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Abstract
In this paper, we introduce the (k, s)-fractional integral and differential operators
involving k-Mittag-Leffler function Eδ

k,ρ ,β (z) as its kernel. Also, we establish various
properties of these operators. Further, we consider a number of certain consequences
of the main results.
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1 Introduction
Applications and importance of fractional calculus have recently been paid attention to
to an ever increasing extent. In mathematical analysis, the fractional calculus is a very
useful tool to carry out differentiations and integrations with the real numbers or with
the complex numbers powers of the fractional calculus (for example, differential or inte-
gral operators). Miller and Ross [] and Kiryakova [] described a complete description
of fractional calculus operators along with some of their properties and applications can
be found in the research of monographs. It is quite well known that there are a number
of different definitions of fractional integrals and their applications. Each definition has
its own advantages and is appropriate for applications to a different type of problems.
Lately, Atangana and Baleanu [] have introduced one more dimension to this study by
proposing a derivative that is based upon the generalized Mittag-Leffler function, since
the Mittag-Leffler function is more appropriate in expressing nature than a power func-
tion. For the more recent improvements of fractional calculus, the reader may refer to
[–]. Integral inequalities are taken up to be significant as these are helpful in the study
of various courses of differential and integral equations (see []). During the past several
years, several researchers have obtained various fractional integral inequalities compris-
ing the different fractional differential and integral operators. This subject has received
attention of various researchers and mathematicians during the last few decades. The k-
symbols are well known from many references related to finite difference calculus (see,
[–]). Recently, k-fractional integral operators have been considered in the literature by
various authors. For this purpose, we start with the following properties in the literature.
Díaz and Pariguan (see []) have introduced the Pochhammer k-symbols and k-gamma
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function, which are defined as

(δ)n,k =

⎧
⎨

⎩

 (n = , δ ∈ C),

δ(δ + k) · · · (δ + (n – )k) (n ∈N, δ ∈ C, k > ),
()

and

�k(η) =
∫ ∞


tη–e– tk

k dt, η ∈C, k > ,�(z) > . ()

In the same paper, they defined the relations

�k(η + k) = η�k(η) ()

and

�k(η) = (k)
η
k –�

(
η

k

)

. ()

Mubeen and Habibullah [] introduced a variant of fractional integrals which was based
on the k-gamma function, called the k-fractional integral, and gave its applications. The
k-fractional integral defined is as

Iμ

k
(
f (x)

)
=


k�k(μ)

∫ x


(x – τ )

μ
k –f (τ ) dτ . ()

Clearly, when k =  then Iμ

k (f (x)) leads to the result of the Riemann-Liouville (R-L) frac-
tional integration formula (see []); we have

Iμ
(
f (x)

)
=


�(μ)

∫ x


(x – τ )μ–f (τ ) dτ . ()

Also, they defined the following formulas of the k-fractional integral:

Iρ

k
(
x

β
k –) =

�k(β)
�k(ρ + β)

x
ρ
k + β

k – ()

and

Iρ

k
(
(x – u)

β
k –) =

�k(β)
�k(ρ + β)

(x – u)
ρ
k + β

k –. ()

Recently Sarikaya et al. [] have introduced the Riemann-Liouville (k, s)-fractional inte-
gral of order μ >  is defined as

s
kIμ

a f (x) =
(s + )– μ

k

k�k(μ)

∫ x

a

(
xs+ – ts+)

μ
k –tsf (t) dt, ()

where x ∈ [a, b], k >  and s ∈R\{–}. In the same paper, they defined the following result:

s
kIμ

a
[(

ts+ – as+) λ
k –] =

�k(λ)
(s + )

μ
k �k(λ + μ)

(
xs+ – as+)

λ+μ
k –. ()
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The applications of fractional calculus found in many recent papers (see [–]). Recently,
the researchers established certain Hermite-Hadamard type inequalities via generalized
k-fractional integrals, Grüss type integral inequalities for generalized Riemann-Liouville
k-fractional integrals and (k, s)-Riemann-Liouville fractional integral inequalities for con-
tinuous random variables by using the idea of (k, s)-fractional integrals [–].

The Swedish mathematician Mittag-Leffler [] has defined the Mittag-Leffler function,
which is denoted and defined by the following series:

Eρ(z) =
∞∑

n=

zn

�(ρn + )
, z ∈C;�(ρ) > . ()

Wiman [] introduced a generalized form of the Mittag-Leffler function, which is defined
as

Eρ,β(z) =
∞∑

n=

zn

�(ρn + β)
, z,β ∈C;�(ρ) > . ()

For more details of Mittag-Leffler functions defined in () and () such as their various
generalizations and applications in different fields, the reader may refer to [, , , ]
and in particular the work of Saigo and Kilbas []. In recent years, the Mittag-Leffler
function () and some of its different generalizations and applications have been consid-
ered numerically in the complex plane C (see [, ]). Prabhakar [] have introduced a
new generalization of the Mittag-Leffler function Eρ,β (z).

Recently many researchers have investigated the importance and great consideration of
Mittag-Leffler function in the theory of special functions for exploring some of their gen-
eralizations and applications. Extensions for these functions are found in []. Srivastava
and Tomovski [] have defined further the generalized form of the Mittag-Leffler function
Eδ

ρ,β(z).
Recently Dorrego [] have introduced the k-Mittag-Leffler function Eδ

k,ρ,β(z) (where
k > ) defined as

Eδ
k,ρ,β(z) =

∞∑

n=

(δ)n,k

�k(ρn + β)
zn

n!
, ()

where ρ,β , δ ∈ C, �(ρ) > , �(β) > , �(δ) > , k >  and (δ)n,k is the Pochhammer k-
symbol defined in ().

2 (k, s)-fractional integrals and differentials of k-Mittag-Leffler functions
In this section, we introduce (k, s)-fractional integral and differential operators which in-
volve k-Mittag-Leffler function Eδ

k,ρ,β(z) as its kernel. In this continuation of the study of
(k, s)-fractional calculus, we define integral operators in terms of (k, s) as follows.

Definition  If k >  and ρ, δ,ω ∈C, �(ρ) > , �(β) > , �(δ) > , then

(s
kε

ω;δ
a+;ρ,β f

)
(x) =


k

∫ x

a

(
xs+ – τ s+)

β
k –Eδ

k,ρ,β
(
ω

(
xs+ – τ s+)

ρ
k
)
τ sf (τ ) dτ , ()
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where x > ρ . Substituting s = , then () reduces to the operator

(
kε

ω;δ
a+;ρ,β f

)
(x) =

∫ x

a
(x – τ )

β
k –Eδ

ρ,β
(
ω(x – τ )

ρ
k
)
f (τ ) dτ ; ()

see []. In fact, when ω =  and k =  then the integral operator in () reduces to the
well-known Riemann-Liouville fractional integral operator defined as

(
Iμ

a+f
)
(x) =


�(μ)

∫ x

a

f (τ )
(x – τ )–β

dτ
(
R(μ) > 

)
. ()

Here, we introduce (k, s)-fractional order integrations and differentiations which are de-
fined by the integral operators s

kIμ
a+ and s

kIμ
β– and (k, s)-fractional differential operators Dμ

ρ+,k
and Dμ

ρ–,k . Also, we called these integral operators s
kIμ

a+ and s
kIμ

β–, they are the left and right-
sided Riemann-Liouville (k, s)-fractional integral operators, respectively. Similarly, the op-
erators s

kDμ

a+,k and s
kDμ

a– are, respectively, the left- and right-sided Riemann-Liouville (k, s)-
fractional differential operators. To define the left- and right-sided Riemann-Liouville
(k, s)-fractional integral operators, first we define the well-known Lebesgue measurable
integral of a real or complex valued function, which is denoted and defined as

L(ρ,β) =
{

f : ‖φ‖ =
∫ β

ρ

∣
∣φ(τ )

∣
∣dτ < ∞;φ ∈ L(ρ,β)

}

. ()

Definition  For φ(x) ∈ L(ρ,β); μ ∈ C; �(μ) >  and k > , then we define the R-L left-
sided (k, s)-fractional integral operator of order μ as

s
a,kD–μ

x f (x) = s
a,kIμ

x f (x) = s
kIμ

a+f (x) =
(s

kIμ
a+f

)
(x)

=
(s + )– μ

k

k�k(μ)

∫ x

a

f (t)
(xs+ – ts+)– μ

k
ts dt (x > a). ()

Similarly, we can define the R-L right-sided (k, s)-fractional integral operator of order μ as

s
ρ,kD–μ

β f (x) = s
ρ,kIμ

β f (x) =s
k Iμ

a–f (x) =
(s

kIμ
a–f

)
(x)

=
(s + )– μ

k

k�k(μ)

∫ β

x

f (t)
(xs+ – ts+)– μ

k
ts dt (x < β). ()

Definition  For k > ; s ∈ R\{–}; μ ∈C, �(μ) >  and n = [�(μ)] + , then the Riemann-
Liouville left- and right-sided (k, s)-fractional differential operators are defined as

(s
kDμ

a+f
)
(x) =

[

xs

(
d

dx

)n](
kn s

kInk–μ
a+ f

)
(x), ()

(s
kDμ

a–f
)
(x) =

[

xs

(

–
d

dx

)n](
kn s

kInk–μ
a– f

)
(x), ()

respectively. Substituting k =  and s = , then the Riemann-Liouville left- and right-sided
(k, s)-fractional integrals and derivatives will reduce to the well-known Riemann-Liouville
left-sided and right-sided fractional integrals and derivatives see ([, ]).
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Definition  The Riemann-Liouville (k, s)-fractional derivative operator s
kDμ

a+ defined in
() is generalized by the (k, s)-fractional derivative operator is denoted by s

kDμ,ν
a+ where μ is

the order such that  < μ <  and ν is the type of this generalized (k, s)-fractional derivative
operator such that  < ν < , we define the generalized (k, s)-fractional derivative operator
with respect to x as follows:

(s
kDμ,ν

a+ f
)
(x) =

[
s
kIν(k–μ)

ρ+

(

xs

d
dx

)
(
k s

kI(–ν)(k–μ)
a+ f

)
]

(x). ()

Obviously, when ν =  then () reduces to the Riemann-Liouville (k, s)-fractional deriva-
tive operator s

kDμ
a+ ().

Lemma  For k > , the following result for (k, s)-fractional derivative operator Dμ,ν
ρ+,k de-

fined in () holds true:

(s
kDμ,ν

a+
[(

τ s+ – as+) λ
k –])(x) =

�k(λ)
(s + )– μ

k �k(λ – μ)

(
xs+ – as+)

λ–μ
k –, ()

with x > ρ ,  < μ < ,  < ν <  and �(λ) > .

Proof We obtain from equation ()

(s
kI(–ν)(k–μ)

a+
[(

τ s+ – as+) λ
k –])(x)

=
�k(λ)

(s + )
(–ν)(k–μ)

k �k(( – ν)(k – μ) + λ)

(
xs+ – as+)

(–ν)(k–μ)+λ
k –

and


xs

d
dx

(s
kI(–ν)(k–μ)

a+
[(

ts+ – as+) λ
k –])(x)

=
[( – ν)( – μ) + λ – k]�k(λ)

k(s + )
(–ν)(k–μ)

k –�k(( – ν)(k – μ) + λ)

(
xs+ – as+)

(–ν)(k–μ)+λ
k –,

which, by applying the relation given in (), yields

(s
kDμ,ν

a+
[(

τ s+ – as+) λ
k –])(x)

=
�k(λ)

�k(( – ν)(k – μ) + λ – k)

× [s
kIν(k–μ)

a+
(
xs+ – as+)

(–ν)(k–μ)+λ
k –](x)

=
�k(λ)

(s + )
ν(k–μ)+(–ν)(k–μ)

k –�k(( – ν)(k – μ) + λ – k)

× �k(( – ν)(k – μ) + λ – k)
�k(ν(k – μ) + ( – ν)(k – μ) + λ – k)

(
xs+ – as+)

λ–μ
k –

=
�k(λ)

(s + )– μ
k �k(λ – μ)

(
xs+ – as+)

λ–μ
k –,

which is the desired proof. �
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Theorem  For k > , the following result always holds true:

(


x s
m

d
dx

)m[(
xs+ – as+) c

k –Eδ
k,ρ,β

(
ω

(
xs+ – as+)

ρ
k
)]

()

=
(s + )m(xs+ – as+)

c
k –m–

kn Eδ
k,ρ,β–mk

[
ω

(
xs+ – as+)

ρ
k
]
, ()

where s ∈R\{–}, μ,ρ,β , δ ∈ C, �(μ) >  and �(β) > , �(ρ) > , �(δ) > .

Proof The proof is obvious by applying ( 
x

s
m

d
dx )m where m = , , . . . . �

Theorem  Suppose k > , x > a (a ∈ R+ = [,∞)) and ρ,β , δ,ω ∈ C, �(β) > , �(ρ) > ,
�(δ) > , �(μ) > , then

s
kIμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)ρ)](x)

=
(xs+ – as+)

β+μ
k –

(s + )
μ
k

Eδ
k,ρ,β+μ

[
ω

(
xs+ – as+)

ρ
k
]
, ()

s
kDμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

(x)

=
(xs+ – as+)

β–μ
k –

(s + )
μ
k

Eδ
k,ρ,β–μ

[
ω

(
xs+ – as+)

ρ
k
]

()

and

s
kDμ,ν

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

(x)

=
(xs+ – as+)

β–μ
k –

(s + )– μ
k

Eδ
k,ρ,β–μ

[
ω

(
xs+ – as+)

ρ
k
]
. ()

Proof

s
kIμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

=
(s + )– μ

k

k�k(μ)

∫ x

ρ

(τ s+ – as+)
β
k –Eδ

k,ρ,β(ω(τ s+ – as+)
ρ
k )τ s

(xs+ – τ s+)– μ
k

dτ

=
(s + )– μ

k

k�k(μ)

∞∑

n=

(δ)n,kω
n

�k(ρn + β)n!

×
∫ x



(
τ s+ – as+)

β+an
k –(xs+ – τ s+)

μ
k –

τ s dτ .

Substituting τ s+ = as+ + y(xs+ – as+), this implies τ s dτ = ( xs+–as+

s+ ) dy, we have

s
kIμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

=
∞∑

n=

(δ)n,kω
n

�k(ρn + β)n!
(
xs+ – as+)

β+μ+ρn
k – (s + )

–μ
k

k�k(μ)

∫ 


( – y)

β+ρn
k –y

μ
k – dy
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=
∞∑

n=

(δ)n,kω
n

�k(ρn + β)n!
(
xs+ – as+)

β+μ+ρn
k – · �k(ρn + β)�k(μ)

�k(μ)�k(ρn + β + μ)

=
(xs+ – as+)

β+μ
k –

(s + )
μ
k

∞∑

n=

(δ)n,kω
n(xs+ – as+)

ρn
k –

�k(ρn + β + μ)n!

=
(xs+ – as+)

β+μ
k –

(s + )
μ
k

Eδ
k,ρ,β+μ

(
ω

(
xs+ – as+)

ρ
k
)
.

This completes the proof of ().
Now, we have

s
kDμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

=
(


x s

n

d
dx

)n{
kn s

kInk–μ
a+

(
τ s+ – as+)

β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)}

and using () this takes the following form:

s
kDμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – as+)

ρ
k
)]

= kn
(


x s

n

d
dx

)n{
(s + )– μ

k –n(xs+ – as+)
β–μ

k +n–Eδ
k,ρ,β–μ+nk

(
ω

(
xs+ – as+)

ρ
k
)}

.

Applying (), we have

s
kDμ

a+
[(

τ s+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
xs+ – as+)

ρ
k
)]

(x)

=
{

(s + )– μ
k
(
xs+ – as+)

β–μ
k –Eδ

k,ρ,β–μ

(
ω

(
xs+ – as+)

ρ
k
)}

.

This completes the desired proof.
Now to prove (), we have

(s
kDμ,ν

a+,k
[(

τ a+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ a+ – as+)

ρ
k
)])

(x)

=

(

s
kDμ,ν

a+

[ ∞∑

n=

(δ)n,k

�k(ρn + β)
ωn

n!
(
ta+ – as+)

ρn+β
k –

])

(x).

This can be written as

=
∞∑

n=

(δ)n,k

�k(ρn + β)
ωn

n!
(s

kDμ,ν
a+

[(
τ a+ – as+)

ρn+β
k –])(x).

By applying (), we get

(s
kDμ,ν

a+
[(

τ a+ – as+)
β
k –Eδ

k,ρ,β
(
ω

(
τ a+ – as+)

ρ
k
)])

(x)

=
∞∑

n=

(γ )n,k

�k(ρn + β)
ωn

n!
· �k(ρn + β)

(s + )– μ
k �k(ρn + β – μ)

(
xa+ – as+)

ρn+β–μ
k –
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=
(xa+ – as+)

β–μ
k –

(s + )– μ
k

∞∑

n=

(δ)n,k

�k(ρn + β – μ)
[ω(xa+ – as+)

ρ
k ]n

n!

=
(xa+ – as+)

β–μ
k –

(s + )– μ
k

Eδ
k,ρ,β–μ

(
ω

(
xa+ – as+)

ρ
k
)
,

which completes the desired proof. �

Remark  If we substitute s =  in (), () and (), then we have the results of the
k-Mittag-Leffler function (see []). Similarly if s =  and k = , then from the above equa-
tions we get the integral and differential operators of the classical Mittag-Leffler function
(see []).

3 Some properties of the operator (s
kε

ω;δ
a+;ρ,β f )(x)

Theorem  For k > , ρ,β , δ ∈ C, ω ∈ C, �(ρ) > , �(β) > , �(δ) >  and �(μ) > , we
have

(s
kε

ω;δ
a+;ρ,β

[(
τ a+ – as+)

μ
k
])

(x)

=
(xa+ – as+)

μ+β
k –�k(μ)

(s + )
Eδ

k,ρ,β+μ

(
ω

(
xa+ – as+)

μ
k
)
f (t) dt. ()

Proof From ()

(s
kε

ω;δ
a+;ρ,β

[(
τ a+ – as+)

μ
k
])

(x)

=

k

∫ x

a

(
xa+ – τ s+) c

k –Eδ
k,ρ,β

(
ω

(
xa+ – τ s+)

ρ
k
)
τ sf (τ ) dτ .

Therefore, we have

(s
kε

ω;δ
a+;ρ,β

[(
τ a+ – as+)

μ
k
])

(x)

=

k

∫ x

a

(
xa+ – τ s+)

β
k –(

τ a+ – as+)
μ
k –Eδ

k,ρ,β
(
ω

(
xa+ – τ s+)

ρ
k
)
τ s dτ

=
∞∑

n=

(δ)n,k

�k(ρn + β)
ωn

n!

(

k

∫ x

a

(
τ a+ – as+)

μ
k –(xa+ – τ s+)

β+ρn
k –

τ s dτ

)

=
∞∑

n=

(δ)n,k

(s + )�k(ρn + β)
ωn(xa+ – as+)

β+ρn+μ
k –

n!
Bk(β + ρn,μ)

=
(xa+ – as+)

β+μ
k –�k(μ)

(s + )

{ ∞∑

n=

(δ)n,k

�k(ρn + β)
ωn(xa+ – as+)

ρn
k

·
�k(μ)�k(ρn + β)
�k(ρn + β + μ)

}

=
(xa+ – as+)

β+μ
k –�k(μ)

(s + )
Eδ

k,ρ,β+μ

(
ω

(
xa+ – as+)

ρ
k
)
,

which completes the desired proof. �

Theorem  Suppose that f ∈ L[a, b], s ∈ R\{–}, k > , ρ,β , δ,ω ∈ C, �(ρ) > , �(β) > ,
�(δ) >  and �(μ) > , then s

kε
ω;δ
a+;ρ,β f (x) exist for any x ∈ [a, b].
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Proof Assume that � = [a, b] × [a, b] and P : � →R such that P(x, τ ) = [(xs+ – τ s+)τ s] for
all x ∈ [a, b]. It is obvious that P = P+ + P– where

P+(x, τ ) =

⎧
⎨

⎩

(xs+ – τ s+)
β
k –τ s; a ≤ τ ≤ x ≤ b,

; a ≤ x ≤ t ≤ b

and

P–(x, τ ) =

⎧
⎨

⎩

(τ s+ – xs+)
β
k –xs; a ≤ τ ≤ x ≤ b,

; a ≤ x ≤ τ ≤ b.

As P is measurable on �, we can write

∫ b

a
P(x, τ ) dτ =

∫ x

a
P(x, τ ) dτ

=
∫ x

a

(
xs+ – τ s+)

β
k –

τ s dτ

=
k
β

(
xs+ – τ s+)

β
k .

Hence, we obtain

∫ b

a
P(x, τ )Eδ

k,ρ,β
(
ω(x – τ )

ρ
k
)

dτ

=
∫ x

a
P(x, τ )Eδ

k,ρ,β
(
ω(x – τ )

ρ
k
)

dτ

=
∞∑

n=

(δ)n,kω
n

�k(ρn + β)n!

∫ x

a

(
xs+ – τ s+)

β+ρ
k –

τ s dτ

=
∞∑

n=

(δ)n,k(ω(xs+ – as+)
ρ
k )n

�k(ρn + β)n!
k

β + ρn
(
xs+ – as+)

β
k .

By using the repeated integral, we have

∫ b

a

(∫ b

a
P(x, τ )Eδ

k,ρ,β
(
ω(x – τ )

ρ
k
)∣
∣f (x)

∣
∣dτ

)

dx

=
∫ b

a

∣
∣f (x)

∣
∣

(∫ b

a
P(x, τ )Eδ

k,ρ,β
(
ω(x – τ )

ρ
k
)

dτ

)

dx

=
∞∑

n=

(δ)n,k(ω)n

�k(ρn + β)n!
k

β + ρn

×
∫ b

a

(
xs+ – as+)

β+ρn
k

∣
∣f (x)

∣
∣dx

≤
∞∑

n=

(δ)n,k(ω(bs+ – as+)
ρ
k )n

�k(ρn + β)n!
k

(β + ρn)(β + ρn + k)

× (
bs+ – as+)

β
k +

∫ b

a

∣
∣f (x)

∣
∣dx
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≤ (
bs+ – as+)

β
k +

∞∑

n=

(δ)n,k(ω(bs+ – as+)
ρ
k )n

�k(ρn + β)n!

× k

(β + ρn)(β + ρn + k)
‖f ‖ ≤ ∞.

Therefore the function Q : � → R such that Q(x, t) = P(x, τ )f (x) is integrable on � by
Tonelli’s theorem. Thus, by Fubini’s theorem

∫ b
a P(x, τ )Eδ

k,ρ,β(ω(xs+ – τ s+)
ρ
k )nf (x) dx is an

integrable function on [a, b], as a function of t ∈ [a, b]. Thus, s
kε

ω;δ
a+;ρ,β f (x) exists. �

Theorem  For μ ∈ C, ρ,β , δ ∈ C, ω ∈ C, �(ρ) > , �(β) > , �(δ) > , �(μ) > , k > ,
s ∈R\{–}, and x > a, the following result holds:

(s
kIμ

a+
[s

kε
ω;δ
a+;ρ,β f

])
(x) =


(s + )

μ
k

(s
kε

ω;δ
a+;ρ,β+μf

)
(x) =

(s
kε

ω;δ
a+;ρ,β

[s
kIμ

ρ+f
])

(x), ()

for any f ∈ L(ρ,β).

Proof From equations () and (), we observe

(s
kIμ

a+
[s

kε
ω;δ
a+;ρ,β f

])
(x)

=
(s + )– μ

k

k�k(μ)

∫ x

a

[s
kε

ω;δ
a+;ρ,β f (τ )]

(xs+ – τ s+)– μ
k
τ s dτ

=
(s + )– μ

k

k�k(μ)

∫ x

a

(
xs+ – τ s+)

μ
k –

×
[∫ τ

ρ

(
τ s+ – us+)

β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – us+)

ρ
k
)
f (u)us du

]

τ s dτ .

By interchanging the order of integration, we obtain

(s
kIμ

a+
[s

kε
ω;δ
a+;ρ,β f

])
(x)

=

k

∫ x

a

[
(s + )– μ

k

k�k(μ)

∫ x

u

(
xs+ – ts+)

μ
k –(

τ s+ – us+)
β
k –Eδ

k,ρ,β
(
ω

(
τ s+ – us+)

ρ
k
)
τ s dτ

]

× usf (u) du.

By applying (), we have

(s
kIμ

a+
[s

kε
ω;δ
a+;ρ,β f

])
(x)

=
[


k(s + )

μ
k

∫ x

a

(
xs+ – us+)

μ+β
k –Eδ

k,ρ,β+μ

(
ω

(
xs+ – us+)

ρ
k
)
usf (u) du

]

;

thus, we get

(s
kIμ

a+
[s

kε
ω;δ
a+;ρ,β f

])
(x) =


(s + )

μ
k

(
s
kε

ω;δ
a+;ρ,β+μf

)
(x). ()
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To prove the second part, consider the rhs of () then by applying (), we get

(s
kε

ω;δ
a+;ρ,β

[s
kIμ

a+f
])

(x)

=

k

∫ x

a

(
xs+ – τ s+)

β
k –Eδ

k,ρ,β
(
ω

(
xs+ – ts+)

ρ
k
)[s

kIμ
a+f

]
(τ )τ s dτ

=

k

∫ x

a

(
xs+ – ts+)

β
k –Eδ

k,ρ,β
(
ω

(
xs+ – τ s+)

ρ
k
)

×
(

(s + )– μ
k

k�k(μ)

∫ τ

a

f (u)
(τ s+ – us+)– μ

k
us du

)

dτ .

By interchanging the order of integration, we have

(s
kε

ω;δ,q
a+;ρ,β

[s
kIμ

a+f
])

(x)

=

k

∫ x

a

(s + )– μ
k

k�k(μ)

×
[∫ x

u

(
xs+ – τ s+)

β
k –(

τ s+ – us+)
μ
k –Eδ

k,ρ,β
(
ω

(
xs+ – τ s+)

ρ
k
)
τ s dτ

]

× usf (u) du.

Again by making the use of () and applying (), we obtain

(s
kε

ω;δ
a+;ρ,β

[s
kIμ

ρ+f
])

(x) =


(s + )
μ
k

(
s
kε

ω;δ
a+;ρ,β+μ

)
f (x). ()

Thus () and () complete the desired proof of (). �

4 Conclusion
We conclude that, if s = , then the obtained results reduce to the well-known results
introduced by []. Similarly if k =  and s = , then the obtained results reduce to the
well-known results of the Mittag-Leffler function defined by [, ].
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