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Abstract In this manuscript, we formulated a new nonlinear SEIQR fractional order pandemic

model for the Corona virus disease (COVID-19) with Atangana-Baleanu derivative. Two main

equilibrium points F�
0;F

�
1 of the proposed model are stated. Threshold parameter R0 for the model

using next generation technique is computed to investigate the future dynamics of the disease. The

existence and uniqueness of solution is proved using a fixed point theorem. For the numerical solu-

tion of fractional model, we implemented a newly proposed Toufik-Atangana numerical scheme to

validate the importance of arbitrary order derivative q and our obtained theoretical results. It is

worth mentioning that fractional order derivative provides much deeper information about the

complex dynamics of Corona model. Results obtained through the proposed scheme are dynami-

cally consistent and good in agreement with the analytical results. To draw our conclusions, we

explore a complete quantitative analysis of the given model for different quarantine levels. It is

claimed through numerical simulations that pandemic could be eradicated faster if a human com-

munity selfishly adopts mandatory quarantine measures at various coverage levels with proper

awareness. Finally, we have executed the joint variability of all classes to understand the effective-

ness of quarantine policy on human population.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Corona virus disease (COVID-19) is a severe pandemic with an
extremely high fatality rate caused by an infectious respiratory
virus called SARS-CoV-2. The virus spreads uniformly among

individuals and affecting people worldwide through direct and
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indirect physical contact [1]. The first and overall third out-
break of novel Corona virus disease was experienced at the
end of December 2019 in the Wuhan City of China. It spreads

rapidly in different parts of China and then worldwide in
almost 223 countries of Asia, Australia, America and Europe
[2,4]. World Health Organization (WHO) recorded the global

situation and reported that there are more than 232; 636; 622
confirmed cases with 4; 762; 089 deaths by September
29; 2021. It is remarkable that WHO reported 408; 990 new

cases to date while the number of confirmed cases are contin-
uing to increase. However, almost 210; 951; 891 people have
been recovered from COVID-19. A total of 6; 136; 962; 861
vaccine doses have been administered by 29 September,

2021. Currently, the number of highest positive cases encoun-
tered in United States of America followed by India, Brazil
and Spain respectively.

The current evidence suggests that the main source of Cor-
ona virus transmission among individuals is the respiratory dro-
plets through sneezing, coughing and spitting of an infected

person [3,4]. During the treatment of Corona patients, health
care staff can also get infected. Incubation period for theCorona
virus disease normally varies from 2 to 14 days and on average

5-6 days. Every individual can get Corona infection at any age
and time instant and become seriously ill or die. It is observed
that people around 60 years and older and all those who develop
severe diseases like heart disease, obesity or cancer, diabetes or

lung disease are at higher risk of getting seriously sick with Cor-
ona virus and can be infectious for longer. On the other hand,
people with a variety of symptoms like fever, dry cough, sneez-

ing, red eyes, shortness of breath, muscle pain, fatigue, severe
headache, new loss of smell or taste, persistent pain in the chest,
sore throat, runny nose, sleep disorders, vomiting, and diarrhea,

may have Corona virus disease [5]. It may develop to acute
multi-organ failure, respiratory distress syndrome, blood clots,
and septic shock, among other conditions. Without needing

hospital treatment, about 5% among those who develop these
symptoms become critically ill and need intensive care, about
80%may recover from the viral disease and about 15% become
seriously ill and require oxygen [6,7]. Theymay face a rapid pro-

gression to death due to their ill condition. The virusmay spread
on a large scale if the pandemic is not restricted. It will threaten
the entire human population. Therefore, to take care of infected

patients, it is inevitable to take comprehensive preventive mea-
sures [8].

Public health experts worldwide are continuously learning

and monitoring the dynamics of novel Corona virus these
days. They always look for multiple solutions to control the
pandemic. The first important step is to develop appropriate
community engagement, awareness campaign and protection

measures among individuals. For example, wearing proper
clothes and gloves, and washing hands after visiting the
patients should be taken care of. To protect yourself and other

people, we should wear a surgical mask that especially covers
our nose and mouth. Keep a distance of at least 6 feet from
other peoples who do not live with you, especially in crowded

areas. Avoid indoor spaces as much as possible, particularly
ones that are not well ventilated. Use hand sanitizer with at
least 60% alcohol content. Wash your hands with soap and

water for 20 s. Everyone takes these actions to help slow down
COVID-19. The other rigorous measures are the use of vacci-
nation, public quarantine facilities, lock down, isolation or
treatment of infected humans [9,10]. This also includes raising
the awareness like public health education, laboratory testing,
risk communication, start of antiviral drugs, designed special
hospitals and health screening at boarders. It is remarkable

that antibiotics do not work against COVID-19. Moreover,
there is no licensed medicine which is used to cure pandemic.

Ever since COVID-19 came, many researchers [10–24] have

been formulating and using different mathematical models as a
way to explore the dynamical behavior of a Corona virus dis-
ease. In all of the research articles cited therein, mathematical

models were based on integer-order derivatives involving some
restrictions on the order of ODE’s. The aim was to gain an
insight into the mode of transmission, spread, impact, preven-
tion and control of the pandemic. Performing a reliable and

competitive mathematical analysis of these models plays a
key role in the field of epidemiology. This actually provides
a deeper understanding about the patterns of disease pan-

demic. It always helps to develop a mechanism to control
the future spread of the disease.

Fractional calculus is a rapidly growing field of mathematics

which has various applications in widespread and diverse fields
of science and engineering such as viscoelasticity, fluid mechan-
ics, electromagnetics, electrochemistry, optics, signals process-

ing and biological population models. It has been used to
model engineering and physical processes that are found to be
best described by fractional differential equations. Fractional
order derivatives [26,27] are useful in demonstrating many nat-

ural facts and phenomena having non-local complex dynamical
behavior. These operators are helpful to overcome all the restric-
tions on the order of differential equations while solving them.

The fractional order mathematical models are more versatile
than classical integer-order models due to the hereditary fea-
tures and description of memory [28–39]. Such models yield

more accurate outcomes about the complex behavior of epi-
demic diseases as compared to the integer-ordermodels. Indeed,
the usual integer order models do not enjoy subsequent memory

effects occurring in biological models.
The Caputo fractional derivatives and integrals are the

most well known operators, historically been used for model-
ing many real world problems. Moreover, the Riemann-

Lioville derivative operator has a strong relation with the
Caputo fractional derivative. When these operators are used
to investigate the structure of different models, they may block

obtaining better results. The main issue with the Riemann-
Lioville and Caputo operators is the singularity property of
their kernals [54,55]. Due to this reason, researchers have felt

the need of fractional operators with nonsingular kernals to
better understand the dynamics of models. To this extent,
many scientists succeeded in presenting fractional operators
with nonsingular kernels, for example, Caputo-Fabrizio frac-

tional operator [25,54,56]. In the recent past, Atangana and
Baleanu [57] proposed a new fractional derivative operator
(ABC) with a Mittag-Leffer kernel with one parameter. The

main advantage of this operator is that it has a nonlocal and
nonsingular kernel. It provides an advantage for those people
who work in numerical modeling of real world problems.

More recently, new advances and studies in fractional differen-
tial equations with ABC derivative operator has been pub-
lished [28–30].

Among non-pharmaceutical interventions, execution of
various quarantine strategies in human communities is a signif-
icant public health measure, the most effective and a safe way
that historically been utilized to control the spread of all com-
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municable diseases. Physically weak populations from the
whole world especially in developing countries are at the high-
est priority for quarantine process. World Health Organization

works closely with researchers around the world to assess the
developed global standards, safety norms and the effectiveness
of the implemented quarantine policy during the quarantine

period. To control the spread of epidemic diseases, many
researchers are attracted to develop mathematical models
[10–16] dealing with quarantine strategies. A several number

of articles [17–24,59–61,70] have been published recently on
the effectiveness of implemented quarantine program. It is
worth mentioning that the most effective and a safe way to
control the spread of Corona infection is the prospective quar-

antine of exposed humans. Recently, a research article [11] has
been published to understand the effect of quarantine policy
on the propagation of Corona virus epidemic. Authors ana-

lyzed Corona virus disease through an integer order SEIQR
epidemic model. To the best of our knowledge, no one
explored a complete mathematical analysis of this model for

the fractional order using Atangana-Baleanu derivative opera-
tor. We will move in this direction.

In this paper, our aim is to promote the applications of

Atangana-Baleanu operator to a SEIQR model [11] of a Cor-
ona virus disease. We analyzed the developed fractional order
initial value problem with Atangana-Baleanu derivative oper-
ator to observe class wise transmission dynamics of the infec-

tion in a human population. Mathematical modeling of
COVID-19 shall work confidentially to predict and compre-
hend how virus spread. These predictions will also help to

understand how the Corona infection might decrease or
increase in the future. The proposed model [11] incorporates
a class of those humans who have quarantined through appro-

priate quarantine programme at their level of exposedness. We
assumed that the quarantine is perfect; that is, the humans will
not get infected during quarantine period and will be healthy

at the end of this period. The impact of the quarantine pro-
gramme on individuals with the help of fractional model will
be assessed. Using some known techniques, we shall perform
a complete mathematical analysis of this model with an aim

of controlling the spread of COVID-19.
In Chaos theory, an important area of research is to study

various mathematical models with different descriptions and

requirements for their numerical stability. Recently, the stability
of various epidemic models [12,62–64] of Ebola and Corona
viruses with respect to the involved parameters was obtained.

Some appropriate reliable numerical techniques [68,67] to solve
the governing equations were employed. The dynamics of both
the diseases was studied with the help of graphic illustrations.
We tend to expect that our projected SEIQR fractional model

also contains all vital self-propelling properties such as: well-
posedness of themodel along with the boundedness and positiv-
ity of obtained solutions. It is ascertained that most of the tradi-

tional standard methods sometimes become unbounded
divergent when implemented to a nonlinear system. Implemen-
tation of these numerical methods could cause major problems

such as generating oscillations, bifurcations, chaos, negative
solutions, or solutions converging to false equilibrium states
as time grid size increased [62,65]. Therefore, the best approach

to solve our fractional model herein is to develop Toufik-
Atangana finite difference scheme [45,46]. We will prove the
dynamic consistency of the developed scheme by performing
detailed numerical analysis of the proposed model.
Furthermore, we will simulate computationally the dynam-
ics of the spread of Corona virus disease over time t. The numer-
ical analysis highlights the effect of quarantine strategy on the

dynamics of COVID-19 at different quarantine levels. The effect
of quarantine on susceptible and exposed class is executed
reveals that number of susceptible and the exposed humans

are decreased continuously by increasing the levels of quaran-
tine. A rapid regress in the population of infected humans is
observed when quarantine rates are high. It is noticed that infec-

tivity will approach to zero as time t goes to infinity. However,
the number of recovered humans are quickly increased by
increasing the coverage levels of proper quarantine. An incre-
ment in number of recovered and the decrease in number of

infected humans will significantly reduce the risk of Corona
virus disease. Consequently, the host population will become
healthy if the coverage levels and effectiveness of implemented

quarantine strategy are high.Additionally, wewill discuss statis-
tically the joint variability among all populations.

The paper has been organized into ten sections. The deriva-

tion of proposed compartmental model is outlined in section 2.
The fractional form of the proposed Corona model is given in
section 3. In section 4, we explore in details some mathematical

properties of the fractional model. Existence and uniqueness of
solutions is proved using some fixed point theorem. The proofs
of the positivity and boundedness of solutions are done in sec-
tion 5. Disease free and endemic equilibrium points of the frac-

tional model are obtained in the section 6. Threshold
parameter R0 is calculated analytically in section 7. We proved
the local and global stability of equilibrium points in section 8.

Numerical analysis of the fractional model along with graphi-
cal illustrations and necessary discussions is performed in sec-
tion 9. We have developed a Toufik-Atangana numerical

scheme for the fractional model to approximate its solution.
Moreover, the computational advantages of proposed
Toufik-Atangana scheme are discussed in details. We conclude

the present work in section 10.
2. Formulation of the integer order model

Nonlinear models [30–37] describing the transmission
dynamics of deadly Corona virus play a significant role in
the disciplines of epidemiology. These models assist the pub-
lic health planners and policy makers in many ways. There

is a series of various mathematical models in the existing lit-
erature [38–53] with different assumptions depending on the
propagation mechanism of Corona virus disease. In this sec-

tion, we have considered a new real world integer order
SEIQR Corona epidemic model [11]. All of our efforts will
be to study the impact of proposed quarantine strategy on

the dynamics of COVID-19 through the fractional form of
this model. Detail of variables used to model the flow pat-
tern of Corona pandemic within the human population is
given below: The total human population N tð Þ is separated

into five classes denoted by S tð Þ;E tð Þ; I tð Þ;Q tð Þ and R tð Þ,
all remain disjoint over the continuous time evolution. The
first class denoted by S tð Þ includes the number of susceptible

humans at time instant t. The second class which represents
the number of exposed humans at time instant t is denoted
by E tð Þ. The third epidemic class characterizes number of

infected humans at time instant t who are able to spread
the infection and is denoted by I tð Þ. It is not possible for



Table 1 Representation of involved parameters and their

estimated values.

Parameter Interpretations Value

(day�1)

Source

k Natality or recruitment rate 0:5000 [11,12]

l Natural mortality rate of each

class

0:5000 [11,12]

k Rate of transfer of exposed

humans into recovered class

0:00398 [11,12]

r Rate of transfer of infected

humans into recovered class

0:09871 [11,12]

a Rate of transfer of exposed

humans into infected class

0:085432 [11,12]

d1 Mortality rate of infected

humans due to COVID-19

0:0047876 [11,12]

d2 Mortality rate of quarantined

humans due to COVID-19

0:000001231 [11,12]

q1 Rate of transfer of exposed

humans into quarantine class

0:001 [11]

q Rate of transfer of

quarantined humans into

recovered class

1:05 [11]

b1 Rate of transfer of susceptible

humans into infected class

1:05 [11]

b2 Rate of transfer of susceptible

humans into exposed class

0:005 (F�
0) [11]

1:05 (F�
1) [11]
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any regime to quarantine the entire population, hence not
everyone will be able to be quarantined right away. The
fourth class which is denoted by Q tð Þ gives the number of

exposed humans who have been quarantined at time instant
t. Finally, the fifth class denoted by R tð Þ represents the num-
ber of recovered humans who have developed complete

immunity from the Corona virus disease at time instant t.
We assume that the recovered humans will remain in the
class R tð Þ throughout their life. Thus S;E; I;Q, and R are

the variables for the Corona model (1). All of these vari-
ables are assumed to be real valued continuously differen-
tiable functions defined on the interval 0;þ1½ Þ of t values.
Fig. 1 describes a schematic which represents the involve-

ment of Corona infection in the human population. The
description of employed parameters and their physical rele-
vance are provided in Table 1.

The SEIQR mathematical model representing the flow pat-
tern of Corona virus in a community is given by the following
system of ordinary differential equations:

dS

dt
¼ k� b1SI� b2SE� lS; ð1aÞ

dE

dt
¼ b1SIþ b2SE� q1 þ lþ aþ kð ÞE; ð1bÞ

dI

dt
¼ aE� lþ d1 þ rð ÞI; ð1cÞ

dQ

dt
¼ q1E� qþ lþ d2ð ÞQ; ð1dÞ

dR

dt
¼ kEþ rIþ qQ� lR; ð1eÞ

We have assumed that all the initial conditions and involved

parameters of the system are non-negative.

3. Fractional model

We first recall some fundamental notions related to Caputo
[54] and Atangana-Baleanu fractional derivatives [57].

Definition 1. Let X be an open subset of R and p 2 1;1½ Þ, the
Sobolev space Hp Xð Þ is defined by

Hp Xð Þ ¼ v 2 L2 Xð Þ : Dav 2 L2; forall jaj 6 p
� �

:

Fig. 1 A schematic representation of the disea
Definition 2. The Caputo fractional derivative of order
q 2 n� 1; nð Þ; n 2 N, for a given function v : a; b½ � ! R, is sta-
ted [47,54] as:

C
a D

q
t v tð Þ ¼ 1

C n� pð Þ
Z t

a

vn nð Þ t� nð Þn�q�1
dn: ð2Þ

Clearly, C
a D

q
t v tð Þ tends to _v tð Þ ¼ dv

dt
as q ! 1.

Definition 3. If v : a; b½ � ! N is a differentiable function

defined on a; b½ � such that v 2 H1 a; bð Þ; b > a and q 2 0; 1ð �,
then the Atangana-Baleanu fractional derivative of v in
Caputo sense (ABC) [57] is defined as:
se dynamics in a compartmental model (1).
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ABC
a Dq

t v tð Þ ¼ B qð Þ
1� q

Z t

a

_v nð ÞEq �q
t� nð Þq
1� q

� �
dn; ð1cÞ

where Eq is the well-known one parameter Mittag–Leffler

function of form:

Eq zð Þ ¼
X1
n¼0

zn

C qnþ 1ð Þ ;

and B qð Þ > 0 is a normalization function satisfying
B 0ð Þ ¼ B 1ð Þ ¼ 1.

Definition 4. The Laplace Transform [57,58] of (1c) is defined
as follows:

L ABC
a Dq

t v tð Þ� �
sð Þ ¼ B qð Þ

1� q
L

Z t

a

_v nð ÞEq �q
t� nð Þq
1� q

� 	
dn

� �

¼ B qð Þ
1� q

sqL v tð Þf g sð Þ � sq�1v 0ð Þ
sq þ q

1�q

" #
:

ð1dÞ

Definition 5. The associated fractional integral [47,57] with
non-local kernal is defined by

ABC
a Dq

t v tð Þ ¼ 1� q
B qð Þ v tð Þ þ q

B qð ÞC qð Þ
Z t

a

v nð Þ t� nð Þq�1
dn: ð1eÞ

For more details about the properties of Atangana-Baleanu

fractional derivative, we refer the readers to [44–52].

Theorem 1. The fractional order differential equation

ABC
a Dq

t v tð Þ ¼ f tð Þ; ð1fÞ
has the following unique solution [28,29,57]

v tð Þ ¼ v að Þ þ 1� q
B qð Þ f tð Þ þ

q
B qð ÞC qð Þ

Z t

a

f nð Þ t� nð Þq�1
dn:

Generally, to analyze the dynamical behavior of an infec-
tious disease, the classical integer order models are neither

reliable nor more helpful. However, the fractional order
models show cooperatively better fit to the real data. Hence,
to generate the system (1) for the present work, we replace

the classical integer order time derivative Dt by fractional

Atangana-Baleanu derivative ABC
0 Dq

t given in (1c). Through

this reformulation, we will be able to observe memory
effects and gain more insights about the pandemic. For

t P 0 and q 2 0; 1ð �, the proposed nonlinear fractional order
Corona virus model in the sense of ABC-fractional operator
is given as:

ABC
0 Dq

t S tð Þ ¼ k� b1S tð ÞI tð Þ � b2S tð ÞE tð Þ � lS tð Þ; ð7aÞ
ABC
0 Dq

t E tð Þ ¼ b1S tð ÞI tð Þ þ b2S tð ÞE tð Þ � q1 þ lþ aþ kð ÞE tð Þ;
ð7bÞ

ABC
0 Dq

t I tð Þ ¼ aE tð Þ � lþ d1 þ rð ÞI tð Þ; ð7cÞ
ABC
0 Dq

t Q tð Þ ¼ q1E tð Þ � qþ lþ d2ð ÞQ tð Þ; ð7dÞ
ABC
0 Dq

t R tð Þ ¼ kE tð Þ þ rI tð Þ þ qQ tð Þ � lR tð Þ; ð7eÞ
and it can be written in the following simple form:

ABC
0 Dq

t v tð Þ ¼ F t; v tð Þð Þ; 0 < t < T < þ1 ð8aÞ
along with

v 0ð Þ ¼ v0; ð8bÞ
where v : 0;þ1½ Þ ! R5 and F : R5 ! R5 are vector valued
functions such that

v tð Þ ¼

S tð Þ
E tð Þ
I tð Þ
Q tð Þ
R tð Þ

0
BBBBBB@

1
CCCCCCA

and

F v tð Þð Þ ¼

F1

F2

F3

F4

F5

0
BBBBBB@

1
CCCCCCA

¼

k� b1SI� b2SE� lS

b1SIþ b2SE� q1 þ lþ aþ kð ÞE
aE� lþ d1 þ rð ÞI
q1E� qþ lþ d2ð ÞQ
kEþ rIþ qQ� lR

0
BBBBBB@

1
CCCCCCA

respectively. Clearly, Fi; i ¼ 1; 2; 3; 4; 5, are functions of t,
S;E; I;Q, and R. In the next section we investigate the exis-

tence and uniqueness of the solution for system (8) by fixed
point theorem.

4. Existence and uniqueness of solution

In this section, we prove existence and uniqueness [45,46] of
solution with the help of theorems.

Theorem 2. The function F in (8) is Lipschitz continuous in v.

Proof. On inspection, the components, F1;F2;F3;F4, and F5 of

the function F are continuously differentiable functions of t.
Since the set L v1; v2; að Þ ¼ v1 þ a v2 � v1ð Þ : a 2 0; 1½ �; v1;f
v2 2 R5g is a line segment in R5 which joins the point v1 to

v2 as a varies from 0 to 1, and is a compact subset of R5. Thus,
we may choose a point w 2 L v1; v2; að Þ using Mean Value
Theorem, such that

kF v2ð Þ � F v1ð Þk1 ¼ k �F w; v2 � v1ð Þk1; ð9Þ
where �F w; v2 � v1ð Þ is the directional derivative of function F at
w in the direction of v2 � v1. However,

k �F w; v2 � v1ð Þk1 ¼
X5

i¼1

JFi wð Þ: v2 � v1ð Þð Þei













1

6
X5

i¼1

JFi wð Þ












kv2 � v1k1;

where ei is the ith coordinate unit vector in R5 and JFi wð Þ is a
bounded linear operator. As all the partial derivatives of func-

tion Fi; i ¼ 1; 2; 3; 4; 5, are bounded, there exits a number
M > 0 such that

X5

i¼1

JFi wð Þ












 6 M;

for all L v1; v2; að Þ#R5. Consequently, we have

kF v2ð Þ � F v1ð Þk1 6 Mkv2 � v1k1 ð10Þ
and hence F is Lipschitz continuous. �
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Theorem 3. Suppose that the function F t; v tð Þð Þ satisfies the Lip-
schitz condition

kF v2ð Þ � F v1ð Þk1 6 Mkv2 � v1k1;

then the problem (8) has a unique solution for the specific ini-
tial population if F 0; v 0ð Þð Þ ¼ 0 and

M
1� q
B qð Þ þ

q
B qð ÞC qð ÞT

�
� �

< 1:

Proof. Suppose that F 0; v 0ð Þð Þ ¼ 0 for a specific initial data.
We will prove that the function v tð Þ satisfies Eqs. (8a) and
(8b) if and only if it satisfies the relation

v tð Þ¼ABC
0 Iqt F t; v tð Þð Þ: ð11Þ

Let v tð Þ satisfies Eq. (8a). Applying Atangana-Beleanu frac-
tional integral (1e) to both sides of system (8a), that is

ABC
0 Iqt

ABC
0 Dq

t v tð Þ� � ¼ ABC
0 Iqt F t; v tð Þð Þ:

On making use of the Proposition 3:4 in [57], we obtain the fol-
lowing non-linear Volterra integral equation

v tð Þ ¼ v 0ð Þ þ 1� q
B qð Þ F t; v tð Þð Þ þ q

B qð ÞC qð Þ

�
Z t

0

t� nð Þq�1
F n; v nð Þð Þdn: ð12Þ

Since F 0; v 0ð Þð Þ ¼ 0, and from Eq. (8b), v 0ð Þ ¼ v0, then Eq.

(11) is satisfied. Conversely, let v tð Þ satisfies Eq. (11), then by
using the fact F 0; v 0ð Þð Þ ¼ 0, it is obvious that v 0ð Þ ¼ v0.
Implies that the solution representation satisfies the initial

data.
Secondly, we prove the uniqueness of solution with the

condition

M
1� q
B qð Þ þ

q
B qð ÞC qð ÞT

�
� �

< 1:

Let J ¼ 0;Tð Þ and consider the operator

w : C J;R5
 � ! C J;R5

 �
defined by

w v tð Þ½ � ¼ v 0ð Þ þ 1� q
B qð Þ F t; v tð Þð Þ þ q

B qð ÞC qð Þ

�
Z t

0

t� nð Þq�1
F n; v nð Þð Þdn:

Eq. (12) becomes

v tð Þ ¼ w v tð Þ½ �: ð13Þ
The supremum norm on J; k:kJ is:

kv tð ÞkJ ¼ sup
t2J

kv tð Þk:

Clearly, C J;R5
 �

along with norm k:kJ construct a Banach

space. Furthermore, we can show an important inequality
proved in the following:

Let us define an integral operator u : C 0;T½ � ! C 0;T½ �
defined by

uv ¼ w;

where
w ¼ w tð Þ ¼
Z t

0

k t; nð Þv nð Þdn:

Here k t; nð Þ : J�J ! R is a given function called the kernal

of u. It is assumed to be a continuous function on the closed
square G ¼ J�J in the tn-plane, and hence bounded. Then
there exist a real number k0 such that

jk t; nð Þj 6 k0; k; nð Þ 2 J�J:

Furthermore,

sup
t;n2J

jk t; nð Þj 6 k0;

implies that

kk t; nð Þk 6 k0; k; nð Þ 2 J�J:

Our target is to show that u is bounded. Consider

kuvkJ ¼
Z t

0

k t; nð Þv nð Þdn











J

:

Since k t; nð Þ and v nð Þ are continuous, thereforeZ t

0

k t; nð Þv nð Þdn











J

¼ sup
t2J

Z t

0

k t; nð Þv nð Þdn











J

6 sup
t2J

Z t

0

kk t; nð Þkkv nð Þkdn:

HenceZ t

0

k t; nð Þv nð Þdn











J

6 T�kk t; nð ÞkJkv tð ÞkJ: ð14Þ

with v tð Þ 2 C J;R5
 �

; k t; nð Þ 2 C J2;R
 �

such that

kk t; nð ÞkJ ¼ sup
t;n2J

jk t; nð Þj:

On make use of the definition given in (13), we get

w v1 tð Þ½ � � w v2 tð Þ½ �k kJ 6 q
B qð ÞC qð Þ

R t

0
t� nð Þq�1

F t; v1ð Þ � F t; v2ð Þð Þdn





þ 1�q
B qð Þ F t; v1ð Þ � F t; v2ð Þð Þ





J
:

Applying the Lipschitz condition (10) along with the result in
(14), we deduce that

w v1 tð Þ½ � � w v2 tð Þ½ �k kJ 6 M
1� q
B qð Þ þ

q
B qð ÞC qð ÞT

�
� �

v1 tð Þk

�v2 tð ÞkJ:
Thus, the operator w will be a contraction if the constant

M
1� q
B qð Þ þ

q
B qð ÞC qð ÞT

�
� �

;

is less than one. Hence, by the Banach Contraction Principle
there exists a unique solution of the model (8). �
5. Properties

In this section, we discuss some important properties of the
model (7) or equivalently system (8) such as boundedness
and positivity of the solutions for t P 0. Thus the obtained
solution will be realistic and physically realizable and the prob-

lem becomes well-posed. All these computations are done in
the following steps.
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5.1. Invariant region

In this subsection, we determine the boundary of solutions
S;E; I;Q;Rð Þ of the non-linear system (7) with a non-
negative initial data. Our main target is to show that the

obtained feasible region in R5
þ which is positively invariant

with respect to the fractional model (7).

Theorem 4. The epidemiologically feasible region of Atangana-
Beleanu fractional model (7) is given by

P ¼ S;E; I;Q;Rð Þ 2 R5
þ : 0 6 N 6 k

l
; S;E; I;Q;R P 0

� 	
:

ð8oÞ
The existence and uniqueness of the solution of model (7)

are proved in the previous section, it remains to show that
the set P is positively invariant with initial conditions
S 0ð Þ P 0;E 0ð Þ P 0, I 0ð Þ P 0;Q 0ð Þ P 0 and R 0ð Þ P 0. The

following theorem will be used for the proof of Theorem 4.

Theorem 5. The solutions of system (7) are bounded.

Proof. Addition of all the five equations in the fractional
model (7) gives

ABC
0 Dq

t N tð Þ ¼ ABC
0 Dq

t S tð Þ þ ABC
0 Dq

t E tð Þ þ ABC
0 Dq

t I tð Þ þ ABC
0 Dq

t Q tð Þ
þABC

0 Dq
t R tð Þ;¼ k� lN tð Þ � d1I tð Þ � d2Q tð Þ; ð8pÞ

where N tð Þ ¼ S tð Þ þ E tð Þ þ I tð Þ þQ tð Þ þ R tð Þ; t P 0, is the
total population under consideration. Clearly

k� lN tð Þ � d1I tð Þ � d2Q tð Þ 6 k� lN tð Þ
Therefore, from Eq. (8p) it follows that

ABC
0 Dq

t N tð Þ 6 k� lN tð Þ:
Applying the Laplace transform on both sides of above
inequality, we obtain

L ABC
0 Dq

t N tð Þ� �
sð Þ ¼ k

s
� lL N tð Þ½ � sð Þ;

B qð Þsq
qþ 1� qð Þsq N sð Þ þ lN sð Þ 6 ksq� qþ1ð Þ þ B qð ÞN 0ð Þsq�1

qþ 1� qð Þsq
where N sð Þ ¼ N tð Þ½ � sð Þ and N 0ð Þ represents the initial value of
the total population. Implies

N sð Þ 6 k 1� qð Þsq þ q½ �sq� qþ1ð Þ þ B qð Þsq�1N 0ð Þ
lqþ q 1� qð Þsq þ B qð Þsq

N sð Þ 6 kq
1� qð Þlþ B qð Þ

sq� qþ1ð Þ

sq þ ql
1�qð ÞlþB qð Þ

þ k 1� qð Þ
1� qð Þlþ B qð Þ þ

B qð ÞN 0ð Þ
1� qð Þlþ B qð Þ

� �
sq�1

sq þ ql
B qð Þþ 1�qð Þl

;

Applying the inverse Laplace, we arrive at
N tð Þ 6 kqtq

1� qð Þlþ B qð ÞEq;qþ1 �Xtqð Þ

þ k 1� qð Þ
1� qð Þlþ B qð Þ þ

B qð ÞN 0ð Þ
B qð Þ þ 1� qð Þl

� �
Eq;1 �Xtqð Þ;

ð8qÞ
where X ¼ ql

B qð Þþ 1�qð Þl, and Ea;b is the Mittag–Leffler function

with two parameters a > 0 and b > 0 may be defined by the

series

Ea;b zð Þ ¼
X1
n¼0

zn

C anþ bð Þ ;

whose Laplace transform is

L tb�1Ea;b �Ktað Þ� � ¼ sa�b

sa � K
;

provided that s > jKj1=a. For a; b > 0, the Mittag–Leffler func-

tion satisfies

Ea;b zð Þ ¼ 1

z
Ea;b�a zð Þ � 1

C b� að Þ
� �

;

and for the case a ¼ q; b ¼ qþ 1 and z ¼ �Xtq, we have

Eq;qþ1 �Xtqð Þ ¼ 1

Xtq
1� Eq;1 �Xtqð Þ� �

: ð8rÞ

The Mittag–Leffler function is bounded for all t > 0, possess
an asymptotic behavior [57], introducing the relation (8r) in

inequality (8q), it is obvious that N tð Þ 6 k
l as t ! 1. Thus

N tð Þ and all other variables of the model (7) are bounded in

a region P.
The solution remains x ¼ 0 for all t > 0 if x0 ¼ 0. More-

over, for any nonnegative set of initial conditions in P, every

solution of model (7) in

R5
þ ¼ y 2 R5 : y P 0

� �
; y tð Þ ¼ S tð Þ;E tð Þ; I tð Þ;Q tð Þ;R tð Þð ÞT;

approach asymptotically in finite time t, enters and remains in

the region P. Implies the region P attracts all solutions in R5
þ.

Thus the closed set P is a positively invariant [12] for our sys-

tem (7). �
5.2. Positivity of solutions

We have to prove that the involved state variables S;E, I;Q
and R are non-negative for any t > 0, that is the solution will

remain positive forever corresponding to any non-negative ini-

tial data in R5
þ. This property is required to show our model

physically realizable.

Theorem 6. The solution space S;E; I;Q;Rð Þ of the system (7)
will remain positive forever with any positive initial costs.

Proof. First equation of the model (7) is rearranged to give

ABC
0 Dq

t S tð Þ P � lþ b1I tð Þ þ b2E tð Þ½ �S tð Þ:
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Since all the solutions are bounded, let E tð Þ and I tð Þ are

bounded by r1 and r2 respectively. Then,

ABC
0 Dq

t S tð Þ P �c S tð Þ; ð8sÞ
where c ¼ lþ b1r2 þ b2r1 is a constant. Applying the Laplace
transform in (8s), we deduce

B qð Þsq
qþ 1� qð Þsq L S tð Þ½ � sð Þ � B qð Þsq�1

qþ 1� qð Þsq S 0ð Þ

P �c L S tð Þ½ � sð Þ;

B qð Þsq þ cqþ c 1� qð Þsq½ �L S tð Þ½ � sð Þ P B qð Þsq�1S 0ð Þ;

L S tð Þ½ � sð Þ P B qð Þsq�1S 0ð Þ
B qð Þ þ c 1� qð Þ

sq�1

sq þ cq
B qð Þþc 1�qð Þ

:

Introducing inverse Laplace transform in the above inequality,
we obtain

S tð Þ P B qð Þsq�1S 0ð Þ
B qð Þ þ c 1� qð ÞEq;1 � cq

B qð Þ þ c 1� qð Þ t
q

� �
: ð8tÞ

Since both the quantities on right hand side of (8t) are pos-
itive. Implies the solution S(t) is positive for all t P 0. Sim-

ilarly, we can easily prove that E tð Þ P 0; I tð Þ P 0;Q tð Þ P 0
and R tð Þ P 0 for all t P 0 corresponding to any

non-negative initial data. Thus the solutions in R5
þ remain

positive forever. �

Proofs of existence and uniqueness, boundedness and the

positivity of all solutions show that the problem (8) is mathe-
matically well-posed.

6. Equilibrium points

Equilibrium points of the proposed fractional model (7) are
obtained by solving the system

ABC
0 Dq

t S tð Þ ¼ ABC
0 Dq

t E tð Þ ¼ ABC
0 Dq

t I tð Þ ¼ ABC
0 Dq

t Q tð Þ
¼ ABC

0 Dq
t R tð Þ ¼ 0:

After simple calculations, the SEIQR model (7) has a
unique non-negative Corona free equilibrium at the point
given by

F�
0 ¼ S�

0;E
�
0; I

�
0;Q

�
0;R

�
0

 � ¼ k
l
; 0; 0; 0; 0

� �
;

and a unique non-negative Corona present equilibrium at the

point given by

F�
1 ¼ S�

1;E
�
1; I

�
1;Q

�
1;R

�
1

 �
;

in the epidemiological region P, where

S�
1 ¼ q1þkþaþlð Þ rþlþd1ð Þ

b1aþb2 rþlþd1ð Þ > 0;

E�
1 ¼

k�lS�
1ð Þ rþlþd1ð Þ

b1aþb2 rþlþd1ð Þ½ �S�
1
> 0;

I�1 ¼ aE�
1

rþlþd1
> 0;

Q�
1 ¼ q1E

�
1

qþlþd2
> 0;

R�
1 ¼ 1

l kE�
1 þ rI�1 þ qQ�

1

 �
> 0:
7. Threshold parameter R0

We can determine the dynamics of mathematical models by
computing the value of threshold parameter, usually denoted

by R0. The spread of any infectious disease begins when an
infected person enters into a class of completely susceptible
humans. Therefore, a threshold parameter gives the total num-

ber of new infections produced by an infected human at t P 0.
It works confidentially to predict the dynamical behavior of a
model. Implies it provides a better information about the
future spread or control of any disease.

The value of threshold parameter for the model (7) is com-
puted by using the standard next generation matrix approach

[12,62–64]. If v ¼ E; I;Q;S;Rð ÞT 2 R5
þ, then the model (7) can

be written as

ABC
a Dq

t v ¼ F vð Þ � G vð Þ
where

F vð Þ ¼

b1SIþ b2SE

0

0

0

0

0
BBBBBB@

1
CCCCCCA

and

G vð Þ ¼

q1 þ lþ aþ kð ÞE
lþ d1 þ rð ÞI� aE

qþ lþ d2ð ÞQ� q1E

lS� k

lR� kE� rI� qQ

0
BBBBBB@

1
CCCCCCA
:

The functions, F and V for the rate of new infection terms
entering, and the rate of transfer into and out of the exposed,

infected, and the quarantined class, respectively are as follows:

F ¼
b1SIþ b2SE

0

0

0
B@

1
CA;

whereas the matrix G representing the transition rate of exist-

ing or transported cases is computed as

G ¼
q1 þ kþ aþ lð ÞE
rþ lþ d1ð ÞI� aE

qþ lþ d2ð ÞQ� q1E

0
B@

1
CA:

The jacobian of the matrices F and G evaluated at point F�
0 are

F ¼

@F1

@E
@F1

@I
@F1

@Q

@F2

@E
@F2

@I
@F2

@Q

@F3

@E
@F3

@I
@F3

@Q

0
BB@

1
CCA ¼

b2k
l

b1k
l 0

0 0 0

0 0 0

0
B@

1
CA;

G ¼

@G1

@E
@G1

@I
@G1

@Q

@G2

@E
@G2

@I
@G2

@Q

@G3

@E
@G3

@I
@G3

@Q

0
BB@

1
CCA

¼
q1 þ kþ aþ l 0 0

�a rþ lþ d1 0

�q1 0 qþ lþ d2

0
B@

1
CA:
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The maximum absolute eigenvalue of the positive matrix FG�1

is the value of R0 for the model (7). That is,

R0 ¼ k b1aþ b2 rþ lþ d1ð Þ½ �
rþ lþ d1ð Þ q1 þ kþ aþ lð Þ :
8. Stability analysis

In this part, the local and global stabilities of a Corona SEIQR

fractional model (7) at both the equilibria are discussed theo-
retically. Lyapunov function theory as implemented in
[12,62–64,66,67] is employed to prove global stability of the

model. So, this section is completed in the following way.

8.0.1. Local behavior of the model

Theorem 7. A Corona free equilibrium F�
0 is locally asymptot-

ically stable (LAS) when R0 < 1. If R0 > 1, it is unstable.

Proof. The Jacobian J for the system (1) at F�
0 can be written

as

J F�
0

 � ¼
�l �b2

k
l �b1

k
l 0 0

0 b2
k
l � q1 þ kþ aþ lð Þ b1

k
l 0 0

0 a � cþ lþ d1ð Þ 0 0

0 q1 0 � qþ lþ d2ð Þ 0

0 k c q �l

0
BBBBBB@

1
CCCCCCA
;

Jacobian matrix J F�
0

 �
has the following eigenvalues:

k1 ¼ �l; ð21aÞ
k2 ¼ �l; ð21bÞ
k3 ¼ � qþ lþ d2ð Þ ð21cÞ

k4 ¼ b2

k
l
� q1 þ kþ aþ lð Þ; ð21dÞ

k5 ¼
�1
l cþ lþ d1ð Þ q1 þ kþ aþ lð Þ R0 � 1ð Þ

b2
k
l � q1 þ kþ aþ lð Þ : ð21eÞ

It is to be noted that the parameters in the proposed model are

assumed to be positive. Therefore, the eigenvalues k1; k2 and k3
are clearly negative. Indeed the quantities l, and qþ lþ d2 are
strictly positive. Now consider Eq. (21d), that is

k4 ¼ b2
k
l � q1 þ kþ aþ lð Þ. Hence k4 < 0 ()

b2
k
l < q1 þ kþ aþ lð Þ, which is true. Lastly, it has been

proved that

�1
l cþ lþ d1ð Þ q1 þ kþ aþ lð Þ < 0;

b2
k
l � q1 þ kþ aþ lð Þ < 0:

Therefore, Eq. (21e) implies, k5 < 0 if and only ifR0 < 1. Thus

all the eigenvalues of J F�
0

 �
when R0 is less than unity, are neg-

ative and hence F�
0 is locally asymptotically stable. Once the

dynamical system is stable at disease free point F�
0, then there

will be no pandemic threat. �

Theorem 8. A Corona present equilibrium F�
1 is locally asymp-

totically stable (LAS) whenever R0 > 1. Whenever R0 < 1, it
is unstable.
Proof. The Jacobian for the system (1) at F�
1 can be written as

J F�
1

 �¼

�l �b2S
�
1 �b1S

�
1 0 0

M21 M22 b1S
�
1 0 0

0 a � cþ lþ d1ð Þ 0 0

0 q1 0 � qþ lþ d2ð Þ 0

0 k c q �l

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

where

M21 ¼ b1I
�
1 þ b2E

�
1;

M22 ¼ b2S
�
1 � q1 þ kþ aþ lð Þ:

Then the Jacobian matrix J F�
1

 �
has the following eigenvalues:

k1 ¼ �l < 0; ð22aÞ
k2 ¼ �l < 0; ð22bÞ
k3 ¼ � qþ lþ d2ð Þ < 0; ð22cÞ

k4 ¼ b2S
�
1 � q1 þ kþ aþ lð Þ þ 1

l
b2S

�
1 b1I

�
1 þ b2E

�
1

 �� �
; ð22dÞ

k5 ¼
l cþ lþ d1ð ÞM22 þ lab1S

�
1 � b2 cþ lþ d1ð ÞM21S

�
1 þ ab1M21S

�
1

� �
M21b2S

�
1 � lM22

:

ð22eÞ

On inspection, it is verified that

M21b2S
�
1 � lM22 > 0;

b2S
�
1 < q1 þ kþ aþ lð Þ þ 1

l
b2S

�
1 b1I

�
1 þ b2E

�
1

 �
;

l cþ lþ d1ð ÞM22 þ lab1S
�
1 < b2 cþ lþ d1ð ÞM21S

�
1

þ ab1M21S
�
1:

Implies that k4 and k5 are negative. Hence F�
1 is locally asymp-

totically stable. �
8.0.2. Global behavior of the quarantine model

Theorem 9. A Corona free equilibrium F�
0 is globally asymptot-

ically stable (GAS) in the domain P when R0 < 1.

Proof. Let S�
0 ¼ k

l. We construct a candidate [48] Lyapunov

function U0 : P ! R such that,

U0 ¼ S� S�
0 � S�

0 ln
S

S�
0

þ Eþ IþQþ R:

Differentiating U0 with respect to time t yields

ABC
0 Dq

t U0 ¼ 1� S�
0

S

� �
ABC
0 Dq

t Sþ ABC
0 Dq

t Eþ ABC
0 Dq

t I

þ ABC
0 Dq

t Qþ ABC
0 Dq

t R:

Substituting the values of fractional derivatives from system
(1), we have
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ABC
0 Dq

t U0 ¼ 1� S�
0

S

� �
k� b1SI� b2SE� lS½ � þ b1SIþ b2SE½

� q1 þ kþ aþ lð ÞE� þ aE� cþ lþ d1ð ÞI½ �
þ q1E� qþ lþ d2ð ÞQ½ � þ kEþ cIþ qQ� lR½ �

Implies that

ABC
0 Dq

t U0 ¼ �l
S

S� S�
0

 �2 � l Eþ IþQþ Rð Þ þ kn
S�
0

S

� �
� d1Iþ d3Qð Þ;

where

kn ¼ b1Iþ b2Eð ÞS:
Clearly, kn P 0, therefore

ABC
0 Dq

t U0 6
�l
S

S� S�
0

 �2 � l Eþ IþQþ Rð Þ � d1Iþ d3Qð Þ;

Clearly, ABC
0 Dq

t U0 6 0 for all S;E; I;Q;Rð Þ 2 R5
þ. It can be

noticed that ABC
0 Dq

t U0 ¼ 0 if and only if S ¼ S�
0,

E ¼ E�
0 ¼ 0;Q ¼ Q�

0; I ¼ I�0 ¼ 0;R ¼ R�
0. Hence by LaSalle’s

invariance principle [69], F�
0 is globally asymptotically stable

in P. As a result, Corona virus disease disappears from the
human population. �

Theorem 10. A Corona present steady state F�
1 is globally

asymptotically stable (GAS) in the feasible region P if R0 > 1.

Proof. To show the global stability of a Corona present steady

state F�
1, we construct a proposed [48] Lyapunov function

U1 : P ! R such that

U1 ¼ S� S�
1 � S�

1 ln
S
S�
1
þ E� E�

1 � E�
1 ln

E
E�
1
þQ�Q�

1 �Q�
1 ln

Q
Q�
1

þI� I�1 � I�1 ln
I
I�
1
þ R� R�

1 � R�
1 ln

R
R�
1
:

The Atangana-Baleanu fractional derivative of U1 with respect

to time t can be written as

ABC
0 Dq

t U1 ¼ 1� S�
1

S

� �
ABC
0 Dq

t Sþ 1� E�
1

E

� �
ABC
0 Dq

t E

þ 1� I�
1

I

� �
ABC
0 Dq

t Iþ 1� Q�
1

Q

� �
ABC
0 Dq

t Qþ 1� R�
1

R

� �
ABC
0 Dq

t R:

Using equations given in the model (1), we obtain that

ABC
0 Dq

t U1 ¼ 1� S�
1

S

� �
k� lþ b1Iþ b2Eð Þ S� S�

1

 �� lþ b1Iþ b2Eð ÞS�
1

� �
þ 1� E�

1

E

� �
b1SIþ b2SE� q1 þ kþ aþ lð Þ E� E�

1

 �� q1 þ kþ aþ lð ÞE�
1

� �
þ 1� I�

1

I

� �
aE� cþ lþ d1ð Þ I� I�1

 �� cþ lþ d1ð ÞI�1
� �

þ 1� Q�
1

Q

� �
q1E� qþ lþ d2ð Þ Q�Q�

1

 �� qþ lþ d2ð ÞQ�
1

� �
þ 1� R�

1

R

� �
kEþ cIþ qQ� l R� R�

1

 �� lR�
1

� �
:

A simple calculation yields

ABC
0 Dq

t U1 ¼ r1 � r2;

where

r1 ¼ kþ lþ b1Iþ b2Eð Þ S�
1ð Þ2
S

þ b1Iþ b2Eð ÞS

þ q1 þ kþ aþ lð Þ E�
1ð Þ2
E

þ cþ lþ d1ð Þ I�
1ð Þ2
I

þ aþ q1ð ÞE

þ qþ lþ d2ð Þ Q�
1ð Þ2
Q

þ kEþ cIþ qQð Þ þ l
R�
1ð Þ2
R

;

and

r2 ¼ lþ b1Iþ b2Eð Þ S�S�
1ð Þ2

S
þ lþ b1Iþ b2Eð ÞS�

1

þ q1 þ kþ aþ lð Þ E�E�
1ð Þ2

E
þ k

S�
1

S
þ b1Iþ b2Eð ÞS E�

1

E

þ cþ lþ d1ð Þ I�I�
1ð Þ2
I

þ qþ lþ d2ð Þ Q�Q�
1ð Þ2

Q
þ l

R�R�
1ð Þ2

R

þ q1 þ kþ aþ lð ÞE�
1 þ cþ lþ d1ð ÞI�1 þ aE

I�
1

I
þ qþ lþ d2ð ÞQ�

1

þq1E
Q�
1

Q
þ lR�

1 þ kEþ cIþ qQð Þ R�
1

R
:

Since all the parameters used in the model (1) are non-

negative, we have ABC
0 Dq

t U1 � 0 for r1 6 r2. The equality
ABC
0 Dq

t U1 ¼ 0 holds if and only if S ¼ S�
1,

E ¼ E�
1; I ¼ I�1;Q ¼ Q�

1;R ¼ R�
1. Implies F�

1

� �
is the greatest

invariant set contained in

N1 ¼ S;E; I;Q;Rð Þ 2 P : ABC
0 Dq

t U1 ¼ 0
� �

:

Hence by LaSalle’s invariance principle [69], it is con-
cluded that F�

1 is globally asymptotically stable in P. Glo-

bal stability of F�
1 enables that COVID-19 will persist in

the human population and eventually lead to pandemic.

�

9. Numerical study

In this segment, we employ Toufik-Atangana scheme [45,46] to
acquire a numerical solution of fractional model for different

values of q. The numerical values of involved parameters,
given in Table 1 are taken from [11,12]. Dynamical behavior
of Corona virus disease over time t is simulated for various val-

ues of fractional order q. Moreover, the effectiveness of quar-
antine programme is analyzed numerically for different
coverage levels. The presented numerical results are discussed

in detail.

9.1. Toufik-Atangana scheme and simulations

In this section, we develop a numerical scheme which is based
on a recently developed Toufik-Atangana rule to analyze and
predict the numerical stability of a Corona fractional model

(8). To get an iterative scheme, we firstly describe the method
briefly and then apply it to the fractional model (8). By apply-
ing the fundamental theorem of fractional calculus, the system
(8) can be written as

v tð Þ � v 0ð Þ ¼ 1� q
B qð Þ F t; v tð Þð Þ þ q

B qð ÞC qð Þ

�
Z t

0

t� nð Þq�1
F n; v nð Þð Þdn:

At t ¼ tnþ1; n ¼ 0; 1; 2; . . . ;N with h ¼ T
N
, we have

v tnþ1ð Þ � v 0ð Þ ¼ 1� q
B qð Þ F tn; v tnð Þð Þ þ q

B qð ÞC qð Þ

�
Z tnþ1

0

tnþ1 � nð Þq�1
F n; v nð Þð Þdn;

or equivalently,



þ 2þ qÞ nþ 1� jð Þq

jþ 1þ qÞ n� jð Þq
o�

;

þ 2þ qÞ nþ 1� jð Þq

jþ 1þ qÞ n� jð Þq
o�

;

þ 2þ qÞ nþ 1� jð Þq

jþ 1þ qÞ n� jð Þq
o�

;

þ 2þ qÞ nþ 1� jð Þq

jþ 1þ qÞ n� jð Þq
o�

;

þ 2þ qÞ nþ 1� jð Þq

jþ 1þ qÞ n� jð Þq
o�

:

ð24Þ
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v tnþ1ð Þ ¼ v 0ð Þ þ 1� q
B qð Þ F tn; v tnð Þð Þ

þ q
B qð ÞC qð Þ

Xn

j¼0

Z tjþ1

tj

tnþ1 � nð Þq�1
F n; v nð Þð Þdn: ð23Þ

The function F n; v nð Þð Þ can be approximated over tj; tjþ1

� �
,

using the interpolation polynomial

F n; v nð Þð Þ ¼ F tj; v tj
 � �

h
t� tj�1

 �� F tj�1; v tj�1

 � �
h

t� tj
 �

:

Putting in Eq. (23) we get

v tnþ1ð Þ ¼ v 0ð Þ þ 1�q
B qð ÞF tn; v tnð Þð Þ

þ q
B qð ÞC qð Þ

Xn

j¼0

F tj ;v tjð Þð Þ
h

R tjþ1

tj
tnþ1 � tð Þq�1

t� tj�1

 �
dt

�

� F tj�1 ;v tj�1ð Þð Þ
h

R tjþ1

tj
tnþ1 � tð Þq�1

t� tj
 �

dt

�
:

Calculating these integrals we finally get the approximate solu-

tion as:

v tnþ1ð Þ ¼ v t0ð Þ þ 1�q
B qð ÞF tn; v tnð Þð Þ

þ q
B qð Þ

Xn

j¼0

hqF tj ;v tjð Þð Þ
C qþ2ð Þ n� jþ 2þ qð Þ nþ 1� jð Þqf

�
n� jþ 2þ 2qð Þ n� jð Þqg

� hqF tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n� jþ 1þ qð Þ n� jð Þq

n o�
:

Hence, we obtain the following recursive formulae for the

model equations:

S tnþ1ð Þ ¼ S t0ð Þ þ 1�q
B qð ÞF1 tn; v tnð Þð Þ þ q

B qð Þ
Xn

j¼0

hqF1 tj ;v tjð Þð Þ
C qþ2ð Þ n� jðf

�

n� jþ 2þ 2qð Þ n� jð Þqg � hqF1 tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n�ð

n
E tnþ1ð Þ ¼ E t0ð Þ þ 1�q

B qð ÞF2 tn; v tnð Þð Þ þ q
B qð Þ

Xn

j¼0

hqF2 tj ;v tjð Þð Þ
C qþ2ð Þ n� jðf

�

n� jþ 2þ 2qð Þ n� jð Þqg � hqF2 tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n�ð

n
I tnþ1ð Þ ¼ I t0ð Þ þ 1�q

B qð ÞF3 tn; v tnð Þð Þ þ q
B qð Þ

Xn

j¼0

hqF3 tj ;v tjð Þð Þ
C qþ2ð Þ n� jðf

�

n� jþ 2þ 2qð Þ n� jð Þqg � hqF3 tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n�ð

n
Q tnþ1ð Þ ¼ Q t0ð Þ þ 1�q

B qð ÞF4 tn; v tnð Þð Þ þ q
B qð Þ

Xn

j¼0

hqF4 tj ;v tjð Þð Þ
C qþ2ð Þ n� jðf

�

n� jþ 2þ 2qð Þ n� jð Þqg � hqF4 tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n�ð

n
R tnþ1ð Þ ¼ R t0ð Þ þ 1�q

B qð ÞF5 tn; v tnð Þð Þ þ q
B qð Þ

Xn

j¼0

hqF5 tj ;v tjð Þð Þ
C qþ2ð Þ n� jðf

�

n� jþ 2þ 2qð Þ n� jð Þqg � hqF5 tj�1 ;v tj�1ð Þð Þ
C qþ2ð Þ nþ 1� jð Þqþ1 � n�ð

n

The purpose of this segment is to explain the role of fractional
order q on the transmission patterns and control of COVID-19

through the model (7). To this end, we present some graphical
results of the proposed fractional model (7) using an iterative
finite difference scheme (24) developed by Toufik and Atan-

gana [57]. In Fig. 2, the effect of arbitrary fractional order q
on total number of humans in each class is demonstrated.
The dynamics of the model (7) is simulated for
q ¼ 0:2; 0:4; 0:6; 0:8; 1 respectively. It is remarkable that we
were at the endemic equilibrium F�
1 for the integer case

q ¼ 1. A significant decrease in total Corona exposed and
the infected cases is observed by decreasing the value of order

q. However, the total number of humans in susceptible, quar-
antined and the recovered class increases slowly by reducing
the value of q from 1. Implies we can reduce the transmission

of corona infection in human population by decreasing the
value of order q of the fractional model. It is noticed that as
q gets close to zero from the right, the memory effects of the
epidemic model decreases and consequently the number of

cases in E and I gets close to 0. Moreover, for the case
q ¼ 1, we obtained the same graphical results as given in [11]
where NSFD numerical scheme [68], was used.

9.2. Effect of quarantine policy on populations

In this subsection, we have studied the impact of quarantine on

the dynamics of Corona virus pandemic quantitatively with
the help of proposed fractional model (7). The aim was to han-
dle the spread of COVID-19 in a human population through

persistent quarantine program. For this purpose, several
numerical simulations under the effect of different quarantine
levels are demonstrated by employing a numerical scheme (24),
see Figs. 3–8. By taking value of fractional order q other than

1, this numerical analysis has given more interesting and bio-
logically feasible results in order to investigate the stability pat-
tern of corona virus disease. The time level in all simulations is

considered up to 100 days.
The effect of parameter q1 (quarantine level) and fractional
order q versus the total humans in each class is analyzed in

Figs. 3–8. The study indicates that there is a significant
decrease in the corona exposed and infected humans by
increasing the order of fractional derivative and the level of

quarantine. It is also noticed that the number of susceptible
humans increases as the value of q and q1 increases. Moreover,
in Fig. 5, when q ¼ 0:6, the number of recovered humans grad-

ually increases for the quarantine levels q1 ¼ 0; q1 ¼ 0:1 and



Fig. 2 Dynamical behavior of fractional SEIQR Corona epidemic model for different values of q using Toufik-Atangana numerical

scheme. It is found that number of susceptible and the recovered humans gradually increases by decreasing the value of order q from 1.

However, with the decrease in the value of fractional order q from 1, the number of exposed and infected humans also decreases. The

curves for each of the class S;E; I;Q, R, and N get flattened as q reduces from 1 to 0:6. .
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q1 ¼ 0:3 respectively. The curves of recovered humans eventu-
ally goes down for higher quarantine levels over time t, as
needed.
With the continuous increase in the value of fractional
order and quarantine level, the number of exposed, infected,
and the recovered humans finally goes to zero whereas the
number of susceptible humans goes to the value S�

0 ¼ k=l for



Fig. 3 Quarantine effect on the dynamics of Corona pandemic for the case q ¼ 0:2 at endemic point F�
1. Profiles for each class are

obtained using Toufik-Atangana numerical scheme with step size h ¼ 0:01. It is seen that number of susceptible and recovered humans

gradually increases by increasing the level of quarantine. However, the number of exposed and infected humans decreases with the increase

in quarantine rate q1.
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the case q ¼ 1 and q1 ¼ 0:7. This is a particular state of corona
free point F�

0 at which the total population will become

healthy. It shows that at all quarantine levels ranging 0% to
� 70%, the Corona virus disease will persist in the human pop-

ulation. Indeed, from 70% onward, each population approach
the equilibrium state of F�

0 automatically as illustrated in

Table 2. Hence, our study indicates that Corona virus disease
could be eradicated if we quarantine at least 70% of the human
population, which justifies the title of our paper.

9.3. Computational advantages

We preferred Toufik-Atangana scheme over all standard and

non-standard methods that solve a given problem only for



Fig. 4 Quarantine effect on the dynamics of Corona pandemic for the case q ¼ 0:4 at endemic point F�
1. Profiles for each class are

obtained using Toufik-Atangana numerical scheme with step size h ¼ 0:01. It is seen that number of susceptible and recovered humans

gradually increases by increasing the level of quarantine. However, the number of exposed and infected humans decreases with the increase

in quarantine rate q1.
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an integer order. The preference is justified taking into
account several numerical aspects of the fractional model,
as it works gently for non-integer values of order q. Indeed,
the fractional order q affects the global dynamical behavior

of COVID-19 pandemic and provides a detailed information
about the model at least in this work. We have studied effi-
ciently the effect of fractional order q and the proposed
quarantine strategy on disease dynamics over the longer
time. Importance of graphic results is attributed to the
numerical scheme (24) for the fractional model involving
Atangana-Baleanu fractional operator with the hereditary

property. Furthermore, it is claimed that all the hidden
properties of real world problems in engineering and physi-
cal sciences can be revealed better by a mathematical model



Fig. 5 Quarantine effect on the dynamics of Corona pandemic for the case q ¼ 0:6 at endemic point F�
1 . Profiles are obtained using

Toufik-Atangana numerical scheme with step size h ¼ 0:01. It is seen that number of susceptible humans gradually increases by increasing

the level of quarantine whereas the number of exposed and infected humans decreases. One important thing is to be noted that number of

recovered humans initially increases (see for q1 ¼ 0; 0:1; 0:3) and then reduces (see for q1 ¼ 0:5; 0:7) with the increase in quarantine rate.
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involving Atangana-Baleanu fractional operator. To verify
this argument, further studies can be conducted on the effect

of other fractional derivative operators such as Caputo-
Fabrizio operator for the proposed model, where one can
compare the results of the same model with the Atangana-
Baleanu fractional operator with a Mittag-Leffer kernal

includes exponential function as its special case.
9.4. Covariance

In the current subsection, the joint variability [12,62] of all
classes is studied numerically. For each pair of populations,
we have computed the relationship quantity q� and its conse-

quences as illustrated in Table 3. A numerical study performed
in Figs. 3–7 authentically justified the inverse relationship



Fig. 6 Quarantine effect on the dynamics of Corona pandemic for the case q ¼ 0:8 at endemic point F�
1 . Profiles are obtained using

Toufik-Atangana numerical scheme with step size h ¼ 0:01. It is seen that number of susceptible humans gradually increases by increasing

the level of quarantine whereas the number of exposed and infected humans decreases. One important thing is to be noted that number of

recovered humans initially increases (see for q1 ¼ 0; 0:1; 0:3) and then reduces (see for q1 ¼ 0:5; 0:7) with the increase in quarantine rate.
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among exposed, infected, recovered and the quarantined

humans. However, it is noticed that there is a direct correlation
between the susceptible and quarantined class as demonstrated
in each of the Figs. 3–7. Subsequently, a continuous rapid
increment in the susceptible class will lead the entire human

population to Corona free state of F�
0.
9.5. Is it possible to quarantine 70% of the population?

A mathematical analysis of the proposed model (7) suggests
that we will have to quarantine at least 70% of the human

population to control the spread of COVID-19. It looks dif-
ficult for all human communities, especially in developing



Fig. 7 Quarantine effect on the dynamics of Corona pandemic for the case q ¼ 1:0 at endemic point F�
1. Profiles are obtained using

Toufik-Atangana numerical scheme with step size h ¼ 0:01. It is seen that number of susceptible humans gradually increases by increasing

the level of quarantine whereas the number of exposed and infected and the recovered humans decreases. The graph shows that we are at

disease free state F�
0 when round about 70% of the human population is quarantined.
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countries due to their limited resources. To make the quar-

antine strategy effective, firstly, we need to prepare priming
people who can help others to think about many ways to
reduce issues of loss of freedom, boredom, irritability or

enxiety during quarantine period. We should encourage peo-
ple to make plans such as stucturing of time for virtual
socialising and for exercise, or other shared activities. Every

government or agency should plan for what will happen as
and after quarantine restrictions are lifted. We need to
provide a reliable internet access to psychological, social

and medical support. Confidential telephone hotlines that
provide professional counseling should be provided. The
state needs to provide a clean and a safe place to quarantine

along with basic supplies such as clothes, water, food, and
financial support. The basic necessities such as payment
for house rent, electricity, child care and other utilities

should be provided. We need to provide people the ability
to work remotely.



Fig. 8 Quarantine effect on the dynamics of total population N tð Þ for four different values of q at endemic point F�
1. Profiles for N(t) are

obtained using Toufik-Atangana numerical scheme with step size h ¼ 0:01.
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Table 2 Summary of quarantine effect on all classes for q ¼ 1.

Levels of quarantine (%) 0:0 0:1 0:3 0:5 0:7

Population proportion of susceptible humans 0.4917 0.5752 0.7420 0.9089 1.0000

Population proportion of exposed humans 0.4312 0.3081 0.1450 0.0418 0.0000

Population proportion of infected humans 0.06104 0.04362 0.02053 0.005921 0.0000

Population proportion of recovered humans 0.01548 0.02333 0.02253 0.00983 0.0000

Table 3 Joint variability of populations.

Populations q� Relationship

Q;Sð Þ 0:5418 Direct

Q;Eð Þ �0:7624 Inverse

Q; Ið Þ �0:6542 Inverse

Q;Rð Þ �0:7560 Inverse
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10. Conclusions

In this study, we assessed the dynamics of a novel Corona virus

disease by developing a fractional order SEIQR model. We
have used Atangana-Beleanu derivative operator with general-
ized Mittag–Leffler function to formulate the proposed frac-

tional model. The Atangana-Beleanu derivative operator was
preferred due to its non-local and non-singular kernel. The
purpose of our study was to focus on a SEIQR model to depict
the prevalent characteristics of Corona virus. To confirm the

existence and uniqueness of solution of the proposed fractional
model, the fixed point theorem is applied. Threshold parame-
ter is computed theoretically and numerically to handle the

dynamical behavior of the model. Disease free and endemic
equilibrium points were obtained analytically. It is proved that
both the equilibria are locally and globally stable in the feasible

region. Global stability of equilibrium points is analyzed by
the theory of Lyapunov functions. The solution of the model
is then investigated by implementing a recently proposed
numerical scheme from the existing literature. All the results

obtained are simulated by figures and seen to be compatible
with the model. We demonstrate the long term dynamical
behavior of COVID-19 with the help of numerical simulations.

The purpose was to investigate the impact of different values
of fractional order q. Through the fractional analysis, it is
observed that number of susceptible humans increases as the

value of fractional order q decreases. However, as q decreases,
the number of humans in exposed, infected, quarantined and
the recovered class also decreases. Hence, Corona virus disease

decreases slowly and can be controlled by reducing the value of
fractional order q from 1. These fractional results show that
fractional models will be more effective than integer-order
ones in truly estimating the optimal quarantine level. As a sec-

ond approach, it was suggested that the number of Corona
infective cases can be reduced by increasing the value of frac-
tional order q and levels of quarantine q1. Consequently, it is

deduce that SEIQR fractional model is more efficient in fitting
real data than integer-order SEIQR model. Finally, the joint
variability of the quarantined class and the remaining classes

is executed statistically. The obtained relationship along with
the consequences among all pairs were also observed in all
numerical simulations, one can validate our study. Our numer-
ical investigations prove that an earliest proper quarantine
measure helps in controlling the Corona pandemic. To make

it possible, the government especially in developing countries
will have to take serious steps like providing less expensive
suitable quarantine strategy to control the Corona virus dis-

ease. Mathematical analysis of the fractional model given in
this paper makes an attempt to understand the dynamical
behavior of a disease. To combat COVID-19 in the human

population, we assure that the investigations in the current
research work will be beneficial for the decision making and
health authorities. In future, we will present a comprehensible
depiction of Corona virus disease using different intervention

strategies through SEIQHR fractional model with ABC oper-
ator. A general fractional order optimal control problem will
be analyzed to find the best controls for the employed quaran-

tine and hospitalization measures.
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