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Abstract: In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-
Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order
1 < o < 2 subjected to multi-point sub-strip boundary conditions. We discuss the existence and
uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach’s
contraction principle. In addition, by using some mathematical techniques, we examine the stability
results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of
our results.
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1. Introduction

For the last three decades, fractional calculus has caught importance and popularity among
researchers due to its applicability in modeling many phenomena of the real-world such as propagation
in complex mediums, polymers, biological tissues, earth sediments, etc. For more details about
applications of fractional calculus, we refer the reader to monographs of Podlubny [1], Samko [2],
Kilbas [3], Hilfer [4], and references therein. One of the features of fractional calculus is the fact there
are many types of derivatives and thus the researchers can use the most suitable fractional derivative
for the model they work on. Some of these researchers realized the need for fractional operators with
non-singular kernels in modeling some phenomena. Caputo and Fabrizio in [5] studied a new kind of
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fractional derivative with an exponential kernel. A new type and interesting fractional derivative with
Mittag-Lefller kernels were developed by Atangana and Baleanu in [6]. Abdeljawad in [7] extended
this fractional derivative from order between zero and one to higher arbitrary order and formulated their
associated integral operators. Atangana [8, 9] introduced some new types of fractional derivatives in
the form of power-law and generalized Mittag-Leffler. Many researchers have realized the importance
of these new fractional derivatives and applied them to study some properties of solutions for some
problems in different fields of science and engineering (see [10—14]). The famous kinds of stability
of fractional differential equations are Ulam, Ulam-Hyers, and Ulam-Hyers-Rassias stability. For
more details on kinds of stability, we refer the reader to monographs of Ulam [15], Hyers [16] and
Rassias [17].

Coupled systems of fractional differential equations appear in modeling many phenomena of
real-world problems. Ahmad et al. [18, 19] studied existence results for a coupled system of
Caputo type sequential fractional differential equations with nonlocal integral boundary conditions.
Recently, Almalahi et al. [20] studied the existence, uniqueness, and Ulam-Hyers stability results
for a coupled system of generalized Hilfer sequential fractional differential equations with two-
point boundary conditions by means of Leray-Schauder alternative and Banach fixed point theorem.
Almalahi et al. [21] studied stability results of positive solutions for a system of generalized Hilfer
fractional differential equations building upper and lower control functions and using some techniques
of nonlinear functional analysis. Utilizing the Banach and Krasnoselskii fixed point theorems. Alsaedi
et al. [22] studied the existence and uniqueness results for a nonlinear Caputo-Riemann-Liouville type
fractional integro-differential boundary value problem with multi-point sub-strip boundary conditions
in the form

D) + iy 17 gi(0. () = f(o, 9(0)),
9(0) = 0,9’(0) = 0,9”(0) = 0, ....., 3"2(0) = 0,

a¥(1) + Y (1) = @y [ Hs)ds + XL, ) + w2 |, " 9(s)ds,

where €D? represents the Caputo fractional derivative operator of order o € (m — 1,m],m € N;m >
2,pi>0,0<7t,m,m,...np, < La,B,o,m e R,u; €R,i=1,2,..pand f,g; : [0,1] xR - R,i =
1,2, ...k are continuous functions.
In [23], Alsaedi et al. discussed the existence and uniqueness of solutions for the following coupled
system
{ CDUD(0) + Tiy 178i(0r, 91(0), 92(0) = filo, (o), Do),
D2\ (0) + Xy 1Y81(0,91(0), 92(0)) = fi(or, $1(0), (o)),

subjected to the conditions

11(0) = a;,9,(0) = a, )
a9 (1) + B9, (1) = @y [ Da(s)ds + T, pitha (),
(1) + By (1) = @y [ 9i(s)ds + S, £ (),

where €D?!,© D represents the Caputo fractional derivative of order 01,0, € (1,2].

Motivated by the novel advancements of Atangana-Baleanu and its applications and the above
argumentations, the intent of this work is to investigate the existence, uniqueness, and stability results
of a new coupled system under a new fractional derivative so-called ABR fractional derivative of order
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1 < 01,02 < 2 with multi-point sub-strip boundary conditions described by

éﬁRDQlﬁl (0-) = .fl(o-’ ﬁl (0-)’ 192(0')), (S [0’ 1] 5
0PkD2 9, (0) = foor, (o), 9(0)) o € [0, 1],
(1) = @ [ Do(s)ds + XL, puida (),
mh(1) = @, [ Hi(s)ds + XL, £,

(1.1)

where

° ABRD;’ . represents the Atangana-Baleanu-Riemann fractional derivative of order p = {0y,0,} C
(1,2].

®q,, @, Wy Ui & €ERand g, 7€ (0,1),i=1,2,,...,m.

o f;:[0,1] x R? — R are continuous function, j=12.

In this work, we consider a new type of coupled system involving new fractional operators which
extended lately to higher-order by Abdeljawad [7]. We considered the system (1.1) with multipoint sub
strip conditions, which means our results yield some new results related to choosing the parameters,
if @, = @, = 0, then the system (1.1) reduce to the system with coupled multi-point boundary
conditions and if y; = & = 0, then the system (1.1) reduce to the system with coupled sub-strip
boundary conditions.

We investigated the existence and uniqueness of the solution as well as Ulam-Hyers and generalized
Ulam-Hyers stability of the proposed coupled system by using minimal conditions.

The main contribution of this work is to find an equivalent fractional integral equation for the
suggested system and to prove its existence, uniqueness, and Ulam-Hyers (UH) stability results for a
new system under a new fractional derivative. The fixed point theorems of Banach and Leray-Schauder
are used in our analysis. Despite the fact that we employ common methods to get our conclusions, the
application of it to the suggested system is novel. Furthermore, the results acquired in this study may
be extended to an n-tuple fractional system. Our results obtained include the results of Alsaedi et al.
in [22,23]. With regard to the boundary condition at the terminal position o = 1 used in this work, the
linear combination of the unknown function and its derivative is associated with the contribution due
to sub-strip (0, 7) and finitely many nonlocal positions between them within the domain [0.1]. This
boundary condition covers many interesting situations, for example, it corresponds to the two-strip
aperture condition for all y; = & = 0,i = 1,2, ....,m. By choosing @w; = @, = 0, this condition reduces
to a multi-point nonlocal boundary condition. It’s worth noting that integral boundary conditions play
a critical role in the research of practical problems like blood flow problems [24] and bacterial self-
regularization [25], among others. For more applications about strip conditions in engineering and
real-world problems (see [26,27]). To the best of our knowledge, this is the first work dealing with the
ABR fractional derivative of order 0,0, € (1,2] with multi-point sub-strip boundary conditions. In
consequence, the results of this work will be a useful contribution to the existing literature on this topic.

The paper is organized as follows: In Section 2, we present notations and some preliminary
facts used throughout the paper. Section 3 discusses the existence and uniqueness results for ABR-
System (1.1). The stability analysis in the frame of Ulam-Hyers has been discussed in Section 4.
Section 5 provides an example to illustrate the validity of our results. Concluding remarks about our
results in the last Section.
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2. Preliminaries

To achieve our main objectives, we present here some definitions and basic auxiliary results that
are required throughout the paper. Let J = [0,1] ¢ R and X = C(J,R) be the space of continuous
functions ¢ : J — R equipped with the norm ||| = sup,. [} (o)|. Evidently, (X, ||| ) is a Banach
space and hence the product space H := X X X is also a Banach space with the following norm
1@, DI = (15411 + [I19-]-

Definition 2.1. /6] Let 0 < o < 1 and ¢ € H' (J). Then the left-sided ABR fractional derivative of
order o for a function ¥ with the lower limit zero is defined by

ABR _B(Q)ifo- © el
Dy 9(o) = T—odo Jo E, (Q—_l(cr 0)°|¥(0)do, o > a,

where B(o) = 2’%@ > 0 is the normalization function such that B(0) = B(1) = 1 and E, is the Mittag-

Leffler function defined by

e i

9
IROEDY TiosTy Re@>00¢eC

i=0

The associated Atangana-Baleanu (AB) fractional integral is given by

-0 0 7 _
BEXNo) = ——H0) + ———— f (o — 537 9(s)ds.
0 B(o) B@I'(0) Jo
Definition 2.2. [7] The relation between the ABR and ABC fractional differential equations is given
by
B
ABCD§+ o) = APRD2 9(o) + l(—g)ﬁ(a)EQ (Ll (o —a) ) )

Lemma 2.3. [6] Let 9 > 0. Then ABIS+ is bounded from X into X.
Definition 2.4. ( [7] Definition 3.1) Letn < 0 < n+ 1 and 9" € H'(0,1). Let 8 = 0 — n. Then,

0 < B < 1 and the left-sided ABR fractional derivative of order o for a function ¥ with the lower limit

zero is defined by
(ABRDg+ ﬁ) (o) = (ABR Dg+ ﬁ(n)) (o).

The correspondent fractional integral is given by

(*12.9) (o) = (132" 1. 9) (o).
Lemma 2.5. ( [7] Proposition 3.1) Let 9(0) be a function defined on [0,b] and n < o < n + 1. Then,
for some n € Ny, we have

o (D515 9) (o) = 9(0),

n—1 @)
o ("PIDE.9) (0) = Do) - Y v l,,(o)
i=0 :
n_ 90) .
. (ABIngCDgﬁ) () =)o) — Z 77O ,fo)a’.

i=0

i
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Lemma 2.6. ( [7] Theorem 4.2) Let o € (1,2] and h; € X,i = 1,2. Then the solution of the following
problem

ABRDg+ )
Ha)

h(o),

(e

is given by

_ _ 1
Ho) = C+B( _1)f n(s)d S+B(Q—1)F(Q)f”(o- $)° h(s)ds.

Theorem 2.7. [28] Let K be closed subset from a Banach space X, and G : K — K, be a strict
contraction i.e., ||G(x) — G| < L||x —y|| for some 0 < L < 1 and all x,y € K. Then G has a fixed
point in K.

Lemma 2.8. [29] Let G : X — X be an operator satisfies
e The operator G is completely continuous,
o The set £(G) = {0 € X : 9 =06G(1), 0 € [0, 11} is bounded.
Then, G has at least one fixed point.

Theorem 2.9. Let 91,00 € (1,2]1,0 = @iy — (w7 + 2L pm) (@ + XL Emi)  #
0,ay,ar, @, @, u;, & € R, and n;,t € (0,1), i = 1,2,,...,m and hy,h, € X. The unique solution
(91, %) € H of the following problem

ABRDgiﬁl(O-) = hl(o-)’ (oaS [0’ 1] ’
ABRDE () = ho() o € [0, 1],

d m 2.1
() =@, [ Bx(s)ds = S, pith(my), @1
x9,(1) — @, [ Fi(s)ds = XL, &),
is given by
ay@1(2—02) @ 1) -1
5|2l fo(zfo )hzm)dudﬁ P fi;(gzl)) [ fo (s — w)? ™ iy (u)dudss
+ 20 1”'(6592(@2 [ a(s)ds + B(Zi e o (1= 97 IEZ(S)dS)
it b mds = s (- 9 s
o)y =4 +m [ [k e o A (s—u)Q‘ 7y (u)dud's 2.2)
+ 20 & (s [ s [ = 977 By(s)ds)
s [ Fa(s)ds — 2 [ (1 - 5)2 lhz(s)ds]
2— 1 1
Tl o m(s)ds + Ba-0r@D Jo " (0= )7 hi(s)ds
and

1 [a@Q-e) a1m(1-1) o1—-1
®[ B(o1-1) j(; f() hi(u)duds + B(o1-DI'(e1) Jo fO (s —u) hy(w)duds

+ym 1@(33((@21 <0 [ (s)ds+B(gi<+l)rgl) NUEDIAC"D)

“i;i‘;f f;” ' ha(s)ds — % (1 - )27 hy(s)ds

(o) = { +1 [y Jy Pa)duds + 525 ) fo (5 =" ha(ududs 2.3
+ 2w (v [ P [ (g = 5127 ha(s)ds)

s [ Tu(s)ds — 5 1 (1 = 5" lhl(s)ds]

2= __ o1 _ e
T B@-D Jo " ho(s)ds + B(o>-1D(2) Jo 7 (0 — )% hy(s)ds,
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where
_ (o3, pmi) @2 (2-01) _ (@2 i) w@a(01-1)
= Bloi-1) 72 = Blo1-1) ’
_ (wir+ 2, pimi)2—01) _ (w2 pmi)01-1)
3= Blo1—1) T4 = Bloi—1) ’
_ a(wit+ I pimi)2—02) (w20 pimi)(o2-1)
s = Blo>-1) 7o = Blo>—1)
and
W) = @ (@r+ 31| Emi)(2-02) _ @(wr+ I Emi)oa—1)
1= B(oy-1) o = Bloy—1) ’
_ (wr+ X Emi)(2-02) (war+ 20, Emi)(02-1)
s = B(or—1) W = Bor-1) ’
_ai(mar+ I Emi)(2—01) _ai(mar+ X Emi)o1-1)
s = Bloi-1) e = Bloi—1) :

Proof. Assume that (9,,1,) € H is a solution of the following equations

{ ABRDEL 91 (0) =

Then, by Lemma 2.6, we get

1(0-)’ (oaS [0’
ABRDY 95(0) = hin(0) o € [0, 1].

11,

_ 2-01 (7 or—1 T e
M) = ¢ + —3(91 - hy(s)ds + Blo, - 1)F(Q1) f (o — )7 h(s)ds, (2.4)
_ 2- 02 02 f _ o1 2
h(o) = o+ —B -1 hz(s)ds —B @ - Doy (00— 5% hy(s)ds, (2.5

where, ¢y, ¢, are arbitrary constants. Applying the conditions (a;% (1) — @, J(;T D (s)ds = YL, uida(ny)

and 02192(1) — Wy fOT ﬁ](S)dS = lr'il fﬂ?] (7],)), we obtain

o —1
B(o, — DI'(o1)
02

2 -0 !
+—= | m(s)ds+
o (Cl B(o1 - 1) Jo 1($)ds

T 2 - 02 y -1
- fo (62 " Bo:-1) fo T+ g ey

1
(1 - sy ! hl(s)ds)
0

f S (s —u)®™! hz(u)du) ds
0

N 2-0 T 02— 1 fm .
= i — ho(s)ds + —————— i — )27 ho(s)d 2.6
,._Zl’“‘ (C”B@z—nfo O B — Dy Jy T OB (20
and
a (c L 2me [ (s)ds + Qz—_fl(l — 52 (s)ds)
2T B - Uy B(o> — DI(02) Jo ’
’ 2-0 fs o1—1 fx -1 )
- 220 hwdu s —2 — w0 hy(wydu | d
mfo (C1 Bor-1D Jo "M Bl - ey J, $TT du)ds
m Q 1
- Vg ds+ —2 — 99 I (s)d 27
;f(cl o 1_1)f (s) s+B(Q1_1)F(Ql)f 1= 577 I s) s) @7
Equations (2.6) and (2.7) can be written as the following system
ajc; — Zicr =P,
{ —Zhe1 + ey =P, 28)

AIMS Mathematics
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where
Z = [wn + Z,Ui], = [u‘m+ Z&),
i=1 i=1
w1 (2 ) @i 1) S -1
ST f f2 hz(u)duds + g Q‘Z)”Q”l f fo (s —u)® hlz(u)duds
Pr=1 + 20 (B(Qfﬁ) b 1a(s)ds + 555 " (= ) Ta(s)ds)
_Lgégzl—gf)) fo hu(s)ds — B(Zi(—gll>rgl) ) (I =9 " (s)ds
and

@ (2— gl)fo fo hl(u)duds+ @1 J”j(; (s — u)?'~ lhl(u)duds

Blor—1) Blor-TTen Jo 1
_ 01— L 01—
Pr=1 + 2L 151(3(91 y 0 T($)ds + 55,2 Dy Jo "= 9 h (S)ds)

_®@2-0) _ _@me-D 021
Blor-1) fo 12($)dS = -t Jo L1 = 5 a(s)ds.

Solving system (2.8) for ¢; and c¢,, we obtain

o= P+ Z 1P and ¢ = P+ aiPs
1 a0, — 212 ? 0315 —Z122.

Substituting the values of ¢; and ¢; in (2.4) and (2.5) respectively, we get (2.2) and 2.3. Conversely,

apply the operators A#fD2. A8 DT on (2.2) and (2.3) respectively and making use the Lemma 2.5 and
note that *8DJ, ¢ =A5F DB d‘fr =0,(B; = 0;—n),i = 1,2, we obtain (2.1). Hence, (9}, 1, ) satisfies (2.1)

if and only if it satisfies (2 2) and (2.3). The proof is completed. O

3. Existence and uniqueness of solutions for ABR-System (1.1)

In view of Lemma 2.9, we define an operator Y : H — H by
Y(1,%2) = (C1(Ph, F2), To(D, 92)), (3.1)

where

1 [@@1C-0) (T [ @i (02-1) N\~
@[ Blor—1) fo fo Fop(uyduds + g, 5res by fo (s = uf®™" Fop(u)duds

+ 2L 1 (C;;((gzz_glz)) fo P 2(8)ds + % fo [( =87 IFM(S)dS)
Sty Faods - s [0 = 9Py (0ds
Ty, 9,) = 7 fy fy FroGoduds + 55 0 o (5w Fplduds
+ 2 1§z (7T3f0 Fon Jo ('7’ - Fy ﬂ(s)ds)

2-01 —1 _ o
tB@-0 Jo Fl 2()ds + 5 "5ra Jo (o S) YFg(s)ds

AIMS Mathematics Volume 7, Issue 3, 4386—4404.
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and

1 [e@m@2—0)) (T S a1 m(o1—1) 01—1
@)[ Bloi—1) fo fo Fyyu)duds + 3075505 frfo (s =)™ Fyp(u)duds

a1(2—01) i a1(o1—1) ni -1
+2:"1§l(5@1 [ Fup(s)ds + g [ (g — s) ! Fro(s)ds)

_®mai(2-0) ara)(o2—1) 1 0r—1
Bloy—1) fo #(s)ds — B(Qz Dlez) Jo (1-1) Fa9(s)ds

o, d) =4 i [ [ Fw(u)duds+r(g) (" [ (s = ™! Fag(u)duds
+ 2 (vs [ Fm(s)ds+r?;) B i = 5y Fyp(s)ds)
s ) Fra(s)ds = 5 [ (1= 9~ Fuo()ds|

2-0) ol _ o]
tB-1 Jo FZﬂ(S)ds"' Blor-1I(02) Jo (O' $)?7 Fyg(s)ds,

such that, F;5(s) = fi(s,%(s), % (s)),i = 1,2. In the sequel, to simplify our analysis, we take the
following notations
0, = @ (2 - 02) @@ (02— 1) L@ (2 —02) 2%y 1imi
" 20B(02—1)  OB(0, - DI(02 +2) OB(02 - 1)
(02 — D) XL, uimi NN T6

®B(o> - D@2 +2)  ©  Ol(o+ 1)

0, - a1@; (2 - 01) ay@; (o) — 1) Lo (2 -0 XL pimi
20B(o1 - 1)  ©B(o1 — DI(o1 +2) OB(o1 — 1)
ay (o1 — 1) XL, wimi N Us N Ve
®B(o; - DI'(0; +2) ©  OI'(o; + 1)

Moo= B, ™ o 2-01) @a; (01— 1)
20 OI(e1+2)  06B(ei—1) OB - DI'er +1)
73 Qi &l + Ty Yty EMi + 2-01 + (01 —-1)
© Ol(o1+2) Bl —-1) B(oi = DI(er +1)

and
_ 123 @y (2 - 02) @y (02 — 1)
Mo = 30t oI +2 " ®Bl—1) | ®Blor- D@+ 1)
+'//3 2iei Emi N W Dty Emi N (2-02) N (02— 1)
0 Ol'(o1 +2) B(oo—1) B(or— DI+ 1)

In the forthcoming theorems, we will prove the existence and uniqueness of solutions for the ABR-
System (1.1) utilizing Leray-Schauder alternative and Banach contraction mapping principle.

Theorem 3.1. Let fi, f> : [0, 1] XRXR — R be are continuous functions. In addition, we assume that:
(Hy) @ |filo, 9,0 < & + 6; 191 + A I, €1, 6, 4; > 0,0 = 1, 2.
Then, the ABR-System (1.1) has at least one solution, provided that Ay < 1, where

A =2max{(8; + 6,),(1; + 1)}.

AIMS Mathematics Volume 7, Issue 3, 4386—-4404.
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Proof. Notice that the ABR-System (1.1) has at least one solution (¢, ,) if the operator 1" defined
by (3.1) has a fixed point. For that, we shall divide the proof into the next steps:

Step 1: Y is continuous. Since the functions f; and f, are continuous, we conclude that the operator
T is continuous too.

Step 2: Y is compact.

Define a closed ball B = {(t}1,%,) € H : ||(¢1, )] £ R} with

R>—2
1—A,

where A i= 8 (Qr + Qy) + &1 (Mx + M,). (3.2)

First, we show that Y is uniformly bounded on Bg. For each (i, ,) € Bg, we have

101 (&1, DI
AP [ [t G [ [
+Z M(CZ((QZ 02) f |Fs,0(5)| ds + B(gzz(_Qzl)r(@) f (7 — $)" |F2ﬂ(s)|ds)
azBa(lg(lz— lil)f [Fratolds + ;;Tl(ﬁl)r(gl)f (= st |Fro)]ds
+111 fo fo |F1,ﬁ(u)|duds+r(gl) fo fo (s — uy " |F1 p(w)| duds
+2§i(m e fo " - s |F1,ﬁ<s>|ds)
75 f ] rg)) 1(1—3)92-‘ |F2,ﬂ(s)|ds]
ety [ ki gt [ oor
< (&2 4 0|l + 2 [[¥l)

(042731 2-0)7 L 0T (0, — D7 L@ (2 —02) 2%y 1ami
20B(0, — 1) OB, — DI'(02 +2) OB(o, — 1)
+ (02 — 1) X, wimi + s + e )
OB, - DI +2) O OBI'(ex+1)
+ (&1 + 61 || + A1 192
(ﬂ172 N Tt L en-0) ma(-1
20 OI(o1+2) OB(1—1) OB - DI(er+1)
L Die1 &M L Yiei Emi N 2-o0)o N (01— Do? )
) Ol(o1+2) Blei—-1) Blei—DI'(er +1)
= (&2 + Ol + 2 [F2l]) O + (&1 + 01 [ + Ay [[F2]]) M.

Similarly, we can find that
T2, D) < (&2 + O2 [T + A2 [[F2]]) Oy + (&1 + 01 || + Ay [[92]]) My.

AIMS Mathematics Volume 7, Issue 3, 4386—4404.
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Consequently, we get

I (I, DI 11 (G, DI + 112G, T
&2 (Qr + Qy) + &1 (M + M) + 261 +6) 191
+2 (41 + ) |92
£ (er + Qw) +é& (Mn + Mw)
+2max {(6) + 62), (A1 + )} ([ + [[921)
= & (Q,, + Qd,) + & (M,, + M¢)
+2max {(0; + 62), (A1 + A2)} (|(F1, P
= Ay +AR<R

IAIA

Hence 7T is uniformly bounded.

Next, we show that Y is equicontinuous. Since Bz C H is bounded. Then, for all (¢, ¢,) € Bg,
there exist constants ¢y, ¢, > 0 such that |F 1,,9(0')| < ¢ and |F 2719(0')| < ¢,. Let 0,0, € J such that
01 < 0. Then, we have

171 (1 (02), ¥a(02)) = L1(F1(01), Fa(o))|

— i 72 3 i o
- ‘B(Ql -1 Jo Fro(s)ds Bloi- 1) j; Fis(s)ds
o —1 72 o
BT Jy 27 Fralods
or—1 71 o
~ Blor - Dl(en) Jo (01 = )77 Fig(s)ds
m (03 —02) + M
By~ 7" Blor - Dlen)
f (2= 517" = (o1 = 977" ds
0
(01— D¢ 72 -
_oi- by ey
Blor— Dlep) J,, (27 s
M(J _0_)+ (91—1)901
B(o; — 1) 2 : B(o, — DI'(o; + 1)

[— (o -0 + 05 - 0'51”] )
Take o, — o0, we get
101 (&1(072), F2(072)) = T1(F1(01), F2(o))I| = 0 as 02 — 07y
In the same technique, we get
121 (072), F2(072)) = Vo (P1(071), (o))l = O as 02 — 07y

It follows that
I (02), Pa(02)) = T(D1(01), D2(0)l| = O as o — 0.

AIMS Mathematics Volume 7, Issue 3, 4386—4404.
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Hence T is equicontinuous. Due to the Arzeld-Ascoli theorem, we conclude that the operator T is
compact in H. Therefore, from the above steps, we deduce that " is completely continuous.

Step 3: In the last step, we show tht the set £() = {(94, ) € H : (¢,9,) =BT (I4,%,), B (0,1)}
is bounded.

Let (9,1,) € &(T). Then (¥4, 1,) = BY (¥4,1,). Now, for o € I, we have (o) = BT (¥4, 1)
and %, (o) = BY; (¥4, ) . According to (H;), we obtain

sup B (¢, 1) (o)

o€l0,1]
101 (94, D)l

&0 + &M, + (0, + 6,) |9
+ (A + ) [l

1541

IA

IA

By the same technique, we get

19|

IA

&0y + &My + (6, + 6,) ||t]]
+ (A1 + ) [l

Then, we have

190 9D = 1l + |92
&2 (Qx + Q) + &1 (My + My) + 261 + 6) |91
+2(A1 + A) |9

&2 (Qx + Q) + &1 (M + M,

+2max {(60) + 62), (41 + )} (1@, D))

= A+ A [|(Gh, D).

IA

Since A; < 1, therefore
Ay
1-A
Hence, the set £(T') is bounded. Due to the above steps with Theorem 2.8, we deduce that I’ has at
least one fixed point. Consequently, the ABR-System (1.1) has at least one solution. O

(3, Pl < <R.

Theorem 3.2. Let fi, f> : [0, 1] XRXR — R be are continuous functions. In addition, we assume that:
(Hy) : |fi(o, O, v1) = filo, B, vo)l < Li (|0 — | + [vi = wol), L; > 0,i=1,2.
Then, the system (2.1) has a unique solution, provided that o < 1, where

o-:Lz(Q,r+Q¢,)+L1(M,,+M¢,).

Proof. Let us consider a closed ball set Bg defined in Theorem 3.1. In order to apply Theorem 2.7, we
will divide the proof into the following steps:
Step (1): We show that T(Bg) C Bg. By the second step in Theorem 3.1, we have T(Bg) C Bg.
Step (1): We need to prove that Y is a contraction map. Let (31, 9,), (x1, x2) € H and o € J. Then,
we obtain

I (D1, 92) = T1(x1, )l
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I |apw (2 - Qz)ff
< su Fr9(u) — Fo(u)| duds
i |®|[ Blo,— 1) [F2000 = F2.)

@@ (02 — 1) - )
+m f f (s = W)™ |Fop() = F (u)| duds

L& @ (2 -0))
B(Qz— 1) Z f |F219(s) sz(s)|ds

a (o —1) - )
m ;,u,-f(; M — s)° |F2,19(S) Fz,x(s)| ds

@1 (2 - 01)
B(o1 — 1)

+—§<§fl_(ﬁ3r<gl>f (=98 P10 = Pl | I = Pt

f (s =" |Fo(u) - le(u)|dudS+|7T3|Z§z f |F10(s) = F1x(s)| ds

1
f |F10(5) = F1.(5)| ds

+
I“(91)

r( ) thf (771 - S)QI : |F1 ﬁ(s) Fl x(s)| ds

F _ Te
+”5fo [F20(0) I

2-0 7
+—="@ [ IR, )= Fi(s)|d
Bor-1) J, | 1.0(8) = F1, (S)| s

or—1 o . )
s | @ = P = Fuu]ds

< (LaQx + LiMy) (19 — xill + 192 — x2lD)

f(; (1 = )% |Fa0(s) = Fau(s)] ds]

and consequently, we obtain
11 (I, F2) = L1 (x1, 0l
< (LaQx + LiMy) (19 — xall + |92 — xaf) . (3.3)
By the same way, one can obtain
11 (P41, P2) = L1 (x1, )|
< (L200 + LiMy) (191 = xill + 1182 = xal) (3.4)
It follows from (3.3) and (3.4) that
1T, F2) — T(x1, )l
= [[T1(@, 92) = Y1 (xn, )l + 11T, F2) = TaCer, )|
< Ly (Qn + Q) + Li (Mr + M) (191 = x| + 12 — xa)
<o ([0 — xill + 192 — x2l)

Due to o < 1, we conclude that the operator Y is a contraction. Hence, by Theorem 2.7, the ABR-
System (1.1) has a unique solution. O
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4. Ulam-Hyers stability

In this section, we shall discuss the Ulam-Hyers (UH) stability of the ABR-System (1.1).

Remark 4.1. [20] A function (51,52) € H satisfies the following inequalities

ABRDEL (o) = F 5(0)
ABRDS 9(0) = Fa (o)

<ép,

< &,

if and only if there exists a functions ki, k, € D such that

0 { k(@) < &1,

k(o) < & .

(ii) ABRD?! Do) = F5(0) + k1 (0),
ABRDﬁiﬁ (0) = Fy5(0) + ka(0).

4.1)

Definition 4.2. [20] The ABR-System ( LI ) ) is UH stable if there exists M > 0 such that, for each
& = max{ey, &} > 0 and each solution (191, ﬂz) € H of the inequalities (4.1), there exists a solution

(91, %,) € H of the ABR-System (1.1) with

|@.3:) - @100 < M, o e

Lemma 4.3. Let 01,0, € (1,2). If a function (51,52) € H satisfies the inequalities (4.1), then (51,52)

satisfies the following integral inequalities

2-01 (9 _ o1—1 _ ol
"91(") ", ~ 500 Jo F13094S = 55, -vren Jo (o= F, (s)ds‘
< SZQn + 81Mn,
Y . 2-00 (9 _ 0-1 o-1p
‘02(0)_%02 = Be-D o F234S — 55, ey Jo MCEDS Fz,ﬂ(s)ds‘

S 82Q¢ + 81M¢’

where

1 [eem1(2-0) @1 (02-1) 02—1
®[ B ) fo fo 219(u)duds+—3(g D@y Jo fo (s —u) F2 s(w)duds

@2(2-02) (i az(02-1) el
+* Lis 1”’(3@2 i by Fap(s)ds + Bloo-DT(en) Jo ! 01 = 977 Fy(9)ds)

_ @mai(2-01) ara( 1) 1
R = 23(21 1%1 fo g(s)ds — B(;lﬁlr(gofo (1= )"0 F, 5(s)ds

9T ) 4y fo fo ﬂ(u)duds+ F(gl) 0 fo (s—u)'F \gwduds
+ 21 i (ﬂafo o [ (g = sy Fy 5(s)ds)

7T5f0 F,5(s)ds - r(gz) A (1 — )2l F A(s)ds]
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and

6[a.m(z gl)fo fo 9(u)duds+w A fo (s —w? ' F 5(u)duds

B(o1-1) B(o1—DI'(e1)

+ 30 & (e fo' 3(9)ds + gelliees [ (g — s 1F1,ﬁ<s>ds)

2o 18(91—1) 0-1) 8(91 Do) Jo
_mai(2— ma -1
R = Bor- SZ by Fai(9)ds - B(Zazlf)zr(m f - )lgz Fag(s)ds
I NI M(u)duds+r(02) NN (s—u)gz F,5(u)duds
+ 3 (s [y M(s)ds+r‘f;2) " (= sy Fy3(s)ds)

'/fsfo Fy5((s)ds = r(@l) 0 (1 - 9?7 F, 9((S)ds]

Proof. By Remark 4.1, we have

ABRDL, (o) = F, 5(0) + ki (0).

Then, in view of Theorem 2.9 and Lemma 4.3, we get

) _ 2 Q1 Q1 -1
(o) — Ry, - l)f s(s)ds — B(Ql—l)F(Ql)f (0 =97 F 5(s)ds

I oo, (2 - Qz)f f Q| (92_1) f f ot
) [ Blo,— 1) ko (u)duds + B> — DT @) (s — ) ' ko (u)duds

@ (2-02) @ (02— 1) ni .
¥ Z ( B(o> — 1) KZ(S)dS + m (m; — 5)° Kz(s)ds)
ara; (2 —01) ara; (Ql -
_m . K](S)dS - B(Ql — l)r(gl) f ( )Q K](S)ds

+1 foslq(u)duds+r(Ql)f f (s — ) ky(w)duds
0 Jo
m 70i
+Z§i(ﬂ'3fo Kl(s)ds+r( 1)f (i =)'~ 1/<1(S)dS)
i=1

1
—7r5f0 KZ(S)dS_FZT;z)f (1 — 5)2! Kz(S)dS]

ﬂ Ql—l -1
Blor -1y 1 B(gl—l)r(gl)f (o= $F" ki(s)ds

< SQQ,-, +e M, .

In the same way, one can obtain

2-0 0—1 fg -1
B 1 F d - — 02 F d
" Bla-1 s (s B(o> — DI'(02) Jo (=) 2s)ds

< 82Ql/, + 81M¢,.

9h(0) — R

Theorem 4.4. Assume that (H,) hold. If

Q:maX{Ll( 2 -0 + (01 -1) ),Lz( 2-0 + (02-1) )}<1

B(o1 —1) B(or — DI'(o1 + 1) B —1) B(o— DI'(e2 + 1)
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Then .
ABRDEL 9, (0) = F | 5(0),

)= 4.2)
ABRDE () = Fy5(0),

are Ulam-Hyers stable.

Proof. Let € = max{e, &} > 0 and (51,52) € H be a function that satisfying the inequalities 4.1 and
let (9, 19,) € H be the unique solution of the following system

ABRD@ﬂ (o) = F19(0), o €[0,1], o€ (1,2],
ABRDQZﬁ (a) Fr9(o)o €[0,1],0€ (1,2],
a91(1) = a0 (1) = @ [ Fa(s)ds + Iy uida(m),
m(1) = axth(1) = @ [ Di(s)ds + XL, E01(n)

Now, by Theorem 2.9, we have

() = Ry, + =2 [7 Fag(s)ds + (o — )27 Fpy(s)ds.

B(o2-1) Jo

_ 2-01 T -1 _ el
{ H(o) =Ry, + 50D fo Fi9(s)ds + —B(Ql oren Jo T (o =) Fi9(s)ds,
B(Qz I)F(Qz) j(;

Since a194(1) = (1151(1) and a,,(1) = 0252(1), we can proof that Ry, = ‘.}{5] and Ry, = 9%52. Hence,
from (H,) with Lemma 4.3, and for each o € [0, 1], we have

P =] < -, - B( o1 - 1)f 9“"“‘mf (0= )" Fy5(s)ds
*B(ZQ] fll) f |F, 5(s) = F1o(s)| ds
B(glgl—;;r(@l) fo (o = "7 |Fy5() = Fro(s)| ds
c gm0l Bl ) o

Hence

2-01 + (01 -1
B(oi —1)  B(oi — DI'(or + 1)

5. - 0] < 220+ e1bt + 21|51 - 0]+ 5 - ) ). @

By the same technique, we get

2-0 N (02— 1)
B0, —1)  B(o, — DI(e2 + 1)

[5: - ] < 220+ 1ty 4 [ 4]+ [ 0| ). @s)

Thus
|@.92) - @1,
<7 - l%H |2 -o]

2 -0 + (01 —-1) )

<& Q0r+eMy+ Ly (H;’?1 - ﬂl“ * H/ﬂ\z - ﬂz”)(B(gl -1)  Bloi = DI'(e1 + 1)
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+82Qw + gle + L, (H’ﬂ\l - 291” + Haz - 192”)(

((M,r + Mw) g+ (Q,, + Q¢) 82)

2—91 (Ql_l) 2‘@2 (Qz—l)
L ,L
+max{ 1(3@1 ~D Bl - Dlor + 1)) 2(8@2 ~D " Blo:- Dlos + 1))}

@:.52) - @1, 0

< ((Mn + MW) g+ (Qn + Qz//) 82) +Q “(51,52) - (191,192)“
< &K, (4.6)

2-0 N (02—-1) )
B(ox—1) B(o— DI'(e2 + 1)

IA

where & = max{g;, &;} and

M+ My, + Qr+ 0y

- -0 '
Hence, from (4.6) and Definition 4.2, we deduce that the coupled system (4.2) is Ulam-Hyers
(UH) stable. O

5. An example

In this section, we will demonstrate the applicability of our main results through the
following example.

Example 5.1. Consider the following system

ABRDI () = fi(o, (o), 9a(0)), o € [0, 1],
ABRD () = folor, (o), (o) o € [0, 1],

L9,(1) = [ 9a(s)ds + 1oLy + 20h(2) + (D),
Lo,(1) = [ h(s)ds + 105(2) + 205(2) + :(2).

5.1

Here_gl = %,QQ = %,al = %,az = %,T =@ =@ = 1Lm=3u =3, = %,,Ll_g =& =1,
& = é,(z =1,2),n = é, i=1,2,3)an
o |t (o) [t (o)l
(0, 91(0),%(0)) = ( + +coscr),
S e, 0o 18(169 + o)} \1+[91(0)] 1+ [92(0)]
o [P (o) -1 1
) ) = t ) .

Clearly, for each ¥;,v; € R,i = 1,2, we have

1
/15,91, v1) = fi(t, 02, v)] < 234 (1% = | + [vi = val)

and

1
|21, 01, v1) = fo(t, 00, 10)| £ o (191 = Dl + [vi = val),
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with Ly = ﬁ and L, = glo. By the given data, we get Q, = 5.7,Q0, =~ 1.8, M, ~ 1.7,M,, =~ 0.3 and

o =~ 0.04 < 1. Then, all conditions in Theorem 3.2 are hold. Consequently, the coupled system (5.1)
has a unique solution. On the other hand, by simple calculation, we get Ay ~ 0.02 < 1 and hence
all hypothesis in Theorem 3.1 are satisfied. Thus, the coupled system (5.1) has at least one solution in
[0, 1]. For every € = max{ey, &} > 0 and each (51,52) € H satisfies

4PD Do) ~ Fi5(0)| <
ABRDZ () — Fyj(c)| <&
there exists a solution (91,19,) € H of the coupled system (5.1) with
|.32) - 01,02 < K, e 7
where

M+ My, + QO+ Qy
1-Q

K = ~9>0.

and

1 1.6 1 1.7
Q=max{—|1.6 + 3 , 5+ ~0.02 < 1.
234 I'G+1)) 240 G +1)

Therefore, all conditions in Theorem 4.4 are satisfied and hence the coupled system 4.2 is UH stable
and GUH.

6. Conclusions

In recent years, the subject of fractional operators involving nonsingular kernels is novel and has
very important significance in modeling many phenomena in the real world, thus there is interest from
some researchers to study some qualitative properties of FDEs. In this paper, we have discussed a
new system of the nonlinear fractional operators with nonsingular Mittag-Leffler function kernels from
order 1 < 9,0, < 2 with multipoint sub-strip boundary conditions. The results obtained in this work
are new and cover some new results by choices of the parameters. We proved the existence, uniqueness,
and UH, GUH results by means of the Banach fixed point theorem for initial value problems in the
frame of ABR derivatives.
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