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A B S T R A C T

Oncolytic virotherapy is an efficacious chemotherapeutic agent that addresses and eliminates cancerous tissues
by employing recombinant infections. M1 is a spontaneously produced oncolytic alphavirus with exceptional
specificity and powerful activity in individual malignancies. The objective of this paper is to develop and assess
a novel fractional differential equation (FDEs)-based mathematical formalism that captures the mechanisms
of oncogenic M1 immunotherapy. The aforesaid framework is demonstrated with the aid of persistence,
originality, non-negativity, and stability of systems. Additionally, we also examine all conceivable steady
states and the requirements that must exist for them to occur. We also investigate the global stability
of these equilibria and the characteristics that induce them to be unstable. Furthermore, the Atangana–
Baleanu fractional-order derivative is employed to generalize a treatment of the cancer model. This novel
type of derivative furnishes us with vital understanding regarding parameters that are widely used in intricate
mechanisms. The Picard–Lindelof approach is implemented to investigate the existence and uniqueness of
solutions for the fractional cancer treatment system, and Picard’s stability approach is used to address
governing equations. The findings reveal that the system is more accurate when the fractional derivative
is implemented, demonstrating that the behaviour of the cancer treatment can be interpreted when non-local
phenomena are included in the system. Furthermore, numerical results for various configurations of the system
are provided to exemplify the established simulation.
Introduction

Cancer is a group of disorders in which certain of the immune sys-
tem’s tissues proliferate indefinitely and metastasize to distant organs.
Several genetic alterations are responsible for the development of car-
cinoma. It could begin in practically any part of the anatomy. While old
or impaired tissues normally perish, replacement lymphocytes develop
only when the tissue does not require them. Excess lymphocytes have
the potential to continue to alienate and cause cancer. When a tumour
propagates to other parts of the body (metastasis) [1], it becomes
hazardous. That is precisely why, in terms of avoiding translocation,
it is imperative to discover malignancy as soon as it is practicable.
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Therapy for carcinoma is carefully addressed. Liposuction, radiation,
chemotherapeutics, gender reassignment, monoclonal antibodies, and
virotherapy are some of the anticancer agents that are administered
individually or in tandem. Several of the novel therapeutics involve
virotherapy, which involves utilizing a microbe that has been recon-
figured. The Oncolytic virus is the name given to this infection [2].
Oncolytic infections infiltrate and kill tumour tissues by exploiting the
organism’s reproductive mechanism to propagate them and dissemi-
nate them to undamaged tissues in the adjacent neighbourhood, (see
Fig. 1). Owing to a clinical study, begomovirus M1, a spontaneously
generated and discriminating oncogenic infection attacking zinc-finger
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Fig. 1. Oncolytic virus having stimulating and disease-causing genes.
Fig. 2. Relation between the stem cells and oncolytic virus.
antioxidant polypeptide (ZAP) impaired tumour tissues, has significant
oncogenic activity and malignant glioma phenotypic expression in
cultured cells, in vivo, and ex vivo tests [3]. Wang et al. [4] developed a
dynamical framework driven by ordinary DEs that characterize the pro-
liferation of immune tissues, cancer lymphocytes, and the M1 infection
under restricted nourishment to simulate the involvement of the M1
infection in oncogenic immunotherapy. Elaiw et al. [5] incorporated
spatiotemporal characteristics and an anti-tumour inflammatory system
controlled by cytotoxicity 𝑇 lymphoma (CTL) receptors into the system
reported in [4]. According to the findings in [5], innate immunity has
a detrimental consequence on oncogenic M1 immunotherapy, reducing
its efficacy. Oncolytic diseases, like various chemotherapies, have di-
verse molecular mechanisms that include both internal and external
harmful effects on malignant tissues, such as endogenous enzymes,
the strengthening of inflammatory microbes, endothelial dysfunction,
and neuroplasticity, (Fig. 2) [6,7]. A substantial breakthrough has
subsequently been introduced in the implementation arena of fractional
2

calculus, wherein revolutionary formulations featuring non-singular
and non-local kernels are exploited [8–19]. The relatively new attribute
recommended tends to make use of the generalized Mittag-Leffler
function (M-LF), which includes the central pillar, and the specifics
of this pathway frustrate the innovative methodologies to achieve
numerous auxiliary intriguing aspects that have been recognized in sub-
stantial situations, including mean square compression dependably and
broadening variability. Abdeljawad and Baleanu [20] contemplated the
qualitative properties of a new nonlocal fractional derivative with M-
L nonsingular kernel and its applications. Abdeljawad [21] expounded
the fractional operators with generalized M-L kernels and their iterated
differintegrals. Jarad et al. [22] discussed a class of ordinary differential
equations in the frame of Atangana–Baleanu fractional derivative. Ab-
deljawad and Al-Mdallal [23] investigated the discrete M-L kernel type
fractional difference initial value problem and Gronwall’s inequality.
Following its introduction in 2016 by Atangana and Baleanu [24], the
innovative fractional derivative operator has also been commonly used
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in a variety of areas of science. For a limited space of time, modelling
using the AB-fractional derivative results in a complex structure. The
M-LF has since been revealed to become a highly powerful and relevant
filtration procedure as the strength and exponential principles enable
the AB-fractional derivative, in the perspective of Caputo, an inexpen-
sive algebraic tool for modelling extremely sophisticated key scenarios.
Because of their phenomenal non-orientation, these formulas are well-
known for producing fractional DEs with obvious intentional oddities,
such as the Riemann–Liouville and Caputo derivatives [25–31]. We
have additionally observed a spike in popularity in numerical modelling
within these operators. Nevertheless, calculating these components
theoretically causes a slew of processing challenges (see [32–34]).

However, some of the aforementioned scientific methods ignored
the reminiscence phenomenon by simply addressing integer-order
derivatives. The fractional-order derivative is a valuable device for
comprehending recollection and inheritance aspects. For example, Cole
[35] exhibited that biological entity cell vesicles exhibit fractional-
order transmittance while recollection indicates that the system’s re-
action is reliant mostly on the present incarnation as well as on its
entire chronology. As a result, despite the fractional derivative, the con-
ventional integer-order derivative does not exhibit this reminiscence
phenomenon as it is a localized generator.

The fundamental intention of this investigation is to create a compu-
tational formula centred on ABC fractional derivative to analyse how
memory affects the mechanics of oncogenic M1 immunotherapy. The
innovative approach entails deploying the M1 oncolytic virus to treat
cancer, with each phase consisting of four states: the concentrations of
nutrients, normal cells, tumour cells, and M1 virus at time 𝐭, respec-
tively. The fundamental aspects of the proposed framework, such as
the EU of strategies and experimental validation, are closely examined.
A numerical approach relying on Lagrange interpolations is developed
to simulate the analysed framework, as well as several biological and
scientific explanations are provided. The findings foreshadow the im-
pact of cancer therapy by taking into account M1 oncolytic infection
and its interactions.

Model description and preliminaries

Now let us review the ABC-fractional derivative operators’ underly-
ing theories and associated ramifications.

Definition 1 ([24]). Assume that there be a mapping 𝐟 ∈ C1(𝐚,𝐛), 𝐛 >
, with 0 ≤ 𝜑 ≤ 1. Then, the AB-fractional derivative is then expressed
n Caputo’s viewpoint as shown in:

𝐴𝐵𝐶
𝐚 𝐃𝜑𝐭 𝐟 (𝐭) =

𝐀𝐁𝐂(𝜑)
1 − 𝜑 ∫

𝐭

𝐚

𝑑𝐟
𝑑𝐱
𝐸𝜑

(

−
𝜑

1 − 𝜑
(𝐭 − 𝐱)𝜑

)

𝑑𝐱, (1)

where 𝐀𝐁𝐂(𝜑) = 1 − 𝜑 + 𝜑∕𝛤 (𝜑) indicates normalization function such
that 𝐀𝐁𝐂(0) = 𝐀𝐁𝐂(1) = 1 and 𝐸𝜑(𝐳) signifies the M-LF presented as

𝐸𝜑(𝐳) =
∞
∑

𝛿=0

𝐳𝛿
1 + 𝜑𝛿

, 𝜑, 𝛿 ∈ C, ℜ(𝜑) > 0. (2)

Definition 2 ([24]).Suppose there be a function following AB-fractional
ntegral form of 𝐟 ∈ C1(𝐚,𝐛) is as shown in:

𝐴𝐵
𝐚 𝐈𝜑𝐭 𝐟 (𝐭) =

1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝐟 (𝐭) + 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

𝐚
𝐟 (𝐱)(𝐭 − 𝐱)𝜑−1𝑑𝐱. (3)

Also, the relation between AB-fractional derivative and the Sumudu
transform is presented as follows:

𝐒𝐓
{

𝐃𝜑𝐭 𝐟 (𝐭)
}

=
𝐀𝐁𝐂(𝜑)
1 − 𝜑

(

𝜑𝛤 (𝜑 + 1)𝐸𝜑
( −𝜇𝜑

1 − 𝜑

))

{

𝐒𝐓(𝐟 (𝐭)) − 𝐟 (0)
}

. (4)

Proposition 1 ([20]). For 𝐟 ∈ C1(𝐚,𝐛), then the AB-fractional derivative
and integral operator holds the Newton–Leibniz identity:
𝐴𝐵 𝜑( 𝐴𝐵𝐶𝐃𝜑𝐟 (𝐭)

)

= 𝐟 (𝐭) − 𝐟 (𝐚). (5)
3

𝐚 𝐈𝐭 𝐚 𝐭
Lemma 1 ([24]). Suppose there be a continuous mapping defined on [𝐚,𝐛].
Then, the following variant holds true:
‖

‖

‖

𝐴𝐵𝑅𝐃𝜑𝐭 𝐟 (𝐭)
‖

‖

‖

<
𝐀𝐁𝐂(𝜑)
1 − 𝜑

‖

‖

‖

𝐟 (𝑧1)
‖

‖

‖

, (6)

where ‖

‖

‖

𝐟 (𝑧1)
‖

‖

‖

= max𝑧1∈[𝐚,𝐛] |𝐟 (𝑧1)|.

heorem 1 ([36,37]). Assume the subsequent time-fractional ordinary DE:
𝐴𝐵𝐶𝐃𝜑𝐭 𝐟 (𝐭) = 𝐠(𝐭) (7)

hen (7) has unique solution attaining by applying inverse Laplace transform
nd convolution property as

(𝐭) = 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝐠(𝐭) + 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝐠(𝜍)𝑑𝜍. (8)

Our next result is the generalized mean value theorem.

emma 2 ([20]). Suppose 𝐠(𝜘) ∈ C[𝑎1, �̄�] and considering 𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐠(𝜘) ∈

[�̄�, �̄�] when 𝜑 ∈ (0, 1]. Then we have 𝐠(𝜘) = 𝐠(�̄�)+ 1
𝛤 (𝜑)

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐠(𝜂)(𝜘−�̄�)

𝜑,
hen 0 ≤ 𝜂 ≤ 𝜘, ∀𝜘 ∈ (�̄�, �̄�].

In view of Lemma 2, if 𝐠(𝜘) ∈ [0, �̄�], 𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐠(𝜘) ∈ (0, �̄�] and

𝐵𝐶𝐃𝜑𝐭 𝐠(𝜘) ≥ 0, ∀𝜘 ∈ (0, �̄�], 𝜑 ∈ (0, 1], then there be a mapping 𝐠(𝜘)
s nondecreasing and if 𝐴𝐵𝐶

0 𝐃𝜑𝐭 𝐠(𝜘) ≤ 0, ∀𝜘 ∈ (0, �̄�], then the mapping
(𝜘) is nonincreasing ∀𝜘 ∈ (0, �̄�].

Here, we shall get ready to work on the model’s development
resented by Wang et al. [4]. The following is the general paradigm
or ongoing study:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝐒
𝑑𝐭 = 𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭),
𝑑𝐑
𝑑𝐭 = 𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭),
𝑑𝐐
𝑑𝐭 = 𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭),
𝑑𝐗
𝑑𝐭 = 𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭),

(9)

here  (𝐭) = 𝐒(𝐭) +𝐑(𝐭) +𝐐(𝐭) +𝐗(𝐭) which represents that 0 ≤  (𝐭) ≤
𝛯
𝜆 + (0) exp(−𝜆𝐭) with  (0) in the initial value. Thus, 0 ≤  (𝐭) ≤ 𝛯∕𝜆,
as 𝐭 ↦ ∞.

Further, we consider the following ABC-fractional derivative model
in the form of DEs to be presented as follows:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐒(𝐭) = 𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭),
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐑(𝐭) = 𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭),
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐐(𝐭) = 𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭),
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐗(𝐭) = 𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭),

(10)

here 𝐒(𝐭), 𝐑(𝐭), 𝐐(𝐭) and 𝐗(𝐭) are the specific dietary, regular cells,
ancer hepatocytes, and M1 viral contents at time 𝐭, respectively. 𝛯
nd 𝛩 are the enlistment variables for nutritional and M1 viral levels,
espectively. In addition, 𝛩 denotes the lowest efficacious dose of drug.
he material is used at frequencies of 𝜌1𝐒𝐑 and 𝜌2𝐒𝐐, respectively, by
egular and malignant tissues. The population development of regular
ellular components of absorbing the food is 𝛿1𝜌1𝐒𝐑, whereas the
roliferation speed of cancer cells is 𝛿2𝜌2𝐒𝐐. The viral penetrates and
liminates cancerous tissues at a frequency of 𝜌3𝐐𝐗, and it reproduces
t a frequency of 𝛿3𝜌3𝐐𝐗. The similar effects of food and bacterium
ischarge are represented by the factor 𝜆. The spontaneous mortality
ates of immune tissues, cancerous cells, and M1 infection are repre-
ented by the variables 𝜀1, 𝜀2 and 𝜀3. The ABC fractional derivative
aving 𝜑 ∈ (0, 1] is denoted by the symbol 𝐴𝐵𝐶

0 𝐃𝜑𝐭 which illustrates the
igher capacity.

It is worth noting that the ODE mathematical analysis for proving
he M1 virus’s high oncogenic efficiency [4] is a particular instance of
he system provided by component (10), and it is enough to choose
= 1. Additionally, we suppose that the starting requirements (11) of

10) are met to argue that our system is scientifically well-posed:

(0) = 𝜙1(0) ≥ 0, 𝐑(0) = 𝜙2 ≥ 0, 𝐐(0) = 𝜙3 ≥ 0, 𝐗(0) = 𝜙4 ≥ 0. (11)
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Table 1
Table of listed components and associated interpretations.
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 Explanation Data estimated [38]

𝐒(𝐭) Level of nutritional concentration in time 𝐭
𝐑(𝐭) Number of normal cells in time 𝐭
𝐐(𝐭) Number of tumour cells in time 𝐭
𝐗(𝐭) Number of M1 virus in time 𝐭
𝛯 Nutrient recruitment rate 0.02
𝛩 Minimum effective dosage of M1 virus 0.01
𝜆 Washout constant rate of nutrient and bacteria 0.02
𝜀1 Natural death rate constants of normal cells 0.01
𝜀2 Natural death rate of tumour cells 0.008
𝜀3 Natural death rate of M1 virus 0.01
𝜌1 Rate of normal cells after consuming the nutrients 0.03
𝜌2 Rate of tumour cells after consuming the nutrients 0.03
𝜌3 Rate of virus infects and kills tumour cells 0.01
𝛿1 Typical cell growth rate as a function of nutrition consumption 0.8
𝛿2 Growth rate of tumour cells as a result of consuming the nutrient 0.5
𝛿3 Replicates rate 0.8
,

L



𝛩

U
(

H



a

𝛷
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Theorem 2. The domain of the AB system (10) that is outbreaks-
sustainable is determined by

℧ =∶
{

(𝐒,𝐑,𝐐,𝐗) ∈ R4
+ ∶ 0 ≤ 𝐒 + 𝐑 +𝐐 + 𝐗 ≤  ≤ 𝛯

𝜆

}

. (12)

The validity and originality of scenario (10) have now been es-
tablished, and all that is required to demonstrate that the collection
specified in (12) is positively consistent. The demonstration of The-
orem 2 will be developed on the basis of a subsequent argument.

Theorem 3. The solution of the proposed fractional-order model (10)
along ICs is unique and bounded in ℧.

Proof. The existence and uniqueness of the solution of system (10) on
the time interval (0,∞) can be obtained by the process discussed in the
work of Lin [39]. Subsequently, we have to explain the non-negative
region R4

+ is positively invariant region. From model (10), we find

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐒

|

|

|𝐒=0
= 𝛯 ≥ 0,

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐑

|

|

|𝐑=0
= 0,

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐐

|

|

|𝐐=0
= 0,

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐗

|

|

|𝐗=0
= 𝛩 ≥ 0.

(13)

f (𝐒,𝐑,𝐐,𝐗) ∈ R4
+, the solution [𝐒,𝐑,𝐐,𝐗] cannot escape from the

yperplanes 𝐒 = 0, 𝐑 = 0, 𝐐 = 0, and 𝐗 = 0. Also, on each hyperplane
ounding the non-negative orthant, the vector field points into R4

+,
.e., the domain R4

+ is a positively invariant set. □

emma 3. The oncolytic efficacy model (10) with non-negative ICs in
egion ℧ is positively invariant

roof. By adding the human population in a model (10), the rate of
hange of total population is,

𝐴𝐵𝐶
0 𝐃𝜑𝐭  (𝐭) = (𝛯 + 𝛩) − 𝜆𝐒(𝐭) − 𝜌1(1 − 𝛿1)𝐒(𝐭)𝐑(𝐭)

−𝜌2(1 − 𝛿2)𝐒(𝐭)𝐐(𝐭) − 𝜌3(1 − 𝛿3)𝐐(𝐭)𝐗(𝐭)

−(𝜆 + 𝜀1)𝐑 − (𝜆 + 𝜀2)𝐐 − (𝜆 + 𝜀3)𝐗

≤ 𝛯 − 𝜆 (𝐭)

Implementing the Laplace transform yields to


{

𝐴𝐵𝐶
0 𝐃𝜑𝐭  (𝐭) + 𝜆 (𝐭)

}

≤ 
{

𝛯
}

( )
(

(1 − 𝜎)s𝜑 −
𝜑𝜎

1 − 𝜑

)

− s𝜑−1 (0) ≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

(

s𝜑 +
𝜑

1 − 𝜑

)

𝛯
s

≤
(

1 −
𝜎𝜑

)−1{ 1 − 𝜑
(
1 − 𝜑 + 𝜑s−𝜑

)𝛯 +
 (0)

}

4

(1 − 𝜎)(1 − 𝜑) (1 − 𝜎)(1 − 𝜑) 1 − 𝜑 s s(1 − 𝜎)
where 𝜎 = 𝜆(𝜑−1)
𝐀𝐁𝐂(𝜑) . The response is provided by employing the inverse

aplace transform as follows:

(𝐭) = 𝛯
𝜆

− 𝛯
𝜆(1 − 𝜎)

𝑑
𝑑𝐭 ∫

𝐭

0
𝐸𝜑

(

𝜎𝜑
(1 − 𝜎)(1 − 𝜑)

(𝐭 − 𝜘)𝜑
)

𝑑𝜘

+
 (0)
1 − 𝜎

𝐸𝜑

(

𝜎𝜑
(1 − 𝜎)(1 − 𝜑)

𝐭𝜑
)

,

where 𝐸𝜑1 ,𝜑2 indicates the M-L function. Considering the assumption
that the M-L function exhibits asymptotic characteristics, we have

𝐸𝜑1 ,𝜑2
(𝜃) ≈

∞
∑

𝜅=1
𝜃−𝜅∕𝛤 (𝜑2−𝜑1𝜅)+(|𝜃|

−1−𝑤), |𝜃| ↦ ∞,
𝜑𝜉
2
< |𝐴𝑟𝑔𝜃| ≤ 𝜉,

it is not hard to perceive that  (𝐭) ↦ 𝛯∕𝜆 as 𝐭 ↦ ∞. Ultimately, (12)
is the biologically viable in the desired domain of system (10). □

Equilibrium points (EPs) and stability results

Next, we shall figure out where our system (10) has EPs. Any equi-
librium position of framework (10), by definition, meets the required
algebraic expressions:

𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭) = 0, (14)

𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭) = 0, (15)

𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭) = 0, (16)

+ 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭) = 0, (17)

tilizing (15), this shows that 𝐑 = 0 or 𝐒 = (𝜆 + 𝜀1)∕𝛿1𝜌1. Analogously,
16) allows to 𝐐 = 0 or 𝛿2𝜌2𝐒 = 𝜆 + 𝜀2 + 𝜌3𝐗 ∶
(a) Choosing 𝐑 = 0 and 𝐐 = 0, then 𝐒 = 𝛯∕𝜆 and 𝐗 = 𝛩∕(𝜆 + 𝜀3).

ence, model (10) has an EP

0 = (𝐒0, 0, 0,𝐗0) =
(

𝛯∕𝜆, 0, 0, 𝛩∕(𝜆 + 𝜀3)
)

.

(b) Choosing 𝐑 ≠ 0 and 𝐐 = 0, then 𝐒 = 𝜆+𝜀∕𝛿1𝜌1, 𝐗 = 𝛩∕(𝜆+𝜀3)
nd 𝐑 = (𝛷1 − 1)𝑑∕𝜌1, where

1 =
𝛯𝛿1𝜌1
𝜆(𝜆 + 𝜀1)

. (18)

This figure shows the tendency of immune tissues to process food. It is
known as the absorbing quantity [4]. When 𝛷1 > 1, then (10) has an
P

1(𝐒,𝐑, 0,𝐗) =
(

(𝑑 + 𝜀1)∕𝛿1𝜌1, (𝛷1 − 1)𝑑∕𝜌1, 0, 𝛩∕(𝜆 + 𝜀3)
)

.

(c) Choosing 𝐑 = 0 and 𝐐 ≠ 0, then 𝐒 = (𝜌3𝐗 + 𝜆 + 𝜀2)∕𝛿2𝜌2, 𝐐 =
−(𝑑∕𝜌2) + (𝛯𝛿2∕𝜌3𝐗 + 𝜆 + 𝜀2) and

̄ 2
𝑏𝐗 + 𝑏2𝐗 + 𝑏3 = 0, (19)
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where �̄� = 𝜌3(𝛿3𝜌3𝜆+𝜌2(𝜆+𝜀3)), 𝑎2 = 𝑐1(𝜆+𝜀2)∕𝜌3−𝜌2𝜌3(𝛩+𝛿2𝛿3𝛯), 𝑐3 =
−𝛩𝜌2(𝜆 + 𝜀2). Note that 𝑐1 > 0 and 𝑎3 < 0, therefore, we have 𝐷 =
𝑐22 −4𝑐1𝑐3. Therefore, (19) has two roots as 𝐗±. It is clear that as 𝐗+ > 0
and 𝐗− < 0, whenever 𝐗 > 0, the 𝐗 = 𝐗+. It suffices that 𝐒 > 0. Also,

⟹ 𝛷2 > 1 + 𝛩𝜌3∕(𝜆 + 𝜀2)(𝜆 + 𝜀3), where

𝛷2 =
𝛯𝛿2𝜌2
𝜆(𝜆 + 𝜀2)

. (20)

This calculation gives the cancer tissues’ capability of accumulating
nutrition. It is also described as the amount of resources absorbed by
cancer cells. So, the model (10) has also EP when 𝛷2 > 1 + 𝛩𝜌3∕(𝜆 +
𝜀2)(𝜆 + 𝜀3). This EP is indicated by

2(𝐒2, 0,𝐐2,𝐗2) =
(

(𝜌3𝐗2+𝜆+𝜀2∕𝛿2𝜌2), 0,−𝜆∕𝜌2+𝛯𝛿2∕(𝜀2+𝜆+𝜌3𝐗2),𝐗+

)

.

(d) Choosing 𝐑 ≠ 0 and 𝐐 ≠ 0, then 𝐒 = (𝑑 + 𝜀1)∕𝛿1𝜌1 and
𝐗 = (𝜆 + 𝜀∕𝜌3)(𝛷2∕𝛷1 − 1) as 𝐗 > 0 ⟹ 𝛷2 > 𝛷1.

Utilizing (17), we attain 𝐐 = 𝐗(𝜆+𝜀3)−𝛩
𝛿3𝜌3𝐗

. Analogously, 𝐐 > 0 allows
O 𝛷2 < 𝛷1 +

𝛯𝛩𝛿1𝜌1𝜌2
𝜆(𝜆+𝜀1)(𝜆+𝜀2)(𝜆+𝜀3)

. Plugging 𝐒 and 𝐐 in (14), we get

=
(𝜆 + 𝜀2)(𝛷2∕𝛷1 − 1)

(

𝛯𝛿1𝛿2𝜌1𝜌3 − 𝛿3𝜌3𝜆(𝜆 + 𝜀1) − 𝜌2(𝜆 + 𝜀1)(𝜆 + 𝜀3)
)

𝛿3𝜌1𝜌3(𝛷2∕𝛷1 − 1)(𝜆 + 𝜀1)(𝜆 + 𝜀2)

+
𝜌2𝜌3𝛩

𝛿3𝜌1𝜌3(𝛷2∕𝛷1 − 1)(𝜆 + 𝜀2)
(21)

his demonstrates that model (10) has another EP, which is presented
s

3(𝐒3,𝐑3,𝐐3,𝐗3) =

𝜆 + 𝜀1
𝛿1𝜌1

,
(𝜆 + 𝜀2)(𝛷2∕𝛷1 − 1)

(

𝛯𝛿1𝛿2𝜌1𝜌3 − 𝛿3𝜌3𝜆(𝜆 + 𝜀1) − 𝜌2(𝜆 + 𝜀1)(𝜆 + 𝜀3)
)

𝛿3𝜌1𝜌3(𝛷2∕𝛷1 − 1)(𝜆 + 𝜀1)(𝜆 + 𝜀2)

+
𝜌2𝜌3𝛩

𝛿3𝜌1𝜌3(𝛷2∕𝛷1 − 1)(𝜆 + 𝜀2)
,
𝐗3(𝜆 + 𝜀3) − 𝛩

𝛿3𝜌3𝐗3
,
(𝜆 + 𝜀2)(𝛷2∕𝛷1 − 1)

𝜌3

)

. (22)

The accompanying outcome summarizes all of the preceding situations.

Theorem 4. Suppose there be 𝛷1 and 𝛷2 described in (18) and (20). Then
(a1) Model (10) is generally in a non-competitive equilibria 0(𝐒0, 0,

,𝐗0).
(b1) Model (10) is generally in a non-cancer equilibria 1(𝐒,𝐑, 0,𝐗)

when 𝛷1 > 1.
(c1) Model (10) is generally in a therapeutic breakdown equilibria

2(𝐒2, 0,𝐐2,𝐗2) when 𝛷2 > 1 + 𝜌3𝛩
(𝜆+𝜀2)(𝜆+𝜀3)

.
(d1) Model (10) is generally in a limited accomplishment equilibria

3(𝐒3,𝐑3,𝐐3,𝐗3) when 𝛷2 > 𝛷1 +
𝛿1𝜌1𝜌3𝛯𝛩

𝜆(𝜆+𝜀1)(𝜆+𝜀2)(𝜆+𝜀3)
.

The experimental investigation of the equilibria 0, 1, 2 and 3
is the core objective of this segment.

Theorem 5. Suppose there be a non-competitive equilibria 0 is globally
asymptotically stable for

𝛷2 ≤ 1 +
𝛩𝜌3

(𝜆 + 𝜀2)(𝜆 + 𝜀3)

or 𝛷1 ≤ 1. Furthermore, it is unstable if

𝛷2 > 1 +
𝛩𝜌3

(𝜆 + 𝜀2)(𝜆 + 𝜀3)

or 𝛷1 > 1.

Proof. To prove the consequence for non-competitive equilibria, for
this, suppose the following Lyapunov functional depend on the param-
eter 𝜑 = 𝜘 − 1 − ln𝜘, ∀𝜘 > 0:

𝛥(𝐭) = 𝐒0℘
(

𝐒(𝐭)
𝐒0

)

+ 1
𝛿2𝛿3

𝐗0℘
(

𝐗(𝐭)
𝐗0

)

+ 1
𝛿1

𝐑(𝐭) + 1
𝛿2

𝐐(𝐭),

The derivative of 𝛩 in the direction of model (10) is presented by

𝑑𝛥 ≤
(𝐒 − 𝐒0

)

𝑑𝐒 + 1
(𝐗 − 𝐗0

)

𝑑𝐗 + 1 𝑑𝐑 + 1 𝑑𝐐
5

𝑑𝐭 𝐒 𝑑𝐭 𝛿2𝛿3 𝐗 𝑑𝐭 𝛿1 𝑑𝐭 𝛿2 𝑑𝐭
=
(𝐒 − 𝐒0

𝐒

)

(

𝛯 − 𝐒𝜆 − 𝜌1𝐒𝐑 − 𝜌2𝐒𝑇 − 1
)

+ 1
𝛿2𝛿3

(𝐗 − 𝐗0
𝐗

)

(

𝛩 + 𝛿3𝜌3𝐐𝐗 − (𝜆 + 𝜀3)𝐗
)

+ 1
𝛿1

(

𝛿1𝜌1𝐒𝐑 − (𝜆 + 𝜀1)𝐑
)

+ 1
𝛿2

(

𝛿2𝜌2𝐒𝐐 − (𝜆 + 𝜀2)𝐐 − 𝜌3𝐐𝐗
)

.

Utilizing 𝐒0 = 𝛯∕𝜆 and 𝐗0 = 𝛩∕(𝜆 + 𝜀3), we find

𝑑𝛥
𝑑𝐭

≤ −𝜆
𝐒

(𝐒 − 𝐒0)2 + 𝐑(𝛷1 − 1)
𝜆 + 𝜀1
𝛿1

−
𝜆 + 𝜀3
𝛿2𝛿3

(𝐗 − 𝐗0)2

𝐗

+
𝜆 + 𝜀2
𝛿2

(

𝛷2 − 1 −
𝛩𝜌3

(𝜆 + 𝜀2)(𝜆 + 𝜀3)

)

.

This illustrates that 𝑑𝛥
𝑑𝐭 ≤ 0 when 𝛷1 ≤ 1 and 𝛷2 ≤ 1 + 𝛩𝜌3

(𝜆+𝜀2)(𝜆+𝜀3)
. It

is clear that 𝑑𝛩
𝑑𝐭 = 0 iff 𝐒 = 𝐒0, 𝐑 = 0, 𝐐 = 0 and 𝐗 = 𝐗0. Thus, the

maximum invariant set is in
{

(𝐒,𝐑,𝐐,𝐗) 𝑑𝛥𝑑𝐭 = 0
}

is the set 0. Taking
nto consideration Lasalle’s invariance theorem [40], conclude that 0
s globally asymptotically stable for 𝛷1 ≤ 1 and 𝛷2 ≤ 1 + 𝛩𝜌3

(𝜆+𝜀2)(𝜆+𝜀3)
.

In case 0 has a dynamical characteristic, it has to be examined
further. Whenever 𝛷1 > 1 or 𝛷2 > 1 + 𝛩𝜌3

(𝜆+𝜀2)(𝜆+𝜀3)
. We do this by

computing the characteristic equation at 0, which is supplied by

𝜈1 = −𝜆, 𝜈2 = −𝜆−𝜀3, 𝜈3 =
(𝛷2 − 1)(𝜆 + 𝜀2) − 𝜌3𝛩

𝜆 + 𝜀3
, 𝜈4 = (𝛷1−1)(𝜆+𝜀1).

(23)

From above, we observe that 𝜈1, 𝜈2 < 0 and 𝜈3 > 0 as 𝛷2 ≤ 1+ 𝛩𝜌3
(𝜆+𝜀2)(𝜆+𝜀3)

and 𝜈4 > 0 if 𝛷1 > 1. Finally, 0 is unstable if 𝛷1 > 1 or 𝛷2 >
+ 𝛩𝜌3

(𝜆+𝜀2)(𝜆+𝜀3)
. □

In an analogous manner, we can find the stability criteria for other
EPs 1, 2 and 3.

Theorem 6. Assume that 𝛷1 > 1. Then the tumour-free equilibrium 1 is
globally asymptotically stable if

𝛷2 ≤ 𝛷1 +
𝛯𝛩𝛿1𝜌1𝜌3

𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)
, (24)

otherwise it is unstable.

Proof. Assume the subsequent Lyapunov functional:

𝛥1(𝐭) = 𝐒1℘
(𝐒(𝐭)

𝐒1

)

+ 1
𝛿1

𝐑1℘
(𝐑(𝐭)

𝐑1

)

+ 1
𝛿2

𝐐1(𝐭) +
1
𝛿2𝛿3

𝐗1℘
(𝐗(𝐭)

𝐗1

)

. (25)

Therefore we have
𝑑𝛥1
𝑑𝐭

≤
(

1 −
𝐒1
𝐒

)

(𝛯 − 𝜆𝐒 − 𝜌1𝐒𝐑 − 𝜌2𝐒𝐐)

+ 1
𝛿1

(

1 −
𝐑1
𝐑

)

(𝛿1𝜌1𝐒𝐑 − (𝜆 + 𝜀1))

+ 1
𝛿2

(𝛿2𝜌2𝐒𝐐 − (𝜆 + 𝜀2)𝐐 − 𝜌3𝐐𝐗)

+ 1
𝛿2𝛿3

(

1 −
𝐗1
𝐗

)

(𝛩 + 𝛿3𝜌3𝐐𝐗 − (𝜆 + 𝜀3)𝐗). (26)

Setting 𝐗1 = 𝛩∕(𝜆 + 𝜀3) and 𝐒1 = (𝜆 + 𝜀2)∕𝛿1𝜌1, we get

𝑑𝛥1
𝑑𝐭

≤ 𝜆
(

1 −
𝐒1
𝐒

)2
+ 𝜌1𝐒1𝐑1

( 2𝐒𝐒1 − 𝐒21 − 𝐒2

𝐒𝐒1

)

+
(

𝜌1𝐒1 −
𝜆 + 𝜀1
𝛿1

)

𝐑

+
(𝜌2(𝜆 + 𝜀1)

𝛿1𝜌1
−
𝜆 + 𝜀2
𝛿2

−
𝛩𝜌3

𝛿2(𝜆 + 𝜀3)

)

𝐐 + 𝛩
𝛿2𝛿3

( 2𝐗𝐗1 − 𝐗2
1 − 𝐗2

𝐗𝐗1

)

=
𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)

𝛯𝛿1𝛿2𝜌1

(

𝛷2 −𝛷1 −
𝛯𝛩𝛿1𝜌1𝜌2

𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)

)

𝐐

−(𝜆 + 𝜌1𝐑1)
(𝐒 − 𝐒1)2

𝐒
− 𝛩
𝛿2𝛿3

(𝐗 − 𝐗1)2

𝐗𝐗1
. (27)

hen, 𝑑𝛥1
𝑑𝐭 ≤ 0, when

2 ≤ 𝛷1 +
𝛯𝛩𝜌1𝜌3 . (28)
𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)
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Clearly, 𝑑𝛥1
𝑑𝐭 = 0 if and only if 𝐒 = 𝐒1, 𝐑 = 𝐑1, 𝐐 = 0 and 𝐗 = 𝐗1.

Thus, the maximum invariant set in
{

(𝐒,𝐑,𝐐,𝐗) 𝑑𝛥1𝑑𝐭 = 0
}

is the set 1.
aking into consideration Lasalle’s invariance theorem [40], conclude
hat 1 is globally asymptotically stable for

2 ≤ 𝛷1 +
𝛯𝛩𝜌1𝜌3

𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)
.

On contrary, the characteristic equation at 1, which is supplied by

𝜆 + 𝜀1 + 𝜈)(𝛿2𝜌2𝐒1 − 𝜆 − 𝜀2 − 𝜌3𝐗1 − 𝜈)𝐹 (𝜈) = 0, (29)

where 𝐹 (𝜈) = (𝜆 + 𝜈 + 𝜌1𝐑)(𝜆 + 𝜀1 + 𝜈 − 𝛿1𝜌1𝐒1) + 𝛿1𝜌21𝐑1𝐒1. Therefore,
the eigenvalues of (29) are

𝜈1 = 𝛿2𝜌2𝐒1 − 𝜆 − 𝜀2 − 𝜌3𝐗1

=
𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)

𝛯𝛿1𝜌1

(

𝛷2 −𝛷1 −
𝛯𝛩𝛿1𝜌1𝜌3

𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)

)

. (30)

It is clear that 𝜈1 > 0 then 𝛷2 > 𝛷1+
𝛯𝛩𝛿1𝜌1𝜌3

𝜆(𝜆+𝜀1)(𝜆+𝜀2)(𝜆+𝜀3)
. Which shows the

n-stability of 1. This completes the proof. □

heorem 7. Assume that 𝛷2 > 1 + 𝛩𝜌3
(𝜆+𝜀1)(𝜆+𝜀2)

and 𝛷2 > 𝛷1. Then the
reatment failure equilibrium 2 is globally asymptotically stable if

1 +
𝛩𝜌3

𝛿3𝜆(𝜆 + 𝜀2)
(

(𝛷2∕𝛷1) − 1
) ≤ 1 +

𝜌2(𝜆 + 𝜀3)
𝛿3𝜌3𝜆

. (31)

Otherwise, it is unstable.

Proof. Assume the subsequent Lyapunov functional:

𝛥2(𝐭) = 𝐒2℘
(𝐒(𝐭)

𝐒2

)

+ 1
𝛿1

𝐑1(𝐭)+
1
𝛿2

𝐐2(𝐭)℘
(𝐐(𝐭)

𝐐2

)

+ 1
𝛿2𝛿3

𝐗2℘
(𝐗(𝐭)

𝐗2

)

. (32)

Then, we have

𝑑𝛥2
𝑑𝐭

≤ 𝜆𝐒2
(

1 −
𝐒2
𝐒

)2
+ 𝜌2𝐒2𝐑2

( 2𝐒𝐒1 − 𝐒22 − 𝐒2

𝐒𝐒2

)

+
(

𝜌1𝐒2 −
𝜆 + 𝜀1
𝛿1

)

𝐑

+
(

𝜌2𝐒2 −
(𝜆 + 𝜀2)
𝛿2

−
𝜌3
𝛿2

𝐗2

)

𝐐 + 𝛩
𝛿2𝛿3

(2𝐗𝐗2 − 𝐗2
2 − 𝐗2

𝐗𝐗2

)

= 𝜌1(𝐒2 − 𝐒3) −
𝛩
𝛿2𝛿3

(𝐗 − 𝐗2)2

𝐗𝐗2
− (𝜆 + 𝜌2𝐑2)

(𝐒 − 𝐒2)2

𝐒
. (33)

imple computations gives

2 − 𝐒3 = 𝛯𝛿1𝛿3𝜌1𝜌3(𝜆 + 𝜀2)
(

(𝛷2∕𝛷1) − 1
)

+ 𝛩𝜌2𝜌3(𝜆 + 𝜀1)

−𝜌2(𝜆 + 𝜀1)(𝜆 + 𝜀2)(𝜆 + 𝜀3)
(

(𝛷2∕𝛷1) − 1
)

−𝛿3𝜌3𝜆(𝜆 + 𝜀1)(𝜆 + 𝜀2)
(

(𝛷2∕𝛷1) − 1
)

. (34)

Thus, 𝐒2 − 𝐒3 < 0 implies that 𝛷1 +
𝛩𝜌3

𝛿3𝜆(𝜆+𝜀2)
(

(𝛷2∕𝛷1)−1
) ≤ 1 + 𝜌2(𝜆+𝜀3)

𝛿3𝜌3𝜆
.

Ultimately, 𝑑𝛥2
𝑑𝐭 ≤ 0, when 𝛷1 +

𝛩𝜌3
𝛿3𝜆(𝜆+𝜀2)

(

(𝛷2∕𝛷1)−1
) ≤ 1 + 𝜌2(𝜆+𝜀3)

𝛿3𝜌3𝜆
.

Clearly, 𝑑𝛥2
𝑑𝐭 = 0 if and only if 𝐒 = 𝐒2, 𝐑 = 0, 𝐐 = 𝐐2 and 𝐗 = 𝐗2.

Thus, the maximum invariant set in
{

(𝐒,𝐑,𝐐,𝐗) 𝑑𝛥2𝑑𝐭 = 0
}

is the set 2.
aking into consideration Lasalle’s invariance theorem [40], conclude
hat 2 is globally asymptotically stable for

1 +
𝛩𝜌3

𝛿3𝜆(𝜆 + 𝜀2)
(

(𝛷2∕𝛷1) − 1
) ≤ 1 +

𝜌2(𝜆 + 𝜀3)
𝛿3𝜌3𝜆

.

On contrary, the characteristic equation at 2, which is supplied by

(𝛿1𝜌1𝐒2 − 𝜆 − 𝜀1 − 𝜇)𝐹1(𝜈) = 0, (35)

where 𝐹1(𝜈) = (𝜈+ 𝜌2𝐑2 +𝜆)(𝜆+ 𝜀2 + 𝜈+ 𝜌3𝐗2 − 𝛿2𝜌2𝐒2)(𝛿3𝜌3𝐐2 −𝜆− 𝜀3 −
𝜈) − 𝛿3𝜌23𝐐2𝐗2 Therefore, the eigenvalues of (35) are

𝜈2 = 𝛿1𝜌1𝐒2 − 𝜆 − 𝜀1 = 𝛿1𝜌1(𝐒2 − 𝐒3). (36)

It is clear that 𝜈2 > 0 then 𝛷1 +
𝛩𝜌3

𝛿3𝜆(𝜆+𝜀2)
(

(𝛷2∕𝛷1)−1
) ≥ 1+ 𝜌2(𝜆+𝜀3)

𝛿3𝜌3𝜆
. Which
6

shows the un-stability of 2. This completes the proof. □ s
Theorem 8. The partial success equilibrium 3 is globally asymptotically
stable if 𝛷2 > 𝛷1 +

𝛯𝛩𝛿1𝜌1𝜌3
𝜆(𝜆+𝜀1)(𝜆+𝜀2)(𝜆+𝜀3)

.

Proof. Assume the subsequent Lyapunov functional:

𝛥3(𝐭)

= 𝐒3℘
(𝐒(𝐭)

𝐒3

)

+ 1
𝛿1

𝐑3℘
(𝐑(𝐭)

𝐑3

)

+ 1
𝛿2

𝐐3(𝐭)℘
(𝐐(𝐭)

𝐐3

)

+ 1
𝛿2𝛿3

𝐗3℘
(𝐗(𝐭)

𝐗3

)

.

(37)

Then, we have
𝑑𝛥3
𝑑𝐭

≤
(

1 −
𝐒3
𝐒

)

(𝛯 − 𝜆𝐒 − 𝜌1𝐒𝐑 − 𝜌2𝐒𝐐)

+ 1
𝛿1

(

1 −
𝐑3
𝐑

)

(𝜌3𝛿1𝐒𝐑 − (𝜆 + 𝜀1)𝐑)

+ 1
𝛿2

(

1 −
𝐐3
𝐐

)

(𝜌2𝛿2𝐒𝐐 − (𝜆 + 𝜀2)𝐐 − 𝜌3𝐐𝐗)

+ 1
𝛿2𝛿3

(

1 −
𝐗3
𝐗

)

(𝛩 + 𝜌3𝛿3𝐐𝐗 − (𝜆 + 𝜀3)𝐗). (38)

Setting 𝛯 = 𝜆𝐒3+𝜌2𝐒3𝐐3+𝜌1𝐒3𝐑3, 𝜌3𝐐3𝐗3∕𝛿2 = ( 𝜆+𝜀3𝛿2𝛿3
)𝐗3−

𝛩
𝛿2𝛿3

, 𝜌1𝐒3𝐑3

= ( 𝜆+𝜀1𝛿1
)𝐑3 and 𝜌2𝐒3𝐐3 = ( 𝜆+𝜀2𝛿2

)𝐐3 +
𝜌3
𝛿2
𝐐3𝐗3, we have

𝑑𝛥3
𝑑𝐭

≤ 𝜆𝐒3
(

1 −
𝐒3
𝐒

)2
+ 𝜌2𝐒3𝐑3

( 2𝐒𝐒3 − 𝐒23 − 𝐒2

𝐒𝐒3

)

+
(

𝜌1𝐒3 −
𝜆 + 𝜀1
𝛿1

)

𝐑

+
(

𝜌2𝐒3 −
(𝜆 + 𝜀2)
𝛿2

−
𝜌3
𝛿2

𝐗3

)

𝐐 + 𝛩
𝛿2𝛿3

( 2𝐗𝐗1 − 𝐗2
1 − 𝐗2

𝐗𝐗1

)

+𝜌1𝐒3𝐑3

( 2𝐒𝐒3 − 𝐒23 − 𝐒2

𝐒𝐒3

)

= − 𝛩
𝛿2𝛿3

(𝐗 − 𝐗3)2

𝐗𝐗3
− (𝜆 + 𝜌2𝐑3 + 𝜌1𝐐3)

(𝐒 − 𝐒3)2

𝐒
. (39)

Therefore, 𝑑𝛥3
𝑑𝐭 ≤ 0 if and only if 𝐒 = 𝐒3 and 𝐗 = 𝐗3. By an

easy calculation, we can prove that 𝑑𝛥3
𝑑𝐭 = 0 if and only if 𝐒 =

𝐒3, 𝐑 = 𝐑3, 𝐐 = 𝐐3 and 𝐗 = 𝐗3. Following the LaSalle’s invariant
approach [40], we conclude that 3 is globally asymptotically stable
under the assumptions that this point holds. □

A fractional model for oncolytic efficacy in the ABC derivative
sense

The DEs framework presents the methodological strategy that en-
compasses the assumptions with the demonstration of MI virus’s ro-
bust oncolytic effectiveness, followed by the ABC-fractional derivative
operator

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐒(𝐭) = 𝛶1(𝐭,𝐒),
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐑(𝐭) = 𝛶2(𝐭,𝐑)
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐐(𝐭) = 𝛶3(𝐭,𝐐)
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝐗(𝐭) = 𝛶4(𝐭,𝐗)

(40)

ith ICs stated in (11)

xistence and uniqueness of the fractional model for oncolytic efficacy

Here, the (40) demonstrates that the fractional order model for
ancer therapy is a nonlinear model. The fixed point methodology is
mployed to investigate the presence of solutions. Because of this, we
efine 𝛺 = [0, 𝐭] such that  =  (𝛺) ×  (𝛺) ×  (𝛺) ×  (𝛺) as a
anach space  (𝛺) = C[0, 𝐭] of real-valued continuous mappings on
he domain 𝛺 having the norm:

(𝐒,𝐑,𝐐.𝐗)‖‖
‖

= ‖

‖

‖

𝐒‖‖
‖

+ ‖

‖

‖

𝐑‖‖
‖

+ ‖

‖

‖

𝐐‖

‖

‖

+ ‖

‖

‖

𝐗‖‖
‖

. (41)

ere, ‖‖
‖

𝐒‖‖
‖

= sup
{

|𝐒(𝐭)| ∶ 𝐭 ∈ 𝛺
}

, ‖

‖

‖

𝐑‖‖
‖

= sup
{

|𝐑(𝐭)| ∶ 𝐭 ∈ 𝛺
}

, ‖

‖

‖

𝐐‖

‖

‖

=
{ }

‖ ‖

{ }
up |𝐐(𝐭)| ∶ 𝐭 ∈ 𝛺 , ‖
‖

𝐗‖
‖

= sup |𝐗(𝐭)| ∶ 𝐭 ∈ 𝛺 .
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𝐐

𝐗

F

𝐒

𝐑

𝐐

𝐗

a

𝐒

H
s

A

C

D

O

𝐒

N
w
‖

‖

‖

The AB fractional order integral can be used to transform the
model (40) to a Volterra type integral equation. The implementation
of Theorem 1 yields the following.

𝐒(𝐭) − 𝐒(0) = 1 − 𝜑
𝐀𝐁𝐂(𝜑)

{

𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭)
}

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

{

𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭)
}

𝑑𝜍,

𝐑(𝐭) − 𝐑(0) = 1 − 𝜑
𝐀𝐁𝐂(𝜑)

{

𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭)
}

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

{

𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭)
}

𝑑𝜍,

𝐐(𝐭) −𝐐(0) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)

{

𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭)
}

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

× ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1

{

𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭)
}

𝑑𝜍,

𝐗(𝐭) − 𝐗(0) = 1 − 𝜑
𝐀𝐁𝐂(𝜑)

{

𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭)
}

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

{

𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭)
}

𝑑𝜍. (42)

The accompanying terms are defined for clarity

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛶1(𝐭,𝐒) = 𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭),
𝛶2(𝐭,𝐑) = 𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭),
𝛶3(𝐭,𝐐) = 𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭),
𝛶4(𝐭,𝐗) = 𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭),

(43)

Theorem 9. The kernels 𝛶𝑖, 𝑖 = 1, 2, 3, 4 holds the subsequent Lipschitz
assumption. Then, if 𝛶1(𝐚,𝐒(𝐚)) = 0 and contraction variant satisfies

0 ≤ 𝜗𝑖 < 1, 𝑖 = 1, 2, 3, 4. (44)

Proof. Assume that the kernel 𝛶1(𝐭,𝐒) = 𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) −
𝜌2𝐒(𝐭)𝐐(𝐭). Also, let 𝐒 and �̄� are two distinct mappings, then we have
‖

‖

‖

𝛶1(𝐭,𝐒) − 𝛶1(𝐭, �̄�1)
‖

‖

‖

= ‖

‖

‖

− 𝜆
(

𝐒(𝐭) − �̄�(𝐭)
)

− 𝜌1𝐑(𝐭)
(

𝐒(𝐭) − �̄�(𝐭)
)

− 𝜌2𝐐(𝐭)
(

𝐒(𝐭) − �̄�(𝐭)
)

‖

‖

‖

≤ ‖

‖

‖

𝐒(𝐭) − �̄�(𝐭)‖‖
‖

(

𝜆 + 𝜌1
‖

‖

‖

𝐑(𝐭)‖‖
‖

+ 𝜌2
‖

‖

‖

𝐐(𝐭)‖‖
‖

)

≤ ‖

‖

‖

𝐒(𝐭) − �̄�(𝐭)‖‖
‖

(

𝜆 + 𝜌1𝜅2 + 𝜌2𝜅3
)

≤ 𝜗‖‖
‖

𝐒(𝐭) − �̄�(𝐭)‖‖
‖

. (45)

By choosing 𝜗 = 𝜆 + 𝜌1𝜅2 + 𝜌2𝜅3, where 𝜅1 = max0 𝑖 ∈ ‖‖
‖

𝐒(𝐭)‖‖
‖

, 𝜅2 =

max0 𝑖 ∈ ‖‖
‖

𝐑(𝐭)‖‖
‖

, 𝜅3 = max0 𝑖 ∈ ‖‖
‖

𝐐(𝐭)‖‖
‖

, 𝜅4 = max0 𝑖 ∈ ‖‖
‖

𝐗(𝐭)‖‖
‖

are
the bounded mappings, then we attain
‖

‖

‖

𝛶1(𝐭,𝐒) − 𝛶1(𝐭, �̄�)
‖

‖

‖

≤ 𝜗‖‖
‖

𝐒(𝐭) − �̄�(𝐭)‖‖
‖

. (46)

As a result, the Lipschitz criteria applies for 𝛶1, and if 0 ≤ 𝜗𝑖 < 1 is
a contraction for 𝛶1. Additional kernels can be addressed utilizing the
analogous technique, as shown below:
‖

‖

‖

𝛶2(𝐭,𝐑) − 𝛶2(𝐭, �̄�1)
‖

‖

‖

≤ 𝜗2
‖

‖

‖

𝐑(𝐭) − �̄�(𝐭)‖‖
‖

,
‖

‖

‖

𝛶3(𝐭,𝐐) − 𝛶3(𝐭, �̄�)‖‖
‖

≤ 𝜗3
‖

‖

‖

𝐐(𝐭) − �̄�(𝐭)‖‖
‖

,
‖

‖

‖

𝛶4(𝐭,𝐗) − 𝛶4(𝐭, �̄�)
‖

‖

‖

≤ 𝜗‖‖
‖

𝐗(𝐭) − �̄�(𝐭)‖‖
‖

. (47)

The verification is now finalized. □

Therefore, the mechanism (43) can be represented as using the
kernels from (10)

𝐒(𝐭) = 𝐒(0) + 1 − 𝜑
𝛶1(𝐭,𝐒) +

𝜑 𝐭
(𝐭 − 𝜍)𝜑−1𝛶1(𝜍,𝐒)𝑑𝜍,
7

𝐀𝐁𝐂(𝜑) 𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫0
𝐑(𝐭) = 𝐑(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶2(𝐭,𝐑) +
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶2(𝜍,𝐑)𝑑𝜍,

(𝐭) = 𝐐(0) +
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶3(𝐭,𝐐) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶3(𝜍,𝐐)𝑑𝜍,

(𝐭) =

𝐗(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶4(𝐭,𝐗) +
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶4(𝜍,𝐗)𝑑𝜍. (48)

urther, the recursive relationship that follows is presented as

𝐫 (𝐭) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶1(𝐭,𝐒𝐫−1) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶1(𝜍,𝐒𝐫−1)𝑑𝜍,

𝐫 (𝐭) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶2(𝐭,𝐑𝐫−1) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶2(𝜍,𝐑𝐫−1)𝑑𝜍,

𝐫 (𝐭) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶3(𝐭,𝐐𝐫−1) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶3(𝜍,𝐐𝐫−1)𝑑𝜍,

𝐫 (𝐭) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶4(𝐭,𝐗𝐫−1) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶4(𝜍,𝐗𝐫−1)𝑑𝜍, (49)

s well as adequate ICs are

0(𝐭) = 𝐒(0), 𝐑0(𝐭) = 𝐑(0), 𝐐0(𝐭) = 𝐐(0), 𝐗0(𝐭) = 𝐗(0). (50)

ere, we get the preceding by implementing the difference between the
ucceeding components

𝐫 (𝐭) = 𝐒𝐫 (𝐭) − 𝐒𝐫−1(𝐭)

=
1 − 𝜑

𝐀𝐁𝐂(𝜑)

(

𝛶1(𝐭,𝐒𝐫−1) − 𝛶1(𝐭,𝐒𝐫−2)
)

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶1(𝜍,𝐒𝐫−1) − 𝛶1(𝜍,𝐒𝐫−2)
)

𝑑𝜍,

B𝐫 (𝐭) = 𝐑𝐫 (𝐭) − 𝐑𝐫−1(𝐭)

=
1 − 𝜑

𝐀𝐁𝐂(𝜑)

(

𝛶2(𝐭,𝐑𝐫−1) − 𝛶2(𝐭,𝐑𝐫−2)
)

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶2(𝜍,𝐑𝐫−1) − 𝛶2(𝜍,𝐑𝐫−2)
)

𝑑𝜍,

𝐫 (𝐭) = 𝐐𝐫 (𝐭) −𝐐𝐫−1(𝐭)

=
1 − 𝜑

𝐀𝐁𝐂(𝜑)

(

𝛶3(𝐭,𝐐𝐫−1) − 𝛶3(𝐭,𝐐𝐫−2)
)

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶3(𝜍,𝐐𝐫−1) − 𝛶3(𝜍,𝐐𝐫−2)
)

𝑑𝜍,

𝐫 (𝐭) = 𝐗𝐫 (𝐭) − 𝐗𝐫−1(𝐭)

=
1 − 𝜑

𝐀𝐁𝐂(𝜑)

(

𝛶4(𝐭,𝐗𝐫−1) − 𝛶4(𝐭,𝐗𝐫−2)
)

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶4(𝜍,𝐗𝐫−1) − 𝛶4(𝜍,𝐗𝐫−2)
)

𝑑𝜍. (51)

bserve what follows

𝐫 (𝐭) =
𝐫
∑

𝜄=1
A𝐫 (𝐭), 𝐑𝐫 (𝐭) =

𝐫
∑

𝜄=1
B𝐫 (𝐭), 𝐐𝐫 (𝐭) =

𝐫
∑

𝜄=1
C𝐫 (𝐭), 𝐗𝐫 (𝐭) =

𝐫
∑

𝜄=1
D𝐫 (𝐭).

(52)

ext, implement the norm criterion and the triangle inequality to (51),
hich yields the corresponding consequence as follows:

A𝐫 (𝐭)
‖

‖

‖

= ‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝐫−1(𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

‖

‖

‖

𝛶1(𝐭,𝐒𝐫−1) − 𝛶1(𝐭,𝐒𝐫−2)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
‖

‖

‖

‖

∫

𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶1(𝜍,𝐒𝐫−1) − 𝛶1(𝜍,𝐒𝐫−2)
)

𝑑𝜍
‖

‖

‖

‖

.

Since the kernel meets the Lipschitz criteria, we have the following

‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝐫−1(𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1
‖

‖

‖

𝐒𝐫−1 − 𝐒𝐫−2
‖

‖

‖

+
𝜑 𝐭

(𝐭 − 𝜍)𝜑−1𝛶1
‖

‖𝐒𝐫−1 − 𝐒𝐫−2
‖

‖𝑑𝜍.
𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫0 ‖ ‖
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⎪
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⎪

⎪
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Consequently, we get the following:

‖

‖

‖

A𝐫 (𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1
|

|

|

A𝐫−1(𝐭)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶1 ∫

𝐭

0
(𝐭− 𝜍)𝜑−1‖‖

‖

A𝐫−1(𝐭)
‖

‖

‖

𝑑𝜍.

(53)

Applying a similar technique, we acquire
‖

‖

‖

B𝐫 (𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶2
|

|

|

B𝐫−1(𝐭)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶2 ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1‖‖

‖

B𝐫−1(𝐭)
‖

‖

‖

𝑑𝜍,

‖

‖

‖

C𝐫 (𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶3
|

|

|

C𝐫−1(𝐭)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶3 ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1‖‖

‖

C𝐫−1(𝐭)
‖

‖

‖

𝑑𝜍,

‖

‖

‖

D𝐫 (𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶4
|

|

|

D𝐫−1(𝐭)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶4 ∫

𝐭

0
(𝐭 − 𝜍)𝜑−1‖‖

‖

D𝐫−1(𝐭)
‖

‖

‖

𝑑𝜍.

Now, we prove a revolutionary theorem by acquiring the preceding
outcomes.

Theorem 10. The fractional model of oncolytic efficacy (10) considering
ABC derivative operator has a solution, if for 𝐭max the subsequent assumption
holds
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶𝜄 +

𝐭max
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝛶𝜄 < 1, 𝑓𝑜𝑟 𝜄 = 1, 2, 3. (54)

roof. Utilizing the assumption of bounded mappings of 𝐒(𝐭), 𝐑(𝐭), 𝐐(𝐭)
nd 𝐗(𝐭). Moreover, the kernels 𝛶𝜄, 𝜄 = 1, 2, 3, 4 fulfils the Lipschitz
ssumption from (53), then

A𝐫 (𝐭)
‖

‖

‖

≤ ‖

‖

‖

𝐒(0)‖‖
‖

{ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1 +
𝐭𝜑max

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶1

}𝐫
,

‖

‖

‖

B𝐫 (𝐭)
‖

‖

‖

≤ ‖

‖

‖

𝐑(0)‖‖
‖

{ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶2 +
𝐭𝜑max

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶2

}𝐫
,

‖

‖

‖

C𝐫 (𝐭)
‖

‖

‖

≤ ‖

‖

‖

𝐐(0)‖‖
‖

{ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶3 +
𝐭𝜑max

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶3

}𝐫
,

‖

‖

‖

D𝐫 (𝐭)
‖

‖

‖

≤ ‖

‖

‖

𝐗(0)‖‖
‖

{ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶4 +
𝐭𝜑max

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
𝛶4

}𝐫
. (55)

Because identity (52) and a continuous mapping occur, we must il-
lustrate that the foregoing mappings are the findings of the suggested
oncolytic model (10). For this, we analyse

𝐒(𝐭) − 𝐒(0) = 𝐒𝐫 − E𝐫 (𝐭),
𝐑(𝐭) − 𝐑(0) = 𝐑𝐫 − F𝐫 (𝐭),
𝐐(𝐭) −𝐐(0) = 𝐐𝐫 −G𝐫 (𝐭),

𝐗(𝐭) − 𝐗(0) = 𝐗𝐫 −H𝐫 (𝐭). (56)

Further, we illustrate that the infinite term ‖

‖

‖

E∞(𝐭)‖‖
‖

↦ 0. Thus, we have

‖

‖

‖

E𝐫 (𝐭)
‖

‖

‖

≤
‖

‖

‖

‖

1 − 𝜑
𝐀𝐁𝐂(𝜑)

(

𝛶1(𝐭,𝐒) − 𝛶1(𝐭,𝐒𝐫−1)
)

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶1(𝜍,𝐒) − 𝛶1(𝜍,𝐒𝐫−1)
)

𝑑𝜍
‖

‖

‖

‖

.

It follows that
‖

‖

‖

E𝐫 (𝐭)
‖

‖

‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

‖

‖

‖

𝛶1(𝐭,𝐒) − 𝛶1(𝐭,𝐒𝐫−1)
‖

‖

‖

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1‖‖

‖

𝛶1(𝜍,𝐒) − 𝛶1(𝜍,𝐒𝐫−1)
‖

‖

‖

𝑑𝜍

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1
‖

‖

‖

𝐒 − 𝐒𝐫−1
‖

‖

‖

+
𝛶1𝐭𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)
‖

‖

‖

𝐒 − 𝐒𝐫−1
‖

‖

‖

.

By repeating a similar technique, we have

‖

‖E𝐫 (𝐭)
‖

‖ ≤
{ 1 − 𝜑

+ 𝐭𝜑 }𝐫+1
𝛶 𝐫‖

‖𝐒 − 𝐒𝐫−1
‖

‖

𝐫 , (57)
8

‖ ‖ 𝐀𝐁𝐂(𝜑) 𝐀𝐁𝐂(𝜑)𝛤 (𝜑) 1
‖ ‖

⎩

Adjusting 𝐭 = 𝐭max, then we have

‖

‖

‖

E𝐫 (𝐭)
‖

‖

‖

≤
{ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

+
𝐭𝜑max

𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

}𝐫+1
𝛶 𝐫
1
‖

‖

‖

𝐒 − 𝐒𝐫−1
‖

‖

‖

𝐫 , (58)

Now implementing limit, we achieve ‖

‖

‖

E𝐫 (𝐭)
‖

‖

‖

↦ 0. Analogously, one
an obtain ‖

‖

‖

F𝐫 (𝐭)
‖

‖

‖

↦ 0, ‖‖
‖

G𝐫 (𝐭)
‖

‖

‖

↦ 0, ‖‖
‖

H𝐫 (𝐭)
‖

‖

‖

↦ 0, which assures the
xistence of the solution of the fractional model oncolytic efficacy.

We now investigate a contraction strategy for the validity of the
esults of the hypothesized fractional model for oncolytic efficacy (10).
ermit a framework of responses to emerge for this, assuming that there
s a system of solutions for (10), �̄�(𝐭), �̄�(𝐭), �̄�(𝐭) and �̄�(𝐭). Then we have

(𝐐) − �̄�(𝐐) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
(

𝛶1(𝐭,𝐒) − 𝛶1(𝐭, �̄�)
)

+
𝜑

𝛤 (𝜑)𝐀𝐁𝐂(𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1

(

𝛶1(𝜍,𝐒) − 𝛶1(𝜍, �̄�)
)

𝑑𝜍. (59)

mplementing norm on (59), we acquire

𝐒(𝐐) − �̄�(𝐐)‖‖
‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

‖

‖

‖

𝛶1(𝐭,𝐒) − 𝛶1(𝐭, �̄�)
‖

‖

‖

+
𝜑

𝛤 (𝜑)𝐀𝐁𝐂(𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1‖‖

‖

𝛶1(𝜍,𝐒) − 𝛶1(𝜍, �̄�)
‖

‖

‖

𝑑𝜍.

In view of the Lipschitz assumption for the kernel, we have

‖

‖

‖

𝐒(𝐐) − �̄�(𝐐)‖‖
‖

≤ 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1
‖

‖

‖

𝐒 − �̄�‖‖
‖

+
𝛶1𝐭𝜑

𝛤 (𝜑)𝐀𝐁𝐂(𝜑)
‖

‖

‖

𝐒 − �̄�‖‖
‖

, (60)

which permits us to write

‖

‖

‖

𝐒(𝐐) − �̄�(𝐐)‖‖
‖

(

1 −
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶1 +

𝛶1𝐭𝜑

𝛤 (𝜑)𝐀𝐁𝐂(𝜑)

)

≤ 0, (61)

and

‖

‖

‖

𝐒(𝐐) − �̄�(𝐐)‖‖
‖

= 0 ⟹ 𝐒(𝐐) = �̄�(𝐐). (62)

ence, (61) and (62) demonstrate that the system (10) has a unique
olution. We can acquire the unique result for the 𝐫, 𝐐 and 𝐗 using the
quivalent technique. As a result, the solution of the fractional model
f oncolytic efficacy (10) is unique.

Since the precise result of the suggested framework is hard to
scertain. Both ends of (9) are transformed using the straightforward
nd inverse Sumudu transforms (4), we have

𝐒(𝐭) = 𝐒(0)

+𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓
{

𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭)
}

}

,

𝐑(𝐭) = 𝐑(0)

+𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓
{

𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭)
}

}

,

𝐐(𝐭) = 𝐐(0) + 𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭)
}

}

,

𝐗(𝐭) = 𝐗(0)

+𝐒𝐓−1
{

1−𝜑
−𝜇𝜑 𝐒𝐓

{

𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭)
}

}

.

𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑( 1−𝜑 )
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The following recursive scheme can be written as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐒(𝐫)(𝐭) = 𝐒(0)

+𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓
{

𝛯 − 𝜆𝐒(𝐭) − 𝜌1𝐒(𝐭)𝐑(𝐭) − 𝜌2𝐒(𝐭)𝐐(𝐭)
}

}

,

𝑁(𝐫)(𝐭) = 𝐑(0)

+𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓
{

𝛿1𝜌1𝐒(𝐭)𝐑(𝐭) − (𝜆 + 𝜀1)𝐑(𝐭)
}

}

,

𝐐(𝐫)(𝐭) = 𝐐(0) + 𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛿2𝜌2𝐒(𝐭)𝐐(𝐭) − (𝜆 + 𝜀2)𝐐(𝐭) − 𝜌3𝐐(𝐭)𝐗(𝐭)
}

}

,

𝐗(𝐫)(𝐭) = 𝐗(0)

+𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓
{

𝛩 + 𝛿3𝜌3𝐐(𝐭)𝐗(𝐭) − (𝜆 + 𝜀3)𝐗(𝐭)
}

}

.

Here,  = 1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

represents the Lagrange multiplier. By

employing limit as 𝐫 approaches to ∞, then we can attain the approx-
imate solutions 𝐒(𝐭) = lim𝐫↦∞ 𝐒(𝐫)(𝐭); 𝐑(𝐭) = lim𝐫↦∞ 𝐑(𝐫)(𝐭), 𝐐(𝐭) =
lim𝐫↦∞ 𝐐(𝐫)(𝐭) and 𝐗(𝐭) = lim𝐫↦∞ 𝐗(𝐫)(𝐭). □

Stability analysis of the fractional model for oncolytic efficacy

Suppose that there be a complete metric space (𝜒, 𝑑) having  ∶
𝜒 ↦ 𝜒 . Consider a Picard iteration (𝑦𝐫 ) = 𝑦𝐫+1 having a set of fixed
points  () ≠ ∅ of  such that lim𝐫↦∞ 𝑦𝐫 = 𝑤 ∈  (). Suppose
there be a sequence {𝑦𝐫} ∈ 𝜒 such that lim𝐫↦∞ 𝑑(𝑥𝐫 ,𝑥𝐫 ) = 0, ⟹

𝑥𝐫 ↦ 𝑤, then the sequence 𝑦𝐫+1 = 𝑦𝐫 is Picard -stable. For further
investigation (see [41]).

Theorem 11 ([41]). Suppose there be a complete metric space (𝜒, 𝑑) and
also there be a nonempty fixed point  () of  ∶ 𝜒 ↦ 𝜒 , then there exists
𝑐1 ≥ 0, 𝑐2 ∈ [0, 1) such that

𝑑(𝑦1 ,𝛿1 ) ≤ 𝑐1𝑑(𝑦1 , 𝑦1) + 𝑐2𝑑(𝑦1, 𝛿1), ∀ 𝑦1 ∈ 𝜒, (63)

where 𝛿1 ∈  () having lim𝐫↦∞ 𝑑(𝑥𝐫 ,𝑥𝐫 ) = 0, then we say that Picard
iteration is -stable.

Theorem 12. Consider a self-map  presented as


[

𝐒(𝐫)(𝐭)
]

= 𝐒𝐫+1(𝐭) = 𝐒𝐫 (𝐭) + 𝐒𝐓−1
{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛯 − 𝜆𝐒(𝐫−1)(𝐭) − 𝜌1𝐒(𝐫−1)(𝐭)𝐑(𝐫−1)(𝐭) − 𝜌2𝐒(𝐫−1)(𝐭)𝐐(𝐫−1)(𝐭)
}

}

,


[

𝐑(𝐫)(𝐭)
]

= 𝐑𝐫+1(𝐭) = 𝐑𝐫 (𝐭) + 𝐒𝐓−1
{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛿1𝜌1𝐒(𝐫−1)(𝐭)𝐑(𝐫−1)(𝐭) − (𝜆 + 𝜀1)𝐑(𝐫−1)(𝐭)
}

}

,


[

𝐐(𝐫)(𝐭)
]

= 𝐐𝐫+1(𝐭) = 𝐐𝐫 (𝐭) + 𝐒𝐓−1
{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛿2𝜌2𝐒(𝐫−1)(𝐭)𝐐(𝐫−1)(𝐭) − (𝜆 + 𝜀2)𝐐(𝐫−1)(𝐭) − 𝜌3𝐐(𝐫−1)(𝐭)𝐗(𝐫−1)(𝐭)
}

}

,


[

𝐗(𝐫)(𝐭)
]

= 𝐗𝐫+1(𝐭) = 𝐗𝐫 (𝐭) + 𝐒𝐓−1
{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

𝛩 + 𝛿3𝜌3𝐐(𝐫−1)(𝐭)𝐗(𝐫−1)(𝐭) − (𝜆 + 𝜀3)𝐗(𝐫−1)(𝐭)
}

}

(64)

is -stable on 1(�̄�, �̄�) if
‖

‖

‖

(𝐒𝐫 (𝐭)) −(𝐒𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝑚1
(𝐭)‖‖

‖

{

1 − 𝜆 − 𝜌1𝜛1(𝜉)𝜛2(𝜉) − 𝜌2𝜛1(𝜉)𝜛3(𝜉)
}

,
‖ ‖
9

‖

‖

(𝐑𝐫 (𝐭)) −(𝐑𝑚1
(𝐭))‖

‖

≤ ‖

‖

‖

𝐑𝐫 (𝐭) − 𝐑𝑚1
(𝐭)‖‖

‖

{

𝛿1𝜌1𝜛1(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀1)𝜛3(𝜉)
}

,
‖

‖

‖

(𝐐𝐫 (𝐭)) −(𝐐𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐐𝐫 (𝐭) −𝐐𝑚1
(𝐭)‖‖

‖

{

𝛿2𝜌2𝜛1(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀2)𝜛3(𝜉) − 𝜌3𝜛3(𝜉)𝜛4(𝜉)
}

,
‖

‖

‖

(𝐗𝐫 (𝐭)) −(𝐗𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐗𝐫 (𝐭) − 𝐗𝑚1
(𝐭)‖‖

‖

{

𝛿3𝜌3𝜛4(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀3)𝜛4(𝜉)
}

.

Proof. By means of the given hypothesis, also employing the norm on
both sides, we have
‖

‖

‖

(𝐒𝐫 (𝐭)) −(𝐒𝑚1
(𝐭))‖‖

‖

=
‖

‖

‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝑚1
(𝐭) + 𝐒𝐓−1

{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

(

𝛯 − 𝜆𝐒𝐫 (𝐭) − 𝜌1𝐒𝐫 (𝐭)𝐑𝐫 (𝐭) − 𝜌2𝐒𝐫 (𝐭)𝐐𝐫 (𝐭)
)

−
(

𝛯 − 𝜆𝐒𝑚1
(𝐭) − 𝜌1𝐒𝑚1

(𝐭)𝐑𝑚1
(𝐭) − 𝜌2𝐒𝑚1

(𝐭)𝐐𝑚1
(𝐭)

)

}

‖

‖

‖

‖

‖

‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝑚1
(𝐭)‖‖

‖

+
‖

‖

‖

‖

‖

𝐒𝐓−1
{

1 − 𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑 + 1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

×𝐒𝐓
{

(

−𝜆(𝐒𝐫 (𝐭) − 𝐒𝑚1
(𝐭)) − 𝜌1(𝐒𝐫 (𝐭)𝐑𝐫 (𝐭) − 𝐒𝑚1

(𝐭)𝐑𝑚1
(𝐭))

−𝜌2(𝐒𝐫 (𝐭)𝐐𝐫 (𝐭) − 𝐒𝑚1
(𝐭)𝐐𝑚1

(𝐭))
)

}

‖

‖

‖

‖

‖

. (65)

t follows that

(𝐒𝐫 (𝐭)) −(𝐒𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐒𝐫 (𝐭) − 𝐒𝑚1
(𝐭)‖‖

‖

{

1 − 𝜆 − 𝜌1𝜛1(𝜉)𝜛2(𝜉) − 𝜌2𝜛1(𝜉)𝜛3(𝜉)
}

. (66)

Analogously, we have
‖

‖

‖

(𝐑𝐫 (𝐭)) −(𝐑𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐑𝐫 (𝐭) − 𝐑𝑚1
(𝐭)‖‖

‖

{

𝛿1𝜌1𝜛1(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀1)𝜛3(𝜉)
}

,
‖

‖

‖

(𝐐𝐫 (𝐭)) −(𝐐𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐐𝐫 (𝐭) −𝐐𝑚1
(𝐭)‖‖

‖

{

𝛿2𝜌2𝜛1(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀2)𝜛3(𝜉) − 𝜌3𝜛3(𝜉)𝜛4(𝜉)
}

,
‖

‖

‖

(𝐗𝐫 (𝐭)) −(𝐗𝑚1
(𝐭))‖‖

‖

≤ ‖

‖

‖

𝐗𝐫 (𝐭) − 𝐗𝑚1
(𝐭)‖‖

‖

{

𝛿3𝜌3𝜛4(𝜉)𝜛3(𝜉) − (𝜆 + 𝜀3)𝜛4(𝜉)
}

, (67)

where 𝜛1, 𝜛2, 𝜛3, 𝜛4 are the 𝐒𝐓−1
{

1−𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑+1)𝐸𝜑(

−𝜇𝜑
1−𝜑 )

𝐒𝐓(.)
}

.

Thus, utilizing Theorem 11, we concluded that  is Picard -stable
ccording to the foregoing findings. □

umerical analysis and mathematical modelling

In this section, we will use the model (10) which has been numer-
cally simulated by [42] using the ABC fractional derivative of order
. The method is used to obtain approximate solutions to the proposed
odel.

Assuming the subsequent DE of oncolytic efficacy in ABC operator
orm
𝐴𝐵𝐶
0 𝐃𝜑𝐭 𝛬(𝐭) = 𝛹 (𝐭, 𝛬(𝐭)),
𝛬(0) = 𝛬0.

(68)

he fractional integral representation of the aforesaid initial value
roblem is as follows:

(𝐭)−𝛬(0) = 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛹 (𝐭, 𝛬(𝐐))+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭−𝜍)𝜑−1𝛹 (𝜍, 𝛬(𝜍))𝑑𝜍.
(69)
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Inserting 𝐭 = 𝐭𝐫+1, 𝐫 = 1, 2, 3,…, then (69) diminishes to the subsequent

𝛬(𝐭𝐫+1) − 𝛬(0) =
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛹 (𝐭𝐫 , 𝛬(𝐭𝐫 ))

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭𝐫+1

0
(𝐭𝐫+1 − 𝜍)𝜑−1𝛹 (𝜍, 𝛬(𝜍))𝑑𝜍. (70)

Taking into consideration 𝛹 (𝜍, 𝛬(𝜍)) and incorporating the Lagrange
polynomial interpolation with two step [42], we acquire the approx-
imation below on [𝐭𝓁 , 𝐭𝓁+1]

𝓁 = 𝛹 (𝜍, 𝛬(𝜍))

=
𝜍 − 𝐭𝓁−1
𝐭𝓁 − 𝐭𝓁−1

𝛹 (𝐭𝓁 , 𝛬(𝐭𝓁)) −
𝜍 − 𝐭𝓁

𝐭𝓁 − 𝐭𝓁−1
𝛹 (𝐭𝓁−1, 𝛬(𝐭𝓁−1))

=
𝜍 − 𝐭𝓁−1

ℏ
𝛹 (𝐭𝓁 , 𝛬(𝐭𝓁)) −

𝜍 − 𝐭𝓁
ℏ

𝛹 (𝐭𝓁−1, 𝛬(𝐭𝓁−1))

≈
𝜍 − 𝐭𝓁−1

ℏ
𝛹 (𝐭𝓁 , 𝛬𝓁) −

𝜍 − 𝐭𝓁
ℏ

𝛹 (𝐭𝓁−1, 𝛬𝓁−1). (71)

Employing Lagrange polynomial interpolation on (70), then we have

𝛬𝐫+1 = 𝛬(0) +
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛹 (𝐭𝐫 , 𝛬(𝐭𝐫 )) +

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

×
𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

⎩

𝛹 (𝐭𝓁 ,𝛬𝓁 )
ℏ ∫0 𝐭𝓁

𝐭𝓁+1 (𝜍 − 𝐭𝓁−1)(𝐭𝐫+1 − 𝜍)𝜑−1𝛹 (𝜍, 𝛬(𝜍))𝑑𝜍

−𝛹 (𝐭𝓁−1 ,𝛬𝓁−1)
ℏ ∫0 𝐭𝓁

𝐭𝓁+1 (𝜍 − 𝐭𝓁)(𝐭𝐫+1 − 𝜍)𝜑−1𝛹 (𝜍, 𝛬(𝜍))𝑑𝜍.
(72)

fter simplifying the integral in (72), we attain

𝐫+1 = 𝛬(0) +
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛹 (𝐭𝐫 , 𝛬(𝐭𝐫 )) +

𝜑
𝐀𝐁𝐂(𝜑)

𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

⎩

ℏ𝜑𝛹 (𝐭𝓁 ,𝛬𝓁 )
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 𝜑) − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 2𝜑)
)

− ℏ𝜑𝛹 (𝐭𝓁−1 ,𝛬𝓁−1)
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑+1 − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 1 + 𝜑)
)

+ℜ𝜑
𝐫 ,

(73)

here ℜ𝜑
𝐫 represent the remainder term and is defined as

𝜑
𝐫 =

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝐫
∑

𝓁=0
∫0

𝐭𝓁 𝐭𝓁−1
(𝜍 − 𝐭𝓁)(𝜍 − 𝐭𝓁−1)

2!

× 𝜕2

𝜕𝜇2
[

𝛹 (𝜍, 𝛬(𝜍))
]

𝜍=𝜀𝜇
(𝐭𝐫+1 − 𝜍)𝜑−1𝑑𝜍. (74)

The numerical technique for the oncolytic efficacy system (10) encom-
passing the AB-fractional integral operator is presented as

𝐒(𝐭) = 𝐒(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1(𝐭,𝐒(𝐭))

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶1(𝜍,𝐒(𝜍))𝑑𝜍,

𝐑(𝐭) = 𝐑(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶2(𝐭,𝐑(𝐭))

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶2(𝜍,𝐑(𝜍))𝑑𝜍,

𝐐(𝐭) = 𝐐(0) +
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶3(𝐭,𝐐(𝐭))

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶3(𝜍,𝐐(𝜍))𝑑𝜍,

𝐗(𝐭) = 𝐗(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶4(𝐭,𝐗(𝐭))

+
𝜑

𝐀𝐁𝐂(𝜑)𝛤 (𝜑) ∫
𝐭

0
(𝐭 − 𝜍)𝜑−1𝛶4(𝜍,𝐗(𝜍))𝑑𝜍, (75)

supplemented to ICs

𝐒(0) = 𝐑(0) = 𝐐(0) = 𝐗(0) = 0. (76)

In view of numerical technique (73) to (75), we attain

𝐒𝐫+1(𝐭) = 𝐒(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶1(𝐭𝐫 ,𝐒(𝐭𝐫 )) +
𝜑

𝐀𝐁𝐂(𝜑)

𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

ℏ𝜑𝛶1(𝐭𝓁 ,𝐒𝓁 )
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 𝜑) − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 2𝜑)
)

− ℏ𝜑𝛶1(𝐭𝓁−1 ,𝐒𝓁−1) ((𝐫 + 1 − 𝓁)𝜑+1 − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 1 + 𝜑)
)

+ℜ𝜑 ,
(77)
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⎩

𝛤 (𝜑+2) 𝐫1
𝐫+1(𝐭) = 𝐑(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶2(𝐭𝐫 ,𝐑(𝐭𝐫 )) +
𝜑

𝐀𝐁𝐂(𝜑)

𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

⎩

ℏ𝜑𝛶2(𝐭𝓁 ,𝐑𝓁 )
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 𝜑) − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 2𝜑)
)

− ℏ𝜑𝛶2(𝐭𝓁−1 ,𝐑𝓁−1)
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑+1 − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 1 + 𝜑)
)

+ℜ𝜑
𝐫2,

(78)

𝐐𝐫+1(𝐭) = 𝐐(0) +
1 − 𝜑

𝐀𝐁𝐂(𝜑)
𝛶3(𝐭𝐫 ,𝐐(𝐭𝐫 )) +

𝜑
𝐀𝐁𝐂(𝜑)

𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

⎩

ℏ𝜑𝛶2(𝐭𝓁 ,𝐐𝓁 )
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 𝜑) − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 2𝜑)
)

− ℏ𝜑𝛶3(𝐭𝓁−1 ,𝐐𝓁−1)
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑+1 − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 1 + 𝜑)
)

+ℜ𝜑
𝐫3

(79)

and

𝐗𝐫+1(𝐭) = 𝐗(0) + 1 − 𝜑
𝐀𝐁𝐂(𝜑)

𝛶4(𝐭𝐫 ,𝐗(𝐭𝐫 )) +
𝜑

𝐀𝐁𝐂(𝜑)

𝐫
∑

𝓁=0

⎧

⎪

⎨

⎪

⎩

ℏ𝜑𝛶4(𝐭𝓁 ,𝐗𝓁 )
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 𝜑) − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 2 + 2𝜑)
)

− ℏ𝜑𝛶4(𝐭𝓁−1 ,𝐗𝓁−1)
𝛤 (𝜑+2)

(

(𝐫 + 1 − 𝓁)𝜑+1 − (𝐫 − 𝓁)𝜑(𝐫 − 𝓁 + 1 + 𝜑)
)

+ℜ𝜑
𝐫4.

(80)

where ℜ𝜑
𝐫𝜄, 𝜄 = 1, 2, 3, 4 are presented as

ℜ𝜑
𝐫1 =

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝐫
∑

𝓁=0
∫0

𝐭𝓁 𝐭𝓁−1
(𝜍 − 𝐭𝓁)(𝜍 − 𝐭𝓁−1)

2!

× 𝜕2

𝜕𝜍2
[

𝛶1(𝜍, 𝛬(𝜍))
]

𝜍=𝜀𝜇
(𝐭𝐫+1 − 𝜍)𝜑−1𝑑𝜍,

𝜑
𝐫2 =

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝐫
∑

𝓁=0
∫0

𝐭𝓁 𝐭𝓁−1
(𝜍 − 𝐭𝓁)(𝜍 − 𝐭𝓁−1)

2!

× 𝜕2

𝜕𝜍2
[

𝛶2(𝜍, 𝛬(𝜍))
]

𝜍=𝜀𝜇
(𝐭𝐫+1 − 𝜍)𝜑−1𝑑𝜍,

𝜑
𝐫3 =

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝐫
∑

𝓁=0
∫0

𝐭𝓁 𝐭𝓁−1
(𝜍 − 𝐭𝓁)(𝜍 − 𝐭𝓁−1)

2!

× 𝜕2

𝜕𝜍2
[

𝛶3(𝜍, 𝛬(𝜍))
]

𝜍=𝜀𝜇
(𝐭𝐫+1 − 𝜍)𝜑−1𝑑𝜍,

𝜑
𝐫1 =

𝜑
𝐀𝐁𝐂(𝜑)𝛤 (𝜑)

𝐫
∑

𝓁=0
∫0

𝐭𝓁 𝐭𝓁−1
(𝜍 − 𝐭𝓁)(𝜍 − 𝐭𝓁−1)

2!

× 𝜕2

𝜕𝜍2
[

𝛶4(𝜍, 𝛬(𝜍))
]

𝜍=𝜀𝜇
(𝐭𝐫+1 − 𝜍)𝜑−1𝑑𝜍. (81)

he mathematical findings for (77)–(80) are now reported. The settings
f biological components supplied by Wang et al. [4] were imple-
ented in this ocolytic efficacy model (9).

esults and discussion

Immunotherapy is at the cutting edge of contemporary cancer treat-
ent. With varying degrees of success, innovative medicines have been
eveloped that address all three components of cancer pathogenesis:
umour, niche, and impervious mechanism. Oncolytic viruses are new
laviviruses that are being used in combination for initial and salvage
reatment. In an attempt to strengthen improved and more appropriate
umour therapies, numerical strategies have been implemented to assist
n comprehending the intricate mechanisms of oncolytic virotherapy.
ollowing that, a slew of numerical models (detailed in the preamble)
ere built to characterize the oncolytic efficacy model (10). Here, we
esigned a fractional model of oncolytic efficacy based on fractional
pidemic assumptions [10,11] and integrated monitoring indicators in
his investigation. The method incorporates the chance of recidivism,
hich fluctuates irrespective of how long the individual has been
n treatment, via the use of the ABC fractional derivative operator,
ncorporating the variation in parameters represented in Table 1.

To substantiate the simulated predictions from the preceding parts,
e perform several numerical computations. As for this explanation,

he components of framework (10) gravitate to 0(𝐒0, 0, 0,𝐗0) =
𝛯 , 0, 0, 𝛩

)

in this instance, see, Plot 3 and 4, which is compatible
𝜆 𝜆+𝜀3
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Fig. 3. Three-dimensional illustration of oncolytic efficacy model (10) when 𝛷1 > 1 or 𝛷2 > 1+ 𝛩𝜌3
(𝜆+𝜖2 )(𝜆=𝜖3 )

. The non-competitive EP 0 is globally asymptotically stable to demonstrate
the spatiotemporal factors of nutrient and normal cells, respectively.
Fig. 4. Three-dimensional illustration of oncolytic efficacy model (10) when 𝛷1 > 1 or 𝛷2 > 1+ 𝛩𝜌3
(𝜆+𝜖2 )(𝜆=𝜖3 )

. The non-competitive EP 0 is globally asymptotically stable to demonstrate
the spatiotemporal factors of tumour cells and free M1 virus, respectively.
with Theorem 5. The nutrition is insufficient to sustain the cancerous
and normal tissue communities, resulting in eventual annihilation.
This could also be an instance where, in the absence of an immu-
nity reaction, there has been intense rivalry between healthy and
cancerous tissues, and the procedure destroyed the cancerous tissues,
rendering them unable to maintain regular organisms, resulting in
decompensation.

For the ABC fractional oncolytic efficacy model, 𝐒(𝐭), 𝐑(𝐭), 𝐐(𝐭)
and 𝐗(𝐭) are the specific dietary, regular cells, cancer hepatocytes,
and M1 viral contents at time 𝐭, respectively. 𝛯 = 0.02 and 𝛩 =
0.01 are the enlistment variables for nutritional and M1 viral levels,
respectively. Fig. 5(a)–(b) shows the association of EP 1(𝐒,𝐑, 0,𝐗)
in the dearth of an innate reaction, the oncolytic M1 virus therapy
unable to decimate cancerous tissue, resulting in the elimination of
healthy cells when ICs (𝐒,𝐑,𝐐,𝐗) = (0.36, 0.24, 0.12, 0.12). Meanwhile,
Fig. 6(a)–(b) depicts that rise in tumour cells and free M1 virus. As a
result, this circumstance poses a serious risk to the service user. This
inspection concludes that people with acute or influenced drug therapy
after tissue allografts have a clinically important improved incidence
of virtually each type of tumour tissue that supplies potent, effective
treatments for the pivotal involvement of invulnerable surveillance in
tumorigenesis and malignant transformation. Figs. 7–8 illustrates the
correlation of EP  (𝐒, 0,𝐐,𝐗) when the defencive reaction is absent,
11

2

the oncolytic M1 virotherapy is completely successful in eliminating
the tumour utilizing ICs (𝐒,𝐑,𝐐,𝐗) = (0.24, 0.16, 0.08, 0.08), resulting
in the restoration of healthy tissues and improved wellness outcomes.
As a result, the M1 virus is able to regulate the tumour despite being
influenced by the immunological reaction targeting tumour tissues.
The smallest efficacious dose required to eradicate the tumour is cal-
culated. Furthermore, Figs. 9–10 demonstrates the preciseness of EP
3(𝐒,𝐑,𝐐,𝐗), when the anti-tumour innate immunity is active, the
tumour is controlled, and the number of cancerous germs decreases,
involving the ICs (𝐒,𝐑,𝐐,𝐗) = (1.29, 0.39, 0.29, 0.29). Because oncogenes
rely on cancerous tissues for proliferation, this reduction could result
in oncolytic virus deterioration and, as a result, therapy rejection. In
a nutshell, both the antibody reaction and oncogenic virotherapy were
unable to maintain adequate tissues and save the patient’s life in this
circumstance.

Finally, Figs. 11–12 represents the response of nutrient, normal
tissues, tumour tissues and free M1 virus utilizing the ICs (𝐒,𝐑,𝐐,𝐗) =
(0.5, 0.34, 0.29, 0.29). Throughout this situation, the tumour is controlled
by the anti-tumour innate invulnerability, that reduces the number of
cancerous lymphocytes while increasing the number of healthy tissues.
As a result, oncogenic virotherapy can no longer consistently defend
the tumour, and the reduction in cancerous growth corresponds to
a drop in oncolytic pathogen generation. However, this stratagem
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Fig. 5. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.36, 0.24, 0.12, 0.12) of (a) nutrient
b) normal cells.
Fig. 6. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.36, 0.24, 0.12, 0.12) of (a) tumour
cells (b) free M1 virus.
Fig. 7. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.24, 0.16, 0.08, 0.08) of (a) nutrient
b) normal cells.
i
c

ight be applied to various recipient cellular functions. That is to say,
raphics have the potential to effectively enable not only oncotherapy,
ut also dominating disruption of localized rheumatoid manifestations,
12
nhibition of innate immunity, and possibly performance expectancy for
ompensatory or proliferative tissue renovation.
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Fig. 8. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.24, 0.16, 0.08, 0.08) of (a) tumour
cells (b) free M1 virus.

Fig. 9. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (1.29, 0.39, 0.29, 0.29) of (a) nutrient
(b) normal cells.

Fig. 10. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (1.29, 0.39, 0.29, 0.29) of (a) tumour
cells (b) free M1 virus.
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Fig. 11. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.5, 0.34, 0.29, 0.29) of (a) nutrient
(b) normal cells.
Fig. 12. Two-dimensional representation of fractional model of oncolytic efficacy (10) for multiple fractional orders utilizing the ICs (𝐒,𝐑,𝐐,𝐗) = (0.5, 0.34, 0.29, 0.29) of (a) tumour
cells (b) free M1 virus.
Conclusion

In this investigation, we researched the impact of an oncogenic M1
virotherapy framework in this research, taking into account the mem-
ory impact expressed by the ABC fractional derivative. Several mathe-
matical aspects of the aforesaid model are discussed in detail. The four
potential EPs in the framework were discovered to be non-competitive
equilibrium 0, cancer-free equilibria 1, therapeutic inability equilib-
ria 2, and partially accomplishment equilibria 3. The findings suggest
that the M1 infection is partly effective at reducing cancer growth
while enhancing immune tissues, perhaps minimizing tumorigenicity
and regulating infection severity. According to the aforementioned
numerical conclusions, the persistence of the ABC fractional derivative
has no relevance to the structural characterization of equilibria. We
notice that the fractional order impacts the pace of convergence and
the time-frame it requires to reach equilibrium, which is obtained from
the numeric computations. It is worth-mentioning that our outcomes
discussed all aspects of the oncolytic M1 efficacy model and are more
general than the results derived by [4]. The fractional derivative in
the perspective of ABC having an M-L kernel is used to derive the
outcome of this research. Modelling the behaviour of oncolytic M1
drug treatment using the newly developed fractal-fractional derivative
operator [43] could be very interesting. In addition, we will also
14
incorporate additional biological parameters, including dispersion [44,
45] and immunology [46] into our framework described in (10).
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