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Abstract

This work addresses several novel classes of convex function involving arbitrary non-negative
function, which is known as approximately generalized (v, h)-convex and approximately -
quasiconvex function, with respect to Raina’s function, which are elaborated in Hilbert space.
To ensure the feasibility of the proposed concept and with the discussion of special cases, it is
presented that these classes generate other classes of generalized (v, ii)-convex functions such
as higher-order strongly (HOS) generalized (v, h)-convex functions and HOS generalized -
quasiconvex function. The core of the proposed method is a newly developed Simpson’s type
of identity in the settings of Riemann—Liouville fractional integral operator. Based on the HOS
generalized (v, ii)-convex function representation, we established several theorems and related
novel consequences. The presented results demonstrate better performance for HOS generalized
1-quasiconvex functions where we can generate several other novel classes for convex functions
that exist in the relative literature. Accordingly, the assortment in this study aims at presenting
a direction in the related fields.

Keywords: Convex Functions; Generalized (¢, h)-Convex Functions; x-th Order Differentiabil-

ity; Raina’s Function; Breckner-Type Function; Godunova—Levin-Type Function.

1. INTRODUCTION

In the last three decades, the most intriguing and
captivating subject of current research in mathe-
matical sciences is the fractional calculus as well
as derivatives and integrals of non-integer order are
involved. The fractional operators of the said cal-
culus is the most essential phenomenon in the real
world, and it has been treated as the crucial and
exceptionally enormous factor in precisely portray-
ing the conduct of oscillators, medicine, mechani-
cal devices, electrical systems, granular soils, cir-
cuits, and financial systems has been represented in
the continuous composition, e.g. see Refs. 1-3. Sub-
sequently, the dynamical developments of authen-
tic physical structures have been even more fit-
tingly investigated by fractional-order differential
and /or difference equations rather than the integer-
order ones. Given the way that the high con-
stancy model of physical frameworks can be por-
trayed by fractional-order frameworks, the region
has obtained a lot of enthusiasm for the control

network which has concentrated on stability and
control problems in systems represented by non-
integer-order differential equations.*®

On the other hand, the study of the fractional
integral inequalities such as in the case of differ-
ential and difference equations is of importance
in various subjects.® Inequalities that are used
in structural applications are of practical impor-
tance, as they have proven that fractional behav-
ior has a profound impact on the performance
of fractional integral inequalities. For instance,
Sarikaya et al.'® reported the Hermite-Hadamard-
type inequalities for Riemann—Liouville fractional
operators. Set et al.!l established valuable conse-
quences by utilizing fractional integral operators.
The inequality theory is of importance in many
fields such as in the field of solid-state physics, mate-
rials and metallurgy sciences because it is causally
related to different microscopic physics processes
and also can be used as an experimental investi-
gation of these procedures.” Fractional integral
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inequalities play a significant role in both pure and
applied sciences because of their wide applications
as well as many other natural and human social
sciences, while convexity theory has remained as an
important tool in the establishment of the theory
of integral inequalities. Simpson’s inequality, as a
member of the family of integral inequalities, is a
classic inequality that has long been fascinated by
numerous mathematical researchers, which can be
stated as follows:

1
‘5 [Q(M) +49 (L ;wz) + Q(wz)]
1 ws
. /w Q)i
(4) _ 4
< Q|| o (wa — w1) ’ (1)
2880

where Q : [w1,ws] — R is fourth-order differentiable
function on (w1, ws) with the condition that

1QW oo = sup

z€(w1,w2)

|Q(z)] < o0.

In recent years, several successful attempts have
been made in obtaining the variants and applica-
tions of Simpson’s type of inequality. For exam-
ple, Dragomir et al.'> provided many interesting
results on its applications in numerical integration.
Rashid et al.'® contemplated the novel Simpson’s-
type inequalities in the settings of fractional calcu-
lus with applications. In Ref. 14, Li et al. obtained
several extensions of Simpson’s-type inequalities via
extended (s, m)-convex functions. For more devel-
opments, generalizations and variants for Simpson’s
type of inequality have been the subject of much
research, see Refs. 15 and 16.

In Ref. 17, Varosanec proposed a class of con-
vex functions amplify and unifies several existing
ideas of classical convex functions, encompassing
Breckner-type convex functions,'® P-functions,
Godunova-Levin-type convex, and Q-functions.?’
We acknowledge that this class plays a dominant
role in convex analysis and this class plays a signif-
icant contribution to convexity theory and provides
assistance to explore numerous novel classes of a
convex function, see Refs. 21 and 22 and the refer-
ences therein.

In Ref. 23, Polyak introduced and studied a new
class of functionals that has significant importance
in machine learning models, optimization theory
and many other related areas. The existence of

nonlinear complementary problems can be deter-
mined by strong convexity.2* The convergence crite-
ria of iterative schemes for variational and equilib-
rium issues are contemplated by Zu and Marcotte.?
Bynum? and Chenet al.?” introduced the general
characterization and utilization of the parallelo-
gram laws for the Banach spaces. Xu?® explored new
attributes of p-uniform convexity and g-uniform
smoothness of a Banach space utilizing || - ||P and
| - ||9, respectively. In Ref. 29, Nikodem and Pales
explored the new and novel utilities of the char-
acterization of the inner product space by consid-
ering strongly convex functions. Interestingly, the
Polyak—Lojasiewicz condition is fulfilled with the
assembly of stochastic slope descent for the class of
functions based on strongly-convex functions too as
a wide scope of non-convex functions incorporating
those utilized in machine-learning applications.?" In
their recent work, authors?! reported results for dif-
ferentiable higher-order strongly (HOS) h-convex
functions. In Ref. 32, the authors established the
predominating n-convex functions in a wide broad-
way and also studied several generalizations for
predominating n-quasiconvex functions. For further
interesting papers related to HOS convex functions,
see Refs. 33-35.

In response to the existing approaches, this
paper aims to create refinements of Simpson-
type inequalities utilizing approximately gener-
alized (v, h)-convex, approximately generalized
(1, h)-quasiconvex, HOS generalized (1), h)-convex
and HOS generalized vy-quasiconvex functions with
respect to Raina’s function that not only possess
the key properties of the classical convex functions
but also have exceptional parameters adjustment
with and without fixing the non-negative arbitrary
function h. Moreover, our consequences are corre-
lated with the auxiliary identity which associates
with fractional calculus for sth-order differentiable
functions. Numerous refinements of Simpson’s type
of inequality are derived that can be used to charac-
terize the uniformly reflex Banach space. The signif-
icant advantage of these outcomes is that they used
to comprehend the parallelogram laws for LP spaces.
Several remarkable cases are provided to exhibit the
novelty of the results given herein.

2. PRELIMINARIES

Initially, suppose a non-empty set Kr in a real
Hilbert space H. The inner product and norm are
denoted by the symbols (-, ) and || - ||, respectively.
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Moreover, there is an arbitrary non-negative func-
tion A : (0,1) — R, n = {n(m)}>*_, be a bounded
sequence of real numbers and F, ,(-) v1,v2 > 0
denotes Raina’s function. In Ref. 36, Raina explored
a new class of functions stated as follows:

0 m
Fiywn(2) = FUOGTO () = 3 %m
(2)

m=0

where vy, v2 > 0,|2| <R and

n=00),...,n(m),...)

is bounded sequence of positive real numbers.
Notice that if we choose v; = 1,v2 = 0 in Eq. (2),
then

(51)m(52)m
(53)771

where 61,02 and 03 are parameters which can take
arbitrary real and complex values (provided that

n(m) = form =0,1,2,...,

d3 # 0,—1,—-2,...,) and we denotes the symbol
(b)m by
(B = "t = b+ 1) (bt m — 1),
m=20,1,2,...,

and restrict its domain to |z| < 1 (with z € C),
then we have the classical hypergeometric function,
which is defined as

Tl 0 (2) = F(01,02;03; 2)

m=0 m

Also, if n = (1,1,...) with ¢ = §,(R(6) > 0),n =1
and restricting its domain to z € C in Eq. (2), then
we have the classical Mittag—Leffler function:

00
E, z".
61 ZOF 1+51m

Next, we evoke a new class of set and a new class
of functions including Raina’s functions.

Definition 1 (Ref. 37). A non-empty set Kz is
said to be generalized 1-convex set, if
w1+ EF) (w2 —w1) € Kr (3)

for all wy,ws € Kr, & € [0,1].

We now define the generalized -convex function
presented by Cortez et al.3”

Definition 2 (Ref. 37). Let a set Kz C R and
a function @ : Kr — R is said to be generalized
Y-convex, if

Qw1 + EFY, (w2 —w1)) < (1 — &) Q(w1 HEQ(wo)
(4)
for all wy,ws € Kz, & €[0,1].
Next, we present a new class of generalized -
convex functions for an arbitrary non-negative func-
tion A.

Definition 3. Let i: (0,1) — R be a real function
and a function O : K — R is said to be generalized
(1, h)-convex function, if

Qw1 + EFY, (w2 —w1)) < (1 =€) Q(w1)

+1(£)Q(w2) (5)
for all wy,ws € Kz, & €[0,1].
Further, we demonstrate several novel concepts

of generalized 1-convex functions with respect to
an arbitrary non-negative function.

Definition 4. Let h: (0,1) — R be a real function
and a function Q : Kr — R is said to be approxi-
mately generalized (1), h)-convex, if

Q(wl +5 V1,02 (wQ - wl))
< (1 =€) Q(wr) + 1(§) Qwz) + D(wr, w)
(6)
for all wy,ws € Kr, & €[0,1].
Some noteworthy cases of Definition 4 are demon-
strated as follows:
(I) For some ¢ > 0,p > 2 and taking D(wi,ws) =
—c{€P(1 = &) + (1 = OPEHIFU, oo (w2 — wi)||P, then
we have a new concept of HOS generalized (v, h)-

convex function with respect to an arbitrary non-
negative function .

Definition 5. Let & : (0,1) — R be a real func-
tion and a function O : Lz — R is said to be HOS
generalized (1), h)-convex having ¢ > 0, if

Qw1 + EFY, vy (w2 — w1))
<A1 —&)Q(w1) + M(€)Q(w2)
—c{P(1 =&+ (1 - e
X Ty o (w2 — wi)|P (7)
for all wy,ws € Kz, & €[0,1].
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(IT) Taking D(wi,ws) = —c{P(1 — &) + (1 —
EPEH|IF (w2 — w1) [P with p = 2 and ¢ > 0,
then we have a new concept of strongly generalized
(1, h)-convex function with respect to an arbitrary
non-negative function A.

Definition 6. Let : (0,1) — R be a real function
and a function Q : Kx — R is said to be strongly
generalized (1, h)-convex having ¢ > 0, if

Qw1 + §F 4y (wa —w1)) < (1 =€) Q(w)

+h(€)Qwa) — c€(1 = EI|IF, b, (w2 — w1
(8)

for all wy,ws € Kr, & € [0,1].

(ITI) For some ¢ > 0,p > 2 with A(£) = £ and taking
D(w, wp) = —c{eP(L = &) + (L = P T, on (w2 —
w1)||P, then we have a new concept of HOS gener-
alized -convex function.

Definition 7. Let a function Q : K — R is said
to be HOS generalized 1-convex having ¢ > 0, if

Qw1 + EFY, (w2 —w1)) < (1 =€) Q(w1)
+£Q(w2) — c§(1 = IIFY, v, (w2 —wi)[” (9)
for all wy,ws € Kr, & € [0,1].

We now introduce a new concept of generalized
approximately -quasiconvex functions.

Definition 8. Let a function Q : K — R is said
to be approximately generalized 1-quasiconvex, if

Qw1 + EFY, v, (w2 — w1)) < max{Q(w1), Qw2)}
+ D(w1,we2) (10)
for all wy,ws € Kr, & € [0,1].
We now mention some notable cases of Defini-
tion 8 as follows:

(I) For some ¢ > 0,p > 2 with A(§) = £ and taking

D(wy,wa) = —e{&P(1 = &) + (1 = E)PE}F, n (w2 —
w1)||P, then we have a new concept of HOS gener-
alized v-quasiconvex function.

Definition 9. Let a function Q : K — R is said
to HOS generalized v-quasi-convex having ¢ > 0, if

Qw1 + &FY, o, (we —w1)) < max{Q(w1), Qw2)}

—{&P(1 = &) + (1 = OPEH|FY, 0y (w2 —wi) [P
(11)

for all wy,ws € Kr, & € [0,1].

(IT) For some ¢ > 0,p = 2 and taking D(wq,ws) =
—e{€P(1 = &) + (1 — EPPENIFL wa(ws — wn)[P, then
we have a new concept of strongly generalized -
quasiconvex function.

Definition 10. Let a function @ : K — R is
said to be strongly generalized -quasiconvex hav-
ing ¢ > 0, if

Qw1 + EFY, 4, (W2 — w1)) < max{Q(w1), Q(wa)}
— (L= OIFD oy (w2 —wi)|? (12)
for all wy,ws € Kr, & €[0,1].

We end this section by presenting a notable frac-
tional integral operators in the literature.

Definition 11. Let Q € Lj[wy,ws], then the left-
and right-sided Riemann-Liouville fractional inte-
grals JjJr and jj_ are defined as

1 2

75,00 = 15 | -7t

1

z2<wi,0>0
and
75.06) = [ (€= 27 Qe
G0 TTE) L T ’
zZ > wo,d >0,
respectively, I'(z) := [; & te™8d¢, R(z) > 0 is the

Gamma functlon
Some of our computations need incomplete beta

and hypergeometric functions, which are, respec-
tively, stated as

B, (wp,w2) = /O Ce (1 e,

The integral representation of the hypergeometric
function is

281 (w1, we; ¢ 2) =

1 ! wo—1
B(wg,c—wg)/o ¢
X (1 =€) 72 M1 — 2€)™rde¢

for |z| < 1,¢ > w2 > 0.
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3. AN AUXILIARY RESULT FOR
GENERALIZED ¢-CONVEX
FUNCTIONS

This section deals with the investigation of an inte-
gral identity of xth-order differentiable functions for
generalized -convex functions.

Lemma 12. For n,x € N with v1,v2,0 > 0 and
n = {n(m)}o_y a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fihu(ws — wi)] —
R is defined on Q° (the interior of Q) such that
Fiyvy(wa — w1) > 0 and o) ¢ Lifwy,w +
Fiy vy (wa —w1)] (the Lebesgue space). Then the fol-
lowing equality holds:

y(/{, n, 57 LU1,CU2)(Q)

. /1 (2(1 - 5)5%31 B 55“1)

<w1 + =T (w2 — w1)> d¢

+ 1 (56+m 1_ 5)5+n1>
0

<w1 + . 1 UI,UQ(wz — wl)) dg,

where

y(’%anvév w17w2)(Q)

0tk
1 n—+1
=-T00+k ( )
6 ( ) -7:17)717112(“2 _wl)

X I:“7((csu1)+Q (wl + —‘;EULUQ( 2= wl))
+ (_1)H‘7(i1+.7:

v1,v9 (‘U? _wl))7

x Q (wl + . 1?31’1}2(&12 — wl))]

n+1 )5+n
Fih o (wa — wi)

é(am)(

d
X
I:‘7(w1+ n+r1-7:31 ug (W2—w1)

)7Q(w1)

+(-1)FT°

(“"1+nL-»-1‘7:glﬂ’2 (w2—w1))*

X Qw1 + Fll 4, (w2 —wi))]
1 & I'0+k)
_qugf(é—i-/f—q—i-l)

" ( n+1 >q
f'gl,'UQ(wQ - wl)

X [(—1)‘“9@11) +2(—1)"1 Q-9

1
X <w1+ +1Fv1,v2(w2_w1)>
+2009 [y + —"F (g — wy)
1t e @2 1

# O n + 7l — ).

Proof. Let
1 2(1 5)5—1—& 1 56-1-/-; 1
| )
X [Q(” <w1+ 5”71 g (W2 w1)>

_ Q(H) (w + —ff& UQ( —w1)>] d¢

B 1 2(1 _ 5)6+/<71 _ §5+n1) %)
- (e

X <w1 + 1—5.;:':}7171}2 (LUQ — w1)> d¢

+1
O+Kk—
_§+ 1)Q("i)

_ /01 <2(1 - 5)‘”“31

X <w1 + 55,_-;;1 v (W2 Wl)) dg

=10 — Iy

Now, integrating by parts, we have

1 2(1 _ 5)5+n71 _ 564*/{71 %)
f (F==—)e

1
X <w1 + Tﬁfgl’w( Wy — wl)) df

1
-5 [a-ere®

1—
X <w1 + n——i—ifgl’w (LUQ — wl)) df
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+ 1 /1 55Q(’i)
3 Jo
1
x <w1 + —53’:{,71,1)2( wy — w1)> dg
2 { [_ n+1 a
- 3 }"3171,2 (LUQ —wl)

X <w1 + —gfgl,vg( Wo — wl))]

. é—)(ﬂ“ﬂ*l Q(Hfl)

1

0

_(n+ D0 +r-1) /1(1 _ g)prm2g(x-1)
0

Fih oa (wa — wy)

X (wl + 1—£.7:{,71,U2 (wg — w1)> df}

1 n+1 -1 o(r—1)
i Q
3 {|: -7:17)717112(“12_"')1)f
§ 1
X <w1 + —‘7:171 UQ( 5 — wl))]

(n+DE+r=1) 1 500 (k—1)
" [ e

Fiy oa (wo — w1

0

x <w1 + ﬁfﬁl,w( Wy — w1)> df} .

Again, through the integration by parts, we obtain

Q=1

2 1
I — { n+

g .7-"31,,}2 (wg — wl)

1
X (wl + — 1-7:1;1,1;2(‘”2 - wl))

(1) +R-1)
(-7:171717112(“)2 _wl))Q

1
X (wl + . 1‘Fv1 U2(w2 —wl))

(n+1)20+r—1)0+k—2)
(-7:17171,112(“2 _wl))Q

1
_ \0+k—3
< [a-o

x QrF=2) <w + 5}"{,71 v (W2 — wl)) df}

1 +1 _
__{_ _n o1
3 fvl,w (wg — wl)

Q=2

1
X <w1 + — 15%71,1}2 (wo — w1)>

(n+12%0+r—1)
(fgl,w (wQ - wl))

1
X <w1 + — 155;’]1’1}2 (wog — w1)>

B n+1200+k—-1)(0+r—2)
(Foh o (w2 — w1))?

1
_ ¢\0+kKk—3
< /O (1-¢)

Q(H 2)

1
% Q(VrQ) (w + +§f"{]w2 (wg — wq

)) ae}

Further, integrating by parts successively upto k-
times, we obtain

~
=

I
W N

()
0+k ]:17,71,1}2 (CUQ — wl)

q=1

1
x QUF=a) <w1 + ——F by (w2 — w1)>

n+1
qg—1
[[6+r-0)
6=0
(—1)" n+1 T
5 —
+5+/<a fgl,UQ(wg—wl 91_[(] +r=q)

x /1<1—5>5—1Q
0

x <w1 + 1-¢ Fl (W — w1)> dﬁ}

n+1
BRI o < n+1 >q
3 o 0+ K .7-"31,,}2 (LUQ — wl)
qg—1
x QU D (wy) [T(0 + 5 —0)
0=0

+ (—1)"Ht ( n+1 )“
0+ K }"ﬁl,w(wg —wl)

K

1
Jl6+r-o [a-9"'0

0=0
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X (wl + —gfgl,vg( — wl)) df}

_2 Z”:(—l)‘I‘l( n+1 )q
3 p S+ K \Fohu(ws —wr)

X Q(H 9 <w1 + Fm,w( 2 wl))

—1
< [[6+rx-0)

=0

(—1)"T (5 + ) ntl O\
) <f31,v2<w2—w1>)

Q

>

ﬁ /1 5—1
x [|6+r—q) [ 1-8"Q
0=0 ! 0

(¢

X =+ Tﬁfvlﬂ& ((UQ - wl)) df}

1] & (—1)72 n+1 a
3{; 0+ kK <]:gl,v2(w2—w1)>
q—1
x QU (wy) TT(6 + 5 — 0)
6=0

(=) + k) n+1 "
TTTTO) (fﬂm (s — w1>>

ﬁ /1 51
X (04K —2q) (1-¢°Q
=0 0
(w n+1 U1 U2(w2_w1)) df}
- n+1 >q
U1’U2( 2—&)1)

X

C/OI[\D

q=1

'+ k)
(5+n—q+1)

X Q(H 9 (wl + fm U2( - wl))

6tk
o n+1
+(=1)"T'(0 + k) <}_n (0 — w1)>

"7(W1+

n+1 'Ul U2(

_ % {qi;(l)“) (;cgwj(;l— w1)>q

(5 + k)

(k—q)
orr—qrns @)
+ 1 6+/§
—1)"HIT(S i
+( ) ( +H) <-7:1T1]17U2(w2_w1))

1
X j6+Q <w1 +o 1f;’]1’1}2(w2 —w1)>}.

Analogously, we have

I /1 (2(1 _ 5)6+/<71 _ §5+I€1> Q(H)
0

3
n—+¢&
X (wl + — 1?3171)2(&12 — wl)) df
_2 {_ ntl ok
3 }"ﬁhw (LUQ —wl)

n
X <w1 + - 1?3171,2 (wo — w1)>

n—+1 2
—(0+Kr—1
( ) <~7:17)717U2(w2 _w1)>

% Q(H—Q) <w1 + f‘gm}? (wg — w1)>

+1
(645 —1)( + 2)< ntl )3
_ o o
fgl,’ug (CUQ - wl)
n
% Q(r=3) (wl + PR AIRE (wo w1))

+(0+Kk—-1)0+Krk—-2)(0+K—3)
n+t1 oot  \6tr—d A(k—3)
) <-7:17171 v2(w2_w1)> /0 S <

X <w1 + %fﬁhv2 (CUQ — w1)> df}
! { ntl o

3 .7-"31 V9 (wg — wl)

(wl +F1’}71 ’U2( wl))

n—+1 2
+(0+r—1
( )<-7:17171 v2(w2_w1)>

x QU (wi + F (w2 —w1))

2140019-8
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n+1 >3
-7:17171,112 (WQ _wl)
x QU (wy + FL (w2 — w1))
—0+r-1)0+r=2)(6+K—3)

n+1 3/1 Str—4 ~(k—3)
X Q
(‘7:17171 U2(w2_wl)> 0 f

+(5+/<c—1)(5+/1—2)<

X <w1 + —ffgl Vo (LUQ — w1)> df}
2 Z”: < n+1 )q
3 e} thv? ((UQ — wl)
(6 + k)
X
T +r—qt1)
X Q(Kiq) <w1 + "+ 1f;’)71,v2 (w2 - LU1))
O+k
n+1
I'(6+
( I{) <‘7:171717U2 (w2 - wl))
x ‘7(w1+n+1fv1 ;U9 (w2—w1))*

X Q(wl + fv1,v2 (LUQ — wl))}

K

1 n-+1 a
- g Z <‘7:171717U2(w2 _wl))

q=1
I'0+k)
TG+r—q+1)
x QU9 () + Fl vy (w2 —w1))

f’gla’UQ (wQ - wl)

X

rw+m(

x jwl-l—]: 01,0 (W2—w1)) ™

x Q <CU1 + ?fghw (LUQ - w1)> } .

Therefore,

I — I

K

_6q:1I’5+/<a—q+1)

" ( n+1 )q
-7:171717112(“2 - wl)

< |17 Q) +2(-1)1 Q0

1
X (wl + ?Fvl,vg (CUQ - wl))

- QQ(H_q) (wl + fgl,’UQ (wQ - wl))

n+1
— Q"W + F (w2 —w1))]
n+1 o+k
- F(6 " H) <~7:17)717U2(w2 - wl))

1
6
6 1 Ul
X ‘7(LU1)+Q UJ1+ +1fvl U2(UJ2_W1)

Kk 70
+(=1) j@ufmwgm—m»-

x Q <w1 + ——F by (w2 — wl))]

n+1
+1m5+)( ntl >HH
= K
3 .7-"31,,}2 (wg - wl)
4
x [k7(w1+n#+1-7:171m2 (w2—w1))~ Q(wl)
5
+ (_1)K‘7(w1+ni+1fgl«,v2(“’27“)1))+
X Qwi + F o, (w2 —wi))]. (13)
This completes the proof of Lemma 12. O

4. CERTAIN ESTIMATES FOR
«TH DIFFERENTIABLE
FUNCTIONS

We propose some new generalizations of upper
bounds for the mapping Y(k,n,d,wi,w)(Q) for
approximately generalized (v, h)-convex functions,
our main consequences are described in the subse-
quent theorems.

Theorem 13. For n,x € N with vi,vs,0 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a kth order differentiable
mapping Q : Q = [wi,w1 + Fih (w2 —wi)] — R
is defined on Q° such that Fl, v,(wy —wi) > 0. If

|Q")| is an approzimately generalized (1, h)-convex

2140019-9



Fractals 2021.29. Downloaded from www.worldscientific.com
by CANKAYA UNIVERSITY on 04/24/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

M.-K. Wang et al.
on ), then
D}(Ha n, 57 Wi, wQ)(Q)‘

< @1(6, 1, )[1Q") (wi)] + Q") (w2)]]
2]D)(w1,w2)
30+k)’

where

1 _ A\O+k—1 _ ¢d+k—1
D4 (6, K, )::/O <2(1 §) 3 3 >

1-¢ n—+¢&
h h dg€.
() (i) e
Proof. According to Lemma 12, the triangular

property and utilizing the fact of approximately
generalized (1), h)-convex functions, we obtain

‘y(’ia n, 57 CU1,CU2)(Q)|
_ 56—}—&—1) |

. /01 <2(1 - f)”’?

< Qi) <w + gfﬁm(wg—wl))ldf

n+1
1 56—1—5—1 o 2(1 o g)é—l—m—l
o ()
x Q) <w1 + Z—;fﬁm (wo — wl)) I d€

£
< /01 <2(1 _§)6+:1 _féﬂ_l)
(5 )19
+h< +1) |9 (W) + D wl,w)} de
+ /01 <2(1 - 5)6“31 - §5+n1)
) [h(lﬂ)‘gﬁ) )l

+h (Zif) 10 (wy)] +]D)(w1,w2)} g

< ©1(6, 7, 6)[1Q") (wn)] + 1Q" (wa)]

QD(wl,WQ)
—_— . 14
3(0+ k) (14)
This completes the proof. |

Now, we shall state some special cases of Theo-
rem 13.

(I) Letting A(§) = 1, then we acquire a new result
for HOS generalized - P-convex functions.

Corollary 14. For n,k € N with vi,vs,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth order differentiable
mapping Q : Q = [wy,w1 + Fohm(ws —wi1)] = R
is defined on Q° such that Fl, v,(we —wi) > 0. If
10| is a HOS generalized 1)-P-convex on Q, then

D)(/{,n,cs, (,dl,CUQ)(Q)‘

3%% [1Q) (@) + 12 (wa)]
+ D(w1,w2)}.

(IT) Letting h(§) = &, then we acquire a new result
for HOS generalized 1-convex functions.

Corollary 15. For n,k € N with vi,vs,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = [wi,w1 + Fh(ws —w1)] = R
is defined on Q° such that Fl, v,(we —wi) > 0. If
10| is a HOS generalized v)-convex on €, then

|y(/{7 n, 55 w17w2)(9)‘

1 K K
< m{[\Q( J(wn)] + 19" (wa)]

+ QD(wl, wg)}.

(IIT) Letting A(§) = &°, then we acquire a new
result for Breckner type of HOS generalized 1-s-
convex functions.

Corollary 16. For n,x € N with vy,v9,0 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fh(ws — w1)] = R
is defined on Q° such that Fl, v,(we —wi) > 0. If
|Q")| is a Breckner type of HOS generalized 1)-s-
convex on ), then

‘y(lia n, 57 w17w2)(Q)|

1 2
< 2ns
~3(n+1) [5+/€+s+ n281

1
X (—s;l;é—i—n—i—s—i—l;——)
n

2140019-10
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1
—n581 (—8;1;5+n+s+1;——)
n

=B + k5 + ] [1Q" (w)] + Q" (w2)]]
2]D)(w1,w2)
30+k)

(IV) Letting A(§) = £°, then we acquire a new
result for Godunova—Levin type of HOS generalized
1p-s-convex functions.

Corollary 17. For n,x € N with vy,v9,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = w1, w1 + Fhvy(wa —wi)] — R
is defined on Q° such that F, v,(w2 —wy) > 0. If
|Q")| is a Godunova-Levin type of HOS generalized
-s-convex on ), then

D}(Ii,n,& (,dl,WQ)(Q)‘

—B(1 —s5,0+ k)

- 1 [ 2
“3n+1) [(0+K—5)
+2n5°F1 (s; 1,0+ m;—%)

—n" (0 + k)21
X (s;é—i—n;é—i—n—i—l;—%)]

x 197 (@) + Q") (w2)]
QD(wl,WQ)
30+k)

(V) Letting R(§) = ¢ and D(wj,wi) =
— L (P (1=8)+(n+&) (1=E)P }(F n (w2 =
w1))P, then we acquire HOS 1-quasiconvex function.

Corollary 18. For n,x € N with vi,v9,6 > 0 and
n = {n(m)}o_y a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wy,w1 + Foh v (wa — w1)] — R is
defined on Q° such that Fil v, (wa—w1) > 0. If | Q)|
is a HOS generalized v-quasiconvex on €Y, then

D}(Ii,n,& (,dl,WQ)(Q)‘

1 K K
< m{@( J(wi)] + Q") (wa) [}

-~ 2¢(Foh s (w2 — w1))P
3(n+1)%

{2n(6 + Kk +1)2F1

1
X <—1;1,5+I€+p+ 1,——)

n
—nB(0 + K,p + 1)281

1
X <—1;5+1€,5+/€+p+1,——)
n

1
+2nbF1 (—p; 1,0+ kK42, _E>

—an((5+ K, 2)231
1
X (—p;é—i—n,é—i—n—i—?,—g)}.

(VI) Letting A(§) = 1 and D(wp,we) =
—m{(n + 91 — & + (n + 1 -
§)p}(fgl1v2 (w2 — w1))p, then we acquire HOS -

P-convex function.

Corollary 19. For n,k € N with vi,vs,d > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = [wi,w1 + Fohu(we —w1)] = R
is defined on Q° such that Fl, v, (wy —wi) > 0. If
1QW)| is a HOS generalized )-P-convex on Q, then

|y(/{7 n, 55 w17w2)(Q)|

< ﬁ{@%m + 10 (wa)]}

_ 20(?31,1}2 (wQ — wl))p
3(n+1)%

{2n(5 + K+ 1)281

1
X (—1;1,5+/€+p+ 1,——>

n
—nB(0 + K, p + 1)251

1
X (—1;5—1-/1,5—1—/1—1—174-1,——)
n

1
+2n§31 (—p; 1,0 + K+ 2, —E)

—anB%(é—i— K, 2)231
X (—p;5+/€,5+m+27—1)}.
n

(VII) Letting A(§) = &° and D(wy,w2) = —m

{(n+ P =)+ (n+ (L= P HFU vy (w2 —w1))P,

2140019-11
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then we acquire a new result for Breakner type of
HOS generalized 1-s-convex functions.

Corollary 20. For n,xk € N with vy,v9,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fihu(ws —wi)] — R
is defined on Q° such that FJ, v,(wy — wy) > 0. If
|QW)| is a Breakner type of HOS generalized )-s-
convex on €}, then

‘y(’%ﬁn767 UJl,W?)(Q)‘

1 2
< 2ns
~3(n+1)s |:5+I<L+S+ na81

1
X (—8;1;5+I€+8+1;——> —n5%1
n
1
X (—s;l;é—l—n—i—s—i—l;——)
n

BG4 1>] 1209 (w1)] + Q% (wa)]

26(-7:171717112 (wQ - wl))p
- 3(n 1 1) {2n(6 + K+ 1)231

1
></ (—1;1,5+/€+p+1,——)
n

—nB(6 + K, p+ 1)281

1
X <—1;5+/€,5+I€+p+1,——)
n

1
+2nbF; <—p; 1,0 +K+2, _ﬁ>

— anB((S + K, 2)2%1

X (—p;5+m,5+m+27—1)}.
n

(VIII) Letting A(§) = ¢° and D(wi,wz) =
— G { ()P (1=8)+(n+8) (1=E)P H(F, vn (wa—
w1))P, then we acquire a new result for Godunova—
Levin-type HOS generalized ¢-s-convex functions.

Corollary 21. For n,x € N with vy,v9,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fihwe(we —w1)] — R
is defined on Q° such that Fl v,(wy — wy) > 0. If
|QW)| is a Godunova—Levin type of HOS generalized

-s-convex on §2, then

‘y(’iﬂ’%(s, (,dl,CUQ)(Q)‘

< ! 2 +2n,°F
n
“3m+1) |[6+r—s 2V

1
X <5;1;5+/<c—s+1;——>
n
. 1
—ny 1 5;1;5+/£—5+1;—E

. sﬂ 1209 (w1)] + Q% (wn)]

o 2¢(Fih vs (w2 — w1))P
3(n+1)%

x {2n(6 + K+ 1)281

1
X (—1;1,5+1€+p+1,——>

n
—HB((S—F Hap"i‘ 1)231

1
X <—1;5+m,5+/€+p+1,——>
n

1
+2nb%; (—p; 1L,d+ K+ 2, _E)

— TLpB((S + R, 2)231

1
X <—p;5+n,5+n+2,—g>}.

Theorem 22. For n,k € N with vi,vs,0 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = [wy,w1 + Foh(ws —w1)] = R
is defined on Q° such that Fl v,(wa — wi) > 0.
If |QW|% s an approzimately generalized (i, h)-
convez on ) for g > 1 with qfl + qgl =1, then

‘y(’ia n, 57 W1,CU2)(Q)|

L /o(1 = g)ial §5+n—1)fh >$
<(f (= i

x {[®7* (8, 5,1, )| Q") (wy)|22
+ ¢;* (5’ K/’ n? f)

X Q1 (w2)|* + D(wr, wo)] =

2140019-12
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+ [®5(6, Ky m, )] QW) (wy)]22
+ ¢T*(57 K/7 n’ é‘)

1

x | QW) (w2)[%2 + D(wy, ws)] %2 },
(15)

where

1
(5, ki, m, €) ;:/0 h<21§)d§ (16)

and

1 I
B3 (5, 5,1, €) ::/0 h(i—ﬁ) . (17)

Proof. According to Lemma 12, the well-known
Holder inequality and utilizing the fact of approx-
imately generalized (v, h)-convex functions, we
obtain

‘y(’%ﬁn767 UJl,WQ)(Q)’

1 2(1 _ 5)5+n71 _ 564*/{71 a %

([ (=) %)
1 _
X (/0 i—ﬁfﬁl,vz (w2 — M))
q2 é
df)

1 2(1 o g)é—l—m—l o €6+n—1 q1 %
(=) )

! n+¢&
X </0 F!

n+41" vbv2
X (LUQ —w1)>

Q) (wl +

X

Qo) (wl +

1

o d§> L
< </01 <2(1 - §)6+:1 _ §5+n—1)q1 df) L
AL () e

(i) e

1

+D(W17W2)> df] "

L (e

+h (n ki f) 190 (wy) [ + D(W1,w2)>

n—+1

X 5} E}
1 2(1 _ 5)5+/<71 - §6+n71 a1 i
(=) )

x {[®3* (3, k, 1, €)| Q) (wy)|%2
+ @37 (8, 5,1, €)| Q) (wo)|22

—i-]D(wl,wQ)]é
+[®5(8, 1,1, )| Q1) (w1 )| 2
+ @18, 5,1, )| Q") (wo) |22

+ D(wy,ws)] 2 }.
(18)

This completes the proof. O

Some new special cases of Theorem 22 can be
described as follows:

(I) Letting A(§) = 1, then we acquire a new result
for HOS generalized - P-convex functions.

Corollary 23. For n,xk € N with vy,v9,6 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fohu(we —w1)] = R
is defined on Q° such that Fl, v,(wy —w1) > 0. If
1Q")|92 45 a HOS generalized (1, h)-convex on Q for
q2 > 1 with qflﬂ—q;l =1, then

D}(H,n,é, wlv“-@)(Q)’

/91— g)itat 55%—1)(11 )i
([ (s

X [1QM) (wi)]® + Q") (wn) |

1
+D(w1,w2)] a2,

(IT) Letting A(&) = &, then we acquire a new result
for HOS generalized -convex functions.

Corollary 24. For n,xk € N with vy,v9,6 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable

2140019-13
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mapping Q : Q = w1, w1 + Flws(wa —wi)] — R
is defined on Q° such that F v,(w2 —wy1) > 0. If

QW% s o HOS generalized 1)-convex on Q for
g >1 un'thql_l—i-qg_1 =1, then

|y(/{7 n, 55 w17w2)(9)‘

/91— gyt €5+n—1>cn )ﬁ
<([ (= i

M1 1
. {[2(n+1)‘9( @)l + 2(n+ 1)

1

< 10U (wa) | + D(whm] -

1

2n + 1
+ [2(71—1—1)

(k) g , 2T
| (w)] o

x 1QU) (wp)| + D(wuwz)] ’ } :

(III) Letting A(§) = £°, then we acquire a new result
for Breckner type of HOS generalized -s-convex
functions.

Corollary 25. For s € (0,1],n,x € N with
v1,v2,0 > 0 and n = {n(m)}>X_, a bounded
sequence of real numbers. Also, assume that a Kth-
order differentiable mapping Q : Q = [wi,w; +
Fiy vy (wa — wi)] — R is defined on Q° such that
Flog(wy —wi) > 0. If |QW|% is a Breckner type
of HOS generalized -s-convex on 2 for ga > 1 with
ql_l—i—q;1 =1, then

|y(/{7 n, 55 w17w2)(9)‘

/o1 — gyt €5+n—1>cn )ﬁ
<([ (= i

» { [rﬁ“\Q(*“ ()| + 19 ()l

(n+1)%(s+1)

1

+D(W1,w2)} ”

ns+1|Q(H) (we)|22 + ‘Q(n) (wy)]?2
(n+1)*(s+1)

1

a2
-HD)(wl, wg)

(IV) Letting A(§) = £°, then we acquire a new result
for Godunova-Levin type of HOS generalized 1)-s-
convex functions.

Corollary 26. For s € (0,1],n,x € N with
v1,v2,0 > 0 and n = {n(m)}X_y a bounded
sequence of real numbers. Also, assume that a xth-
order differentiable mapping Q : Q = [wi,w1 +
Fihwo(wa — wi)] — R is defined on Q° such that
Fi on(wa—wi) > 0. If |QW|% is a Godunova-Levin
type of HOS generalized v-s-convex on £ for gs > 1
with qfl + q;l =1, then

‘y(’%ﬁn767 UJl,WQ)(Q)’

1 2(1 _ 5)6—1—&—1 _ §6+n—1>(11 )ﬁ
([ (= &

y nl—s|Q(H) (w1)|2 + ‘Q(n) (ws)]?2
(n+1)75(1—s)

a
+D(wr,w2)

N nl_S‘Q(H)(wQ)‘QQ + |Q(n) (wy)]?2
(n+1)=5(1—5s)
+D(W17W2]

(V) Letting R(§) = 1 and D(wj,wa) =
e + A - 9 + ( + 90
&P } (Fohy o (wo —wl))p , then we acquire a new result
for HOS generalized - P-convex functions.

Corollary 27. For n,x € N with v,vs,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = [wy,w1 + Fohu(ws —w1)] = R
is defined on Q° such that Fl, v,(wy —wi) > 0. If
19|92 s a HOS of generalized (1), h)-convex on Q
for g2 > 1 with qfl + q;1 =1, then

‘y(’ia n, 57 w17w2)(Q)|

I 55%—1)(11 >qll
<(f (2= i
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> []Q(”)(wl)]‘”—i—\Q(”‘)(wg)\‘D

26(-7:17171,112 (wQ - wl))p
_ 3+ 1)2p {271(5 + Kk + 1)231

1
X (—1;1,5+m+p+1,——>

n
—HB(5+ 'l{7p+ 1)2&1

1
X (—1;5+m,5+/€+p+1,——>
n

1
+2nb%F; <—p; 1,0+ K+ 2, _E>

— an((S + K, 2)231

1\]
X | —p;d+r0+K+2 —— .
mn

(VI) Letting A(§) = ¢ and D(wi,ws) =
—mE e + 9P - 9+ ( + 90
&P } (FU, on (wa—w1))”, then we acquire a new result

for HOS generalized 1-convex functions.

Corollary 28. For n,x € N with vy,v9,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a xth-order differentiable
mapping Q : Q = [wi,w1 + Fihu(ws —wi)] — R
is defined on Q° such that FJ, v, (wy — wi) > 0. If
QW% s o HOS generalized 1)-convex on Q for
g >1 wz’thqfl—i-q;l =1, then

‘y(’%ﬁn767 UJl,WQ)(Q)’

1 2(1 _ 5)6—1—&—1 _ §6+n—1>‘11 )ﬁ
([ (= &

_

2(n+1)

20(-7:171]17112 (w2 —w1))?
3(n+1)%

X {2n(6 + Kk + 1)2F1

+ ‘Q(ﬁ) (wg)]®2

n

1
X (—1;175+m+p+17——)

- HB((S + R,p + 1)231

1
X (—1;5+1{,5+1{+p+17——)
n

1
+2nb% (—p; 1,0+ K+ 2, _E)

—nPB(J + K, 2)

1\
X231 _p75+’€55+’€+27_5

1
+ [Q(n—i— 1)
2n +1

- (k) 2
T3t | (w2)[*

. 26(-7:17171,112 (wQ — wl))
3(n+1)%

‘ Q(H) (w1)]2

’ {271((5 + K+ 1)231

1
X <—1;1,5+I€+p+1,——>

n
—nB(0 + K,p + 1)281

1
X <—1;5+m,5+/€+p+1,——>
n

1
+2nb%, (—p; Lo+ K+ 2, _E)

— TZPB((S + K, 2)231

1\ )]
X (—p;5+n,5+/€+27——)}} .
n

(VII) Letting A(§) = ¢&° and D(wj,wa) =
—mE i+ O - O + (n + 90
&P } (F vz (wo—w1))?, then we acquire a new result

for Breckner type of HOS generalized )-s-convex
functions.

Corollary 29. For s € (0,1],n,x € N with
v1,v2,6 > 0 and n = {n(m)}X_y a bounded
sequence of real numbers. Also, assume that a kth-
order differentiable mapping Q : Q = [wi,w1 +
Fihwo(wa — wi)] — R is defined on Q° such that
Fion(wa —wy) > 0. If |QW|% is a Breckner type
of HOS generalized ¥-s-convex on S for go > 1 with
qfl—i—q;l =1, then

‘y(’ia n, 57 W1,CU2)(Q)|

/91— gyl §5+n—1)fh >qll
<(f (= i
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L [t )| + Q) (wy)l
(n+ 1G5+ 1)

. 2c(Fih wa (w2 — w1))P
3(n+1)%

X {271(5 + K+ 1)281

1
X <—1;175+m+p+ 1,——>

n
—nB(0 + K,p + 1)281

1
X <—1;5+/@5+/{+p+1,——>
n

1
+2nb% (—p; Lo+ kK +2, _E)

— TZPB((S + K, 2)231

1N\ ]=
X <—p;5+/{75+n+2,——>}}
n

ns+1|Q(H) (we)|22 + ‘Q(n) (wr)]?2
(n+1)3(s + 1)

_ 2¢(Fih jwa (w2 — wi))P
3(n+1)%

X {271(5 + K+ 1)281

1
X (—1;1,5+/€+p+1,——)

n
—’I’Z]B(5+ “7P+ 1)23’1

1
X (—1;5+/1,6+/1+p+1,——)
n

1
+2nb%, (—p; Lo+ kK +2, —5)

— TZPB((S + K, 2)231

1\)]%
X —p;d+Kd+Kr+2 —— .
n

(VIII) Letting A(§) = ¢° and D(wi,wz) =
—mE e + P -9+ (+ 90 -
&P+ (Fl s (wg—wl))p , then we acquire a new result

for Godunova—Levin-type of HOS generalized 1)-s-
convex functions.

Corollary 30. For s € (0,1,n,kx € N with
v1,v2,0 > 0 and n = {n(m)}X_y a bounded

sequence of real numbers. Also, assume that a kth
order differentiable mapping Q : Q = [wi,w1 +
Fhiwo(wa — w1)] — R defined on Q° such that
Fi on(wo—wi) > 0. If |QW)|% is a Godunova-Levin
type of HOS generalized v-s-convex on £ for gs > 1
with ql_l + qQ_I =1, then

‘y(’%ﬁn767 UJl,WQ)(Q)’

1 2(1 o 5)6—}—&—1 _ 56-{—5—1)‘11 >$
([ (= &

[ 1e @l + 190wy
(n+ D)= —9)

_ 2c(F vz (w2 — wi))P
3(n+1)%
X {2n(6 + K+ 1)2F1

1
X (—1;1,5+/€+p+1,——)

n
—TLB((S-f- Iiap'f_ 1)231

1
X (—1;5—1-/1,5—1—/1—1—174—1,——)
n

1
+2nb% <—p; Lo+rk+2, _E>

—nPB(0 + k,2)

1\
X9F1 —p;5+m,5+n+2,—g

n =51 QW) (wy) ]2 + | Q) (w)]42
(n+1)=5(1—s)

20(?3171,2 (wQ - wl))p
3(n+1)%

X {271(5 + K+ 1)281

_l’_

1
X (—1;1,5+/€+p+1,——)

n
—HB((5+ Kyp + 1)231

1
X (—1;5+/<a,5+/<a+p+17——)
n

1
+2nbF; (—p; Lo +Kr+2, —5)

— anB((S + K, 2)2%1

1\
X<—p;5+m,5+n+2,—g .
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Theorem 31. For n,k € N with vi,v9,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = w1, w1 + Flwy(ws —wi)] — R
is defined on Q° such that F| v,(w2 —wy) > 0. If
|Q")|%2 s a HOS generalized (1, h)-convex on Q for
g >1 un'thql_l—i-qg_1 =1, then

‘y(’%ﬁn767 UJl,WQ)(Q)’

+®3(6, k5, , €)[ Q1 (wp) |2

16, 5,m, €)] Q1) (wn)|

+ D(wr,w2)]
+ [‘I’E(& Ky, 5) ’ Q(H) (wl) ’qQ
+ q)’lﬁ(& Kk, 1, f) | Q(H) (WQ) |q2

+D(wr,w2)] ), (19)
e [ (e
xh(Zi§>df (20)
g [ (AL )
x h (%) de. (21)

Proof. According to Lemma 12, the well-known
power-mean inequality and utilizing the fact of
approximately generalized (v, h)-convex functions,
we obtain

‘y(lia n, 57 W1,CU2)(Q)|

- (/1 2(1 _ f)é—f—m;l
y E/Ol (2(1 _§)6+/<31

1—L
_ fé-{—n—l ) 7
dg

_ §6+n71 >

K 1 _5
X Q( ) (wl + n——klfgl’”
q2 é
X (wg — wl)) df)

1 2(1 o 5)6-{—&—1 _ 56—}—&—1 1*%
e

1 2(1 o 5)5—}—&—1
: </0 ( 3

_ §5+n—1>
(k) ( + n+ gf”’]

e )

<;+>

I (e
(e >

56+1€1)

+ D (wr, ws)) de]

N |:/1 (2(1 5)6-{-5 1 55-}—& 1)
0
(e ()

<10 wa)f + Do, o)) ] |

+ 058, 5,7, €)| Q) (w2)[% + D(wn, wa)] =
+[@3(5, 5,1, €)| Q") (w1)|Z + ®F(5, K, 1, €)

16, 5,1, )] QM (wr)|

a
X |Q") (w2)|® + D(wr, wp)] 72} (22)
This completes the proof. O

Remark 32. By applying the similar arguments
as we did for Theorems 13 and 22, we can find sev-
eral special cases for Theorem 31 by considering the
approximately generalized (v, h)-convex functions
with the appropriate and exceptional selection of
function h.
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5. NEW GENERALIZATIONS
OF APPROXIMATELY
GENERALIZED
»-QUASICONVEX
FUNCTIONS HAVING «th
ORDER DIFFERENTIABILITY

We propose some new generalizations of upper
bounds for the mapping Y(k,n,d,wi,ws)(Q) for
approximately generalized -quasiconvex functions
by considering Definition 8 and Lemma 12.

Theorem 33. For n,k € N with vi,v9,6 > 0 and
n = {n(m)}_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fo v (wa — w1)] — R is
defined on Q° such that Fil 1, (wa—wi) > 0. If | Q)|

1s an approrimately generalized -quasiconvex on
Q, then

‘y(lia n, 57 W1,CU2)(Q)|

1 K K
< (m> fmax(| Q) (@), | (@)
+ D(w1,w2)}.

Proof. According to Lemma 12, the triangular

property and utilizing the fact of approximately

generalized 1-quasiconvex functions, we obtain
‘y(’%a n, 67 Wi, WQ)(Q)’

1 2(1 o 5)6-{-&—1 . 56—}—&—1)
<[ (=

(et +§fgl,m(w2—w1>)‘ds
<§6+H 1 _ f)é—l—n—l)

( Fih o (w2 — w1)> ‘ 3
0+rk—1 o+rk—1
S/0 ( (1-¢) . £ )

x [max{| Q" (wr)|, |Q™ (wo)[}
+ D(wla wQ)]d§
o 56—}—&—1 >

+ /01 (2(1 - 5)“"‘;

x [max{|Q" (wy)], Q") (wy)|}
+ D(wy, wo)]d§

1
~ (3 ) el @9l 10 o]
+D(W17WQ)}. (23)
This completes the proof. O

Some remarkable cases of Theorem 33 can be dis-
cussed as follows:
(I) Letting D(wq,ws) =
(n+&)(1-¢r}

HOS 1-quasiconvex function.

—rsr{n+era -9+

(Fih va (w2 —w1))”, then we acquire

Corollary 34. For n,xk € N with v1,vs,6 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = w1, w1 + Fy vy (wo —wy)] — R is
defined on Q° such that Fl, v, (wa—wy) > 0. If |QW)|

is a HOS generalized 1-quasiconvex on €1, then

’y("fv n, 57 wlv“-@)(Q)‘

< (s ) {maxi @@l |0

C(fghw (WQ - wl))p
— S0t 1% {2n(6 + Kk +1)

1
XQSl <_1a155+1€+p+15_g>
—nB(d+k,p+1)

1
XQSl <_1a6+l{76+li+p+1a_g>

1
+2nbF, <—p; Lo+kr+2, _E>

— TZPB((S + K, 2)231

1
X (—p;5+n,5+n+2,—g)}}.

—mEm{nrer-9+
(n+&)(1 — §)p}(w2 — w1)P along with F, v, (wo —

w1) = wy — wi, then we acquire HOS quasiconvex
function.

(II) Lettlng ]D)(CUl, (,(JQ) =

Corollary 35. Forn,kx € N with § > 0. Let a kth-
order differentiable mapping Q : Q@ — R be defined
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on Q°. If |QW)| is a HOS quasiconvex on S0, then

‘y(’ia n, 57 CU1,CU2)(Q)|
< (55 ) {maxl @9l |9

_c(wg —w)P

(n n 1)2}7 {271((5 + KR+ 1)231

3
1
X ( LLo+rk+p+1, ——>
n
_nB(d—i_’%ap"i‘l)le

1
X (—1;5+I€,5+I€+p+17——>
n

1
+2nbF1 (—p; Lo+k+2, _E>

—nPB(d + K, 2)

1
XQKI <_p;6+’%a5+’%+2a_g)}:| :

Theorem 36. For n,kx € N with vi,v9,6 > 0 and
n = {n(m)}o>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,wi + Fohu(ws — wi)] —
R is defined on Q° such that FJ v,(wy — wy1) >
0. If |QW|% is an approzimately generalized 1)-
quasiconvex on §2 for qo > 1 with qfl + q;1 =1,
then

|y(57na 55 CU1,CU2)(Q)‘

I §5+n—1>cn >ﬁ
<(f (7 i

x{max{| Q" (w1)|®, Q™) (w2)[ 2}

4 D(wr,w2)} . (24)

Proof. According to Lemma 12, the well-known
Holder inequality and utilizing the fact of approx-
imately generalized 1-quasiconvex functions, we
obtain

‘y(’ia n, 57 W1,CU2)(Q)|

. (/01 (2(1_5)5%?:1

 ebtr—1\ O m
=) )

K 1_5
o) <w1 4 ] 1.7::]1’,}2

<

X (wg — wl))

1

42 df) 1
N (/0'1 (2(1 _ 6)54—&;1
1
(]
X (w2 — wl)) " df) "

. (/01 (2(1 —5)‘”“31 —5‘”“1)‘“ d§>

xﬂéhmmgwmwugwmwn

 ebth—1\ @ m
) )

Q(H) (wl gf’gl o

X

Q
2 e

+D(w17w2))df} " + [/Ol(maxﬂg(ﬁ)
x (w1)|%, Q") (wn)[2] + D(WhWZ))dg} ;2}

1 2(1_5)5+n71_56+1171 a %
([ () )

x {max{] Q) (w1)[%, Q" (ws)| 2}

1
+D(w1, wg)}QQ .

This completes the proof. O

Some remarkable cases of Theorem 36 can be dis-
cussed as follows:

(I) Letting D(wy,wz) =
(n+&1-¢)r}

HOS 1-quasiconvex function.

—m{(n—i—f)p(l -&+

(FU, ws (w2 —w1))”, then we acquire

Corollary 37. For n,xk € N with vy,v9,6 > 0 and
n = {n(m)}>>_, a bounded sequence of real num-
bers. Also, assume that a wth-order differentiable
mapping Q : Q = [wi,w1 + Fih (w2 —w)] — R
is defined on Q° such that Fl, v,(wy —wi) > 0. If

QW22 is o HOS generalized 1)-quasiconvex on

2140019-19



Fractals 2021.29. Downloaded from www.worldscientific.com
by CANKAYA UNIVERSITY on 04/24/24. Re-use and distribution is strictly not permitted, except for Open Access articles.

M.-K. Wang et al.

for qo > 1 with ql_l +q2_1 =1, then

’y(ﬁvna 57 wla“@)(Q)‘

1 2(1 _ 5)6—1—&—1 _ 56-1—;-;—1)‘11 >%
() (= %

x [max{| Q" (w)|%, | Q") (wn)|%}

B (Fvs (w2 — wi))
3(n+1)%

! {271((5 + K+ 1)231

1
X (—1;1,5+/€+p+1,——>

n
—nB(S + K, p+ 1)281

1
X (—1;5+/1,5+/1+p+1,——>
n

1
+2nb% (—p; Lo+ K+ 2, —5)

— TLpIB%((S + R, 2)231

1\ ]
X | —p;0+KdI+K+2,—— .
n

(IT) Letting D(w1,wa) = — 75z {(n+ P (1 — &) +

(n+&)(1 — &)PHwa — wy)P along with F 4, (wa —
w1) = wy — w1, then we acquire HOS quasiconvex
function.

Corollary 38. Forn,kx € N with § > 0. Let a kth-
order differentiable mapping Q : Q@ — R be defined
on Q°. If |QW | s a HOS quasiconvex on Q for
g >1 un'thql_l—i-qg_1 =1, then

|y(57na 55 CU1,CU2)(Q)‘

/o1 — gyl §5+n—1>cn )ﬁ
<(f (1 i

x [max{] Q" (w1)|%, Q1) (wn) |2}
_c(wr —wr)P
3(n+1)%

{2n(5 + K+ 1)281

1
X (—1;1,5+/€+p+1,——)

n
—nB( + K, p+ 1)281

1
X (—1;5+/1,5+/1+p+1,——)
n

1
+ 2nbF1 (—p; L6 +Kk+2, _E)

— an(é + K, 2)231

1\ 1=
—p;5+/€,5+/€+2,—5 .

Theorem 39. For n,x € N with v1,v2,0 > 0 and
n = {n(m)}>_, a bounded sequence of real num-
bers. Also, assume that a kth-order differentiable
mapping Q : Q = [wi,w1 + Fihw(we — wi)] —
R is defined on Q° such that Fl| v,(wa — w1) >
0. If |QW|% 4s an approzimately generalized -
quasiconvex on § for qo > 1 with qfl + qgl =1,
then

‘y(’ia n, 57 W1,CU2)(Q)|

<2 () fmascd Q) (wy) 2,
(3(54—/1))

% 1Q) (wy) |} + D(wr,wn)].  (26)

Proof. According to Lemma 12, the well-known
power-mean inequality and utilizing the fact of
approximately generalized (v, h)-quasiconvex of
|Q")|22 we obtain

|y(/{7 n, 55 w17w2)(9)‘

< L /9(1 — gyl _ ghtn—l B -l
</O <1 2(1 - 5)511 _ §5+n>1 )
(L)

N </1 <2(1 _ 5)6+/<31 _ §5+n1)
0

1 2(1 o 5)6-{—&—1 o 56—}—&—1) ‘ (%)
([ (1 °

1
q2 -
X <w1+—n+€f" df) ’

n 4+ 1 v1,02

(w2 — M))
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() "
[ (o ey
0

x (max{| Q" (wn)|%, Q1 (wp)|%}

+ D(wy, wn))dg]
1 \'w
+(%6+m>

X [/1 (2(1 - f)‘”:l _ §5+n—1>
0

x (max{| Q" (wn)|%, Q1 (w2)|}

+ D(wr, wp))dE]

-2(s5m)

x [max{| Q" (w1)[*,|Q" (wn)|%}

1

+ D(wi,ws)] 2.

This completes the proof. O

Some remarkable cases of Theorem 39 can be dis-
cussed as follows:

(I) Letting D(wy,ws) = —m{(n +6P(1—&) +

(n+&)(1— f)p} (F vz (w2 —w1))?, then we acquire
HOS 1-quasiconvex function.

Corollary 40. For n,x € N with vi,v9,6 > 0 and
n = {n(m)}o_, a bounded sequence of real num-
bers. Also, assume that a rth-order differentiable
mapping Q : Q = [wi,w1 + Fihu(ws —wi)] — R
is defined on Q° such that F, v,(wy — wy) > 0. If
QW% s a HOS generalized 1)-quasiconvex on
for g2 > 1 with ql_1 +q2_1 =1, then

‘y(’%ﬁn767 UJl,W?)(Q)‘

1 -2 1
S2(3(5+/~@)> [3(5+/~”v)
x max{| Q" (w1)|%, Q") (wy)[ %}

C(f’gla’UQ (wQ — wl))p
_ 3(n n 1)2p {2n(0 + K+ 1)2%1

1
X <—1;175+/<a+p+ 17——)

n
—nB(0 + K,p + 1)281

1
X <—1;5+1€,5+/€+p+17——)
n

1
+2nbF1 (—p; 1,0+ K42, _E>
—nPB(J + K, 2)

1\]%
XQSl _p75+575+5+27_5 .
(28)

(IT) Letting D(wy,w2) = —m{(n—%&)p(l —&)+
(n+&)(1 - §)p}(w2 — w1)P along with F, v, (wa —

w1) = we — wi, then we acquire HOS quasiconvex
function.

Corollary 41. For n,x € N with § > 0. Let a kth
order differentiable mapping Q : Q@ — R be defined
on Q°. If |QW|% is a HOS quasiconvez on Q for
qo > 1 with ql_l—l—qz_1 =1, then

|y(/{7 n, 55 w17w2)(9)‘

1 - 1
§2<3(5+/€)> {3(“%)
x max{| Q" (w1)|?, Q" (wy)|®}

B c(wg —wy)P
3(n+1)%

{2n(5 + K+ 1)2%1
1
X <—1;175+m+p+ 17——)
n
_nB((S + R, P + 1)2&1

1
X <—1;5+/€,5+/€+p+ 1,——>
n
» 1
+ 21581 —p;l,d—i—m—i—?,—g
—nPB(J + K, 2)

1\
XQSl <_p75+l{75+"{+27_5)}:| .
(29)
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6. CONCLUSION

Among the numerous definitions presented in con-
vex analysis, it can be seen that the approximately
generalized (v, h)-convex, approximately general-
ized 1-quasiconvex, HOS generalized (1, h)-convex
functions and HOS generalized 1-quasiconvex func-
tions are one of the main definitions of convex
analysis that have been used successfully in opti-
mization theory, coding theory, and machine learn-
ing. This is the most crucial reason for the need
for new approaches in this field as a future direc-
tion. In the present scenario, we have established
a new integral identity for sth-order differentiable
functions to deal with fractional operators involv-
ing the Riemann-Liouville fractional integral and
special Raina’s function. New consequences and
numerical comparisons demonstrate that the pro-
posed technique is eligible to generate several exist-
ing outcomes in the relative literature by the suit-
able selection of parameters.>32 The suggested
scheme has concrete application in uniformly reflex
Banach spaces and the parallelogram law in LP
spaces.?928 For further investigation, taking into
account the advanced convexity properties, in the
preinvexity context, we may extend this study in
inequality theory, quantum calculus, artificial intel-
ligence, robotics and forecasting applications in dif-
ferent areas which are promising areas that need
potential investigations. Considering these points
and the demonstration of better performance with
our proposed analysis, a bridge between theory and
application can be established, which will eventu-
ally generate robust and optimal solutions.
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