1)
(A2 4+ 21 + 2)a* — 5,424 + 1B — 65AL(A + 1)y? =0,

26142124 + Do + 53AA(A + 1A + 2)(A + 3)a* =0,

setA=2
2,
A= —6";—53, v = +./a%, + 4a'6; + 75, + 1%5s.
1
Thus
wu(x, y, 2, t) = Acsch?(ax + By + yz — vt), (18)
and the condition for the existence of the solution is

(a252 + 40(463 + 5254 + }/255) > 0.

Figs. 5-8 depicts the 3D and 2D charts of the solution given by
v, y,2,8),i=1,2,3,4 respectively ~ with the parameters
a=05 =01,y=01,6,=2,8,=5,0:=06,=23,and 55 = 1.

The same discussion as in Figs. 1-4 can be investigated here.

Conclusions

This paper had investigated the analytical solutions to the (3 + 1)-
Dimensional Kadomtsev-Petviashvili and the generalized Boussinesq
equations with the help of the solitary wave ansatz method. These so-
lutions included solitary wave, shock wave, and singular wave solu-
tions. The dynamical behavior and the propagation of these solutions
are discussed in a graded index waveguide by choosing suitable para-
meters. To our best of knowledge, the discussion and results in this
work, comparing with the other results in literature, are new and had
different wave structures. The obtained solutions can be critical to
under stand attributes of the 3D-KPE and the GBE which are important
in different branches of science where these equations are used to de-
scribe some physical phenomenon.
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