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ABSTRACT

The present investigations are associated with designing Morlet wavelet neural network (MWNN) for solving
a class of susceptible, infected, treatment and recovered (SITR) fractal systems of COVID-19 propagation and
control. The structure of an error function is accessible using the SITR differential form and its initial conditions.
The optimization is performed using the MWNN together with the global as well as local search heuristics of
genetic algorithm (GA) and active-set algorithm (ASA), i.e., MWNN-GA-ASA. The detail of each class of the SITR
nonlinear COVID-19 system is also discussed. The obtained outcomes of the SITR system are compared with the
Runge-Kutta results to check the perfection of the designed method. The statistical analysis is performed using
different measures for 30 independent runs as well as 15 variables to authenticate the consistency of the proposed
method. The plots of the absolute error, convergence analysis, histogram, performance measures, and boxplots are
also provided to find the exactness, dependability and stability of the MWNN-GA-ASA.
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1 Introduction

Human beings faced many challenges and obstacles, like floods, earthquakes, and viruses, etc.
A Few dangerous and spreading diseases are dengue fever produced by the instinctive mosquitos.

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
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It broadly feasts in the African, American, South Asian countries, Oceania regions, Eastern
Mediterranean and the Caribbean. It is a kind of perilous and serious virus that wrapped about
0.5 million people each year, but due to the high recovery rate, most of the people get better in a
short time. The key indications of the virus are high fever, headache and joint pain. Some other
infection base diseases that are hot topics for the researchers are Lassa, Ebola and HIV. To spread
and avoid the above infection-based viruses, various medical indications have been extensively
applied.

The whole world is now facing coronavirus (COVID-19) that is a deathly, dangerous and
spreading disease. This dangerous virus is tremendously transferrable through droplets [1]. The
ratio of those individuals that are affected by COVID-19 is so high. At the end of 2019, the
first case was reported in the Hubei Province, Wuhan, China [2,3]. Recently, the proper treatment
and medicine of the COVID-19 are still not available. However, the vaccination process in some
countries is just started to avoid the risk from COVID-19. To avoid COVID-19, different countries
did precautionary measures in which lockdown was a common measure. The cases of COVID-19
reported in the whole world mainly in USA, Brazil, India and Europe. The important indications
of the COVID-19 are flue, tiredness, fever and dry cough [4]. The COVID-19 badly affected
those persons that are suffering some diseases like heart issues, diabetes, chronic respiratory,
cardiovascular and cancer. Those who feel these symptoms of dry cough, breathing difficulty, flue
and high temperature, should directly contact the doctor.

The SITR fractal model basis on the COVID-19 is dependent upon four classes, ‘susceptible
(S1 and S2)’, ‘infected (I)’, ‘treatment (T)’ and ‘recovered (R)’, mathematically written as [5]:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S′
1 (�)=−δβT (�)− (α+βI (�))S1 (�)+B, S1 (0)= b1,

S′
2 (�)=−δβT (�)− (α+βI (�))S2 (�)+B, S2 (0)= b2,

I ′ (�)=− (−σ +α+μ) I (�)+β (S1 (�)+S2 (�)) I (�)+βδT (�) , I (0)= b3,

T ′ (�)= (ψ − ρ + ε−α)T (�)+μI (�) , T (0)= b4,

R′ (�)= ρT (�)−αR (�) , R (0)= b5,

(1)

where S1 (�) and S2 (�) are both uninfected class from COVID-19 of young people and older or
have serious diseases, I (�) is the class shows the infected people from coronavirus, T (�) is the
treatment and R (�) is the recovered class. The detailed parameters are defined in Table 1.

Table 1: Parameter’s demonstrations of the SITR model

Parameter Description

ε Rate of sleep factor
ρ Infection ratio
B Natural birth rate
μ Recovery rate
ψ Ratio of healthy food
α Death rate
σ Corona symptoms rate
δ Infection reduced by treatment
β Contact rate
bl, l = 1, 2 . . . , 5 Initial conditions
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This research aimsto solve the SITR fractal model of COVID-19 by designing the Morlet
wavelet neural network (MWNN) along with the optimization of global and local search heuristics
of genetic algorithm (GA) and active-set algorithm (ASA), i.e., MWNN-GA-ASA. The authors
are inspired to solve the nonlinear COVID-19 fractal model by applying the proposed method due
to the immense applications of stochastic computing solvers. Few of them are nonlinear singular
delay differential model [6,7], multi-fractional multi-singular differential models [8–10], fractional-
order pantograph Lane-Emden differential systems [11], prey-predator models [12], second grade
nanofluidic system [13], heat transfer possessions in a Bodewadt flow [14], solution of functionally
graded material of the porous fin model [15], HIV infection system [16], hybrid hydro-nanofluid
Al2O3–Cu–H2O model [17], Ferrofluidic models [18], singular functional systems [19], magne-
tohydrodynamic squeezing flow model [20], Cattaneo-christov heat flux model [21], nonlinear
optics [22], nonlinear Falkner-Skan systems [23], singular Thomas-Fermi system [24], thin-film
flow of Maxwell nanofluidic model [25], mosquito dispersal nonlinear system [26], nonlinear
corneal shape model [27], heat conduction based human head system [28], mathematical model
for entropy generation system [29] and singular periodic models [30,31]. The novel features of the
MWNN-GA-ASA are given as:

• The design of MWNN is presented effectively to solve the nonlinear SITR fractal system
of equations.

• The proposed MWNN-GA-ASA is implemented effectively to solve the nonlinear dynamics
of the COVID-19 fractal model.

• Authentication of the performance through MWNN-GA-ASA is verified by overlapping the
proposed results with the Runge-kutta solutions.

• The absolute error (AE) to solve the SITR fractal model is obtained in good measures to
demonstrate the worth of the designed method.

• The reliability of the proposed method is observed using the statistical measures to solve
the SITR fractal model.

The rest of the paper’s parts are given as: Section 2 shows the methodology based on
MWNN-GA-ASA and performance indices. Section 3 describes the results and discussions of the
nonlinear SITR fractal model. The concluding remarks and future research directions are given
in the last section.

2 Methodology

The designed procedures to solve the SITR fractal model is described in two parts:

1. Introduce a fitness function.

2. The optimization procedures of GA-ASA are described.

2.1 ANN Modeling
The representations of the systems given in (1) based on the continuous ANNs mapping to

get the performances of each class of the model and its derivatives are given as:

⎡⎢⎢⎢⎣
Ŝ1 (�) , Ŝ2 (�) ,

Î (�) , T̂ (�) ,

R̂ (�)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m∑
p=1

uS1,pL
(
wS1,p�+ vS1,p

)
,

m∑
p=1

uS2,pL
(
wS2,p�+ vS2,p

)
,

m∑
p=1

uI ,pL
(
wI ,p�+ vI ,p

)
,

m∑
p=1

uT ,pL
(
wT ,p�+ vT ,p

)
,

m∑
p=1

uR,pL
(
wR,p�+ vR,p

)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (2)
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⎡⎢⎢⎢⎣
Ŝ′

1 (�) , Ŝ′
2 (�) ,

Î ′ (�) , T̂ ′ (�) ,

R̂′ (�)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m∑
p=1

uS1,pL′ (wS1,p�+ vS1,p
)

,
m∑

k=1
uS2,pL′ (wS2,p�+ vS2,p

)
,

m∑
p=1

uI ,pL′ (wI ,p�+ vI ,p
)

,
m∑

k=1
uT ,pL′ (wT ,p�+ vT ,p

)
,

m∑
p=1

uR,pL′ (wR,p�+ vR,p
)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where W is the unknown weight vector and is to be calculated, given as:

W =

⎡⎢⎢⎢⎢⎣
WS1

WS2

WI
WT
WR

⎤⎥⎥⎥⎥⎦
t

WS1 =
⎡⎣uS1

wS1

vS1

⎤⎦t

, WS2 =
⎡⎣uS2

wS2

vS2

⎤⎦t

, WI =
⎡⎣uI

wI
vI

⎤⎦t

, WT =
⎡⎣uT

wT
vT

⎤⎦t

, WR =
⎡⎣uR

wR
vR

⎤⎦t

.

where

uS1 =
[
uS1,1, uS1,2, uS1,3, . . . , uS1,m

]
, uS2 =

[
uS2,1, uS2,2, uS2,3, . . . , uS2,m

]
,

uI =
[
uI ,1, uI ,2, uI ,3, . . . , uI ,m

]
uT = [uT ,1, uT ,2, uT ,3, . . . , uT ,m

]
,

uR = [uR,1, uR,2, uR,3, . . . , uR,m
]

, ωS1 =
[
wS1,1, wS1,2, wS1,3, . . . , wS1,m

]
,

ωS2 =
[
wS2,1, wS2,2, wS2,3, . . . , wS2,m

]
, ωI =

[
wI ,1, wI ,2, wI ,3, . . . , wI ,m

]
,

ωT = [wT ,1, wT ,2, wT ,3, . . . , wT ,m
]

, ωR = [wR,1, wR,2, wR,3, . . . , wR,m
]

,

vS1 =
[
vS1,1, vS1,2, vS1,3, . . . , vS1,m

]
, vS2 =

[
vS2,1, vS2,2, vS2,3, . . . , vS2,m

]
,

vI =
[
vI ,1, vI ,2, vI ,3, . . . , vI ,m

]
, vT = [vT ,1, vT ,2, vT ,3, . . . , vT ,m

]
,

vR = [vR,1, vR,2, vR,3, . . . , vR,m
]

.

The MWNN is not applied before for solving the SITR fractal model, mathematically MW
function is written as [32–34]:

L (�)= cos (1.75�) e−0.5�2
.

[
Ŝ1 (�) , Ŝ2 (�) , Î (�) ,

R̂ (�) , T̂ (�)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
p=1

uS1,p cos
(
1.75
(
wS1,p�+ vS1,p

))
e
−0.5

(
wS1,p�+vS1,p

)2

,

m∑
p=1

uS2,p cos
(
1.75
(
wS2,p�+ vS2,p

))
e
−0.5

(
wS2,p�+vS2,p

)2

,

m∑
p=1

uI ,p cos
(
1.75
(
wI ,p�+ vI ,p

))
e−0.5(wI ,p�+vI ,p)

2
,

m∑
p=1

uT ,p cos
(
1.75
(
wT ,p�+ vT ,p

))
e−0.5(wT ,p�+vT ,p)

2
,

m∑
p=1

uR,p cos
(
1.75
(
wR,p�+ vR,p

))
e−0.5(wR,p�+vR,p)

2
,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)
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[
Ŝ′

1 (�) , Ŝ′
2 (�) , Î ′ (�) ,

R̂′ (�) , T̂ ′ (�)

]
= d

d�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
k=1

uS1,p cos
(
1.75
(
wS1,p�+ vS1,p

))
e
−0.5

(
wS1,p�+vS1,p

)2

,

m∑
k=1

uS2,p cos
(
1.75
(
wS2,p�+ vS2,p

))
e
−0.5

(
wS2,p�+vS2,p

)2

,

m∑
k=1

uI ,p cos
(
1.75
(
wI ,p�+ vI ,p

))
e−0.5(wI ,p�+vI ,p)

2
,

m∑
k=1

uT ,p cos
(
1.75
(
wT ,p�+ vT ,p

))
e−0.5(wT ,p�+vT ,p)

2
,

m∑
k=1

uR,p cos
(
1.75
(
wR,p�+ vR,p

))
e−0.5(wR,p�+vR,p)

2
,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the above network, the objective function takes the form as:

ξ = ξ1 + ξ2 + ξ3 + ξ4 + ξ5 + ξ6, (4)

ξ1 = 1
N

N∑
p=1

((
Ŝ′

1
)

p +
(
β Îp +α

)(
Ŝ1

)
p
+ δβT̂p −B

)2

, (5)

ξ2 = 1
N

N∑
p=1

((
Ŝ′

2
)

p +
(
β Îp +α

)(
Ŝ2

)
p
+ δβT̂p −B

)2

, (6)

ξ3 = 1
N

N∑
p=1

(
Î ′k −

((
Ŝ1

)
p
+
(

Ŝ2

)
p

)
β Îp + (α− σ +μ) Îp −βδT̂p

)2

, (7)

ξ4 = 1
N

N∑
p=1

(
T̂ ′

p −μÎp − (ε− ρ −α+ψ) T̂p

)2
, (8)

ξ5 = 1
N

N∑
p=1

(
R̂′

p +αR̂p − ρT̂p

)2
, (9)

ξ6 = 1
5

(((
Ŝ1

)
0
− b1

)2 +
((

Ŝ2

)
0
− b2

)2 +
(

Î0 − b3

)2 +
(

T̂0 − b4

)2 +
(

R̂0 − b5

)2
)

, (10)

where �p = ph,
(

Ŝ1

)
p
= Ŝ1

(
�p
)

,
(

Ŝ2

)
p
= Ŝ2

(
�p
)

, Îp = Î
(
�p
)

, T̂p = T̂
(
�p
)

, Nh = 1 and R̂p =
R̂
(
�p
)
. The proposed results for each class of the nonlinear SITR fractal model are defined as

Ŝ1 (�), Ŝ2 (�), Î (�), T̂ (�) and R̂ (�). Similarly, ξ1, ξ2, ξ3, ξ4, ξ5 and ξ6 indicate the objective
functions using the differential forms and initial conditions.
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2.2 Optimization: GA-ASA
The detail of GA-ASA is provided to optimize the error function based on the COVID-19

nonlinear system is provided in this section.

GA is known as a global search procedure applied broadly to solve constrained and uncon-
strained problems. GA works through the procedures of crossover, selection, elitism and mutation
operators. In recent, GA is executed in lung cancer prognosis [35], wellhead backpressure control
system [36], nonlinear circuits [37], heterogeneous mosquito release ecosystem [38], active noise
control systems [39], multi-fractional multi-singular singular model [40], gas tungsten arc welding
process [41], adjusting sensor acquisition frequency [42], multilayer piezoelectric transducer for
broadband structures [43] and singular nonlinear system [44].

The process of GA converges rapidly to hybridize with the appropriate local search method
by taking the best values of GA as an initial input. Consequently, an effective local ASA is
implemented to adjust the outcomes of the global search procedure. Recently, ASA is used in
pricing American better-of option [45], non-smooth large-scale optimization systems with box
constraints [46], regularized monotonic regression [47], cardiac defibrillation [48], multivariate inte-
gration under modest error demand [49] and predictive control for a ball and beam system [50].
The present investigations are associated to solve the SITR fractal model using the GA-ASA
hybridization. The comprehensive detail of MWNN-GA-ASA is provided in the pseudocode-based
Table 2.

Table 2: Optimization performance to solve the SITR fractal model

Start GA
[Inputs]: For the equal number of network’s element, the chromosomes are measured as:
of the network as:
W = [u,w,v]
Population: Set of chromosomes is provided as:

W =

⎡⎢⎢⎢⎢⎣
WS1

WS2

WI
WT
WR

⎤⎥⎥⎥⎥⎦
t

, where WS1 =
⎡⎣uS1

wS1

vS1

⎤⎦t

,WS2 =
⎡⎣uS2

wS2

vS2

⎤⎦t

, WI =
⎡⎣uI

wI
vI

⎤⎦t

, WT =
⎡⎣uT

wT
vT

⎤⎦t

,

WR =
⎡⎣uR

wR
vR

⎤⎦t

Output: W GA-Best signifies the weights based on global vectors.
Initialization: For the assortment of chromosomes, regulate the W GA-Best.
Fit Assessment: Amend Fitness ξ ) in the population (P) using Eqs. (4)–(8).

• Stopping standards: Stop, if [iterations = 30], [ξ = 10−22], [TolCon = 10−20],
[StallLimit = 120], [TolFun = 10−23] & [PopSize = 210]

(Continued)
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Table 2 (Continued)

Move to [storage]
Ranking: Rank W GA-Best in P for ξ .
Storage: Store W GA-Best, ξ , generations, function count & time for the values of GA.

End of GA
ASA Starts

Inputs: W GA-Best is starting point.
Output: W GA-ASA is the best weight vector of GA-ASA.
Initialize: W GA-Best, Iterations & Assignments.
Terminating standards: Stop, if [TolX = 10−20], [ξ = 10−22], [TolFun = 10−21], [Iterations

= 150] & [MaxFunEvals = 230000].
FIT approximation: Compute W GA-ASA and ξ using Eqs. (4)–(8).
Amendments: Regulate ‘fmincon’ for ASA, ξ to improve the ‘W’ for Eqs. (4)–(8).
Store: Transmute W GA-ASA, ξ , iterations, function counts, and time.

ASA End

3 Performance Indices

The mathematical performances of the mean absolute deviation (MAD), variance account for
(V.A.F) and Theil’s inequality coefficient (T.I.C) are provided to solve the nonlinear SITR fractal
model, given as:

[
MADS1 , MADS2 , MADI ,

MADT , MADR

]
=

⎡⎢⎢⎢⎢⎢⎣
1
n

n∑
p=1

∣∣∣∣((S1)p −
(

Ŝ1

)
p

)∣∣∣∣ , 1
n

n∑
p=1

∣∣∣∣((S2)p −
(

Ŝ2

)
p

)∣∣∣∣ , 1
n

n∑
p=1

∣∣∣(Ip − Îp

)∣∣∣ ,
1
n

n∑
p=1

∣∣∣(Tp − T̂p

)∣∣∣ , 1
n

n∑
p=1

∣∣∣(Rp − R̂p

)∣∣∣

⎤⎥⎥⎥⎥⎥⎦
(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎣VAFS1 , VAFS2 ,

VAFI , VAFT ,

VAFR

⎤⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎝1−
var
(

(S1)p −
(

Ŝ1

)
p

)
var (S1)p

⎞⎟⎟⎠× 100,

⎛⎜⎜⎝1−
var
(

(S2)p −
(

Ŝ2

)
p

)
var (S2)p

⎞⎟⎟⎠× 100,

⎛⎝1−
var
(

Ip − Îp

)
var
(
Ip
)
⎞⎠× 100,

⎛⎝1−
var
(

Tp − T̂p

)
var
(
Tp
)
⎞⎠× 100,⎛⎝1−

var
(

Rp − R̂p

)
var
(
Rp
)
⎞⎠× 100,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
EVAFS1 , EVAFS2 , EVAFI , EVAFT , EVAFR

]= [∣∣∣∣∣100−VAFS1 , 100−VAFS2 , 100−VAFI ,

100−VAFT , 100−VAFR

∣∣∣∣∣
]

.

(12)
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⎡⎢⎢⎣
TICS1 , TICS2 ,

TICI , TICT ,

TICR

⎤⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√√√√1
n

n∑
p=1

(
(S1)p −

(
Ŝ1

)
p

)2

⎛⎝√√√√1
n

n∑
p=1

(S1)
2
p +
√√√√1

n

n∑
p=1

(
Ŝ1

)2

p

⎞⎠ ,

√√√√1
n

n∑
p=1

(
(S2)p −

(
Ŝ2

)
p

)2

⎛⎝√√√√1
n

n∑
p=1

(S2)
2
p +
√√√√1

n

n∑
p=1

(
Ŝ2

)2

p

⎞⎠ ,

√√√√1
n

n∑
k=1

(
Ip − Îp

)2

⎛⎝√√√√1
n

n∑
p=1

I2
p +
√√√√1

n

n∑
p=1

Î2
p

⎞⎠ ,

√√√√1
n

n∑
p=1

(
Tp − T̂p
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n
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n
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

4 Results and Discussion

In this section, the detail to solve the nonlinear SITR fractal is provided. The comparative
studies using the Runge-Kutta numerical solutions designates the accuracy of MWNN-GA-ASA.
Furthermore, statistical assessments express the precision of the proposed method to solve the
nonlinear SITR fractal system.

4.1 SITR Fractal System
The suitable values of the parameter are provided in Table 3 and a simplified form of the

model is given as:

Table 3: Descriptions, indexes and allocated suitable measures for the nonlinear SITR mathemat-
ical model

Symbol Description Values

ε Rate of sleep factor 0.1
ρ Infection ratio 0.29
B Natural birth rate 0.3
μ Recovery rate 0.1
ψ Ratio of healthy food 0.2
α Death rate 0.25
σ Corona symptoms rate 0.005
δ Infection reduced by treatment 0.3
β Contact rate 0.35
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The updated form of the nonlinear SITR model (1) using the above Table 3 values are
written as:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S′
1 (�)= 0.3− 0.105T (�)− (0.35I (�)+ 0.25)S1 (�) , S1 (0)= 0.65,

S′
2 (�)= 0.3− 0.105T (�)− (0.35I (�)+ 0.25)S2 (�) , S2 (0)= 0.15,

I ′ (�)= 0.105T (�)+ 0.35I (�) (S1 (�)+S2 (�))− 0.345I (�) , I (0)= 0.75,

T ′ (�)=−0.25T (�)+ 0.1I (�) , imtT (0)= 0.35,

R′ (�)=−0.25R (�)+ 0.3T (�) , R (0)= 0.1,

(14)

The objective function of the above system is shown as:

ξ = 1
N

N∑
k=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[(
Ŝ′

1
)

p − 0.3+
(

0.25+ 0.35Îp

)(
Ŝ1

)
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+ 0.105T̂p

]2

+[(
Ŝ′

2
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0.25+ 0.35Îp

)(
Ŝ2

)
p
+ 0.105T̂p

]2

+[
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((
Ŝ1

)
p
+
(

Ŝ2

)
p

)
− 0.105T̂p

]2

+[
T̂ ′

p + 0.25T̂p − 0.1Îp

]2 + [R̂′
p + 0.25R̂p − 0.3T̂p

]2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

0.2

((
(Ŝ1)0 − 65

100

)2

+
(

(Ŝ2)0 − 15
100

)2

+
(

T̂0 − 35
100

)2

+
(

Î0 − 75
100

)2

+
(

R̂0 − 1
10

)2
)

(15)

The optimization of the SITR fractal model is achieved with the competency of GA-ASA
for 30 runs along with 5 neurons. The MWNN-GA-ASA structure for solving the SITR fractal
system is displayed in Fig. 1. The values of the best weight sets are given in Fig. 2. These vectors
are accomplished for the proposed outcomes of the nonlinear SITR fractal model. The estimated
outcomes for each class of the nonlinear SITR fractal system based on MWNN-GA-ASA are
written as:

Ŝ1(�)=−0.089 cos(1.75(0.7998�+ 0.7588))e−0.5(0.7998�+0.7588)2

−0.1478 cos(1.75(0.0508�+ 1.3378))e−0.5(0.0508�+1.3378)2

+0.1373 cos(1.75(−0.051�+ 0.7000))e−0.5(−0.051�+0.7000)2

−0.7340 cos(1.75(0.6862�− 1.9474))e−0.5(0.6862�−1.9474)2

+0.4902 cos(1.75(0.1306�+ 0.0353))e−0.5(0.1306�+0.0353)2
,

(16)

Ŝ2(�)= 1.0291 cos(1.75(1.5158�+ 3.5529))e−0.5(1.5158�+3.5529)2

−0.7151 cos(1.75(−1.474�− 3.4331))e−0.5(−1.474�−3.4331)2

+1.2637 cos(1.75(−0.163�− 2.0456))e−0.5(−0.163�−2.0456)2

+0.1519 cos(1.75(0.6111�+ 2.3225))e−0.5(0.6111�+2.3225)2

−1.3470 cos(1.75(−0.136�− 1.1502))e−0.5(−0.136�−1.1502)2
,

(17)
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Figure 1: MWNN-GA-ASA structure to solve the SITR fractal system
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Î(�)= 0.8550 cos(1.75(0.2532�− 1.0049))e−0.5(0.2532�−1.0049)2

−0.5164 cos(1.75(−0.123�− 1.4089))e−0.5(−0.123�−1.4089)2

−1.2719 cos(1.75(−0.075�− 1.7133))e−0.5(−0.075�−1.7133)2

−0.1673 cos(1.75(−0.427�− 1.3354))e−0.5(−0.427�−1.3354)2

−1.2935 cos(1.75(0.0244�− 1.5146))e−0.5(0.0244�−1.5146)2
,

(18)

T̂(�)=−0.032 cos(1.75(0.6127�+ 1.7895))e−0.5(0.6127�+1.7895)2

+0.0462 cos(1.75(1.1673�+ 2.7581))e−0.5(1.1673�+2.7581)2

−0.0709 cos(1.75(−0.393�− 1.2088))e−0.5(−0.393�−1.2088)2

+0.3425 cos(1.75(0.0104�+ 0.1428))e−0.5(0.0104�+0.1428)2

−0.1518 cos(1.75(−0.133�+ 1.7493))e−0.5(−0.133�+1.7493)2
,

(19)

R̂(�)= 3.0081 cos(1.75(0.1771�+ 2.2652))e−0.5(0.1771�+2.2652)2

−0.0314 cos(1.75(−0.331�− 0.9404))e−0.5(−0.331�−0.9404)2

+0.1390 cos(1.75(−0.125�+ 0.6440))e−0.5(−0.125�+0.6440)2

+0.1945 cos(1.75(0.1036�− 0.7206))e−0.5(0.1036�−0.7206)2

+0.0182 cos(1.75(−0.430�− 0.7343))e−0.5(−0.430�−0.7343)2
,

. (20)

The systems of Eqs. (16)–(20) are provided to evaluate the solutions of the nonlinear SITR
fractal model and the outcomes are illustrated in the Figs. 2–5 using 15 variables or 5 neurons.
Fig. 2 shows the trained weights set for the nonlinear coronavirus model. Fig. 3 illustrates the
best, mean and proposed results based on the nonlinear SITR fractal model. It is noted that
the best, mean and proposed solutions od the model overlapped to each other. Fig. 4 signifies the
AE values and it is observed that the performances of the SITR fractal model that lie around
10−04–10−06, 10−03–10−05, 10−04–10−07, 10−05–10−06 and 10−05–10−08. The mean performances
of the SITR fractal model are calculated around 10−01–10−02. It is observed on the behalf of the
AE that the proposed computational approach is accurate to solve the coronavirus model.

Figure 2: (Continued)
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Figure 2: Best weights set for the SITR fractal system (a) Best weights for the class S1 (b) Best
weight for the class S2 (c) Best weight for the class I (d) Best weight for the class T (e) Best
weight for the class R

Figure 3: (Continued)
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Figure 3: Result comparison for the SITR fractal system (a) Result comparison for the class S1
(b) Result comparison for the class S2 (c) Result comparison for the class I (d) Result comparison
for the class T (e) Result comparison for the class R

Figure 4: (Continued)
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Figure 4: AE for the SITR fractal system (a) Mean and Best AE for class S1 (b) Mean and Best
AE for class S2 (c) Mean and Best AE for class I (d) Mean and Best AE for class T (e) Mean
and Best AE for class R

Figure 5: Performance measures for the SITR fractal system
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Figure 6: Convergence performance through TIC for the SITR fractal system along with his-
tograms. (a) Hist for class S1 (b) Hist for class S2 (c) Hist for class I (d) Hist for class T (e) Hist
for class R
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Figure 7: Convergence performance through MAD for the SITR fractal system along with his-
tograms. (a) Hist for class S1 (b) Hist for class S2 (c) Hist for class I (d) Hist for class T (e) Hist
for class R
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Figure 8: Convergence performance through EVAF for the SITR fractal system along with his-
tograms. (a) Hist for class S1 (b) Hist for class S2 (c) Hist for class I (d) Hist for class T (e) Hist
for class R
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The performances of the statistical operatives based on TIC, MAD and EVAF is illustrated
in Figs. 6–8. It is observed that the TIC performance for the corresponding categories of the
coronavirus model found around 10−07–10−08, 10−05–10−06, 10−06–10−08, 10−07–10−08 and 10−07–
10−09. The MAD performance for the corresponding categories of the coronavirus model found
around 10−03–10−04, 10−02–10−03, 10−02–10−04, 10−04–10−05 and 10−03–10−06. The TIC perfor-
mance for the corresponding categories of the coronavirus model is calculated as 10−04–10−06,
10−06–10−07, 10−04–10−05, 10−06–10−08 and 10−06–10−09. These optimal small performances
enhance the precision and worth of the method.

The performance measures for the SITR fractal system are plotted in Fig. 5. It can be
observed that the EVAF performances for the corresponding classes of the model are calcu-
lated around 10−06–10−07, 10−02–10−03, 10−03–10−04, 10−07–10−08 and 10−08–10−09. The MAD
performances for the corresponding classes of the model are calculated around 10−01–10−02,
10−02–10−04, 10−03–10−04, 10−05–10−06 and 10−06–10−07. Moreover, the TIC performances for the
corresponding classes of the model are calculated around 10−08–10−09, 10−06–10−07, 10−07–10−08,
10−09–10−10 and 10−09–10−10, respectively. It is concluded that the performance of these operators
for solving the coronavirus model is accurate and stable.

For more precision and accuracy measures, the statistical representations of the SITR fractal
system are provided for the corresponding classes lie around 10−06–10−07, 10−02–10−03, 10−03–
10−04, 10−07–10−08 and 10−08–10−09. The statistical results for the Minimum (Min), Mean,
Maximum (Max), Median, standard deviation (STD) and semi-interquartile range (SIR) have
been executed. The error analysis of the Min and Max values shows the best and worst runs,
respectively. The S.I.R is half of the 3rd and 1st quartile. It is seen that the Min values for S1 (�),
S2 (�), I (�), T (�) and R (�) lie around 10−05–10−08. The Max values are even worst runs lie
around 10−01–10−02 for each group of the SITR model. The Max values are even for worst
runs lie around 10−01–10−02 for each group of the SITR model. The Mean, S.I.R and STD for
the SITR fractal system found around 10−01–10−03. However, the Median values for the r SITR
fractal system found around 10−04–10−05. These consistent values authenticate the accuracy and
stability of the designed method for the SITR fractal system.

5 Conclusions

This study aimsto exploit the Morlet wavelet neural networks using the numerical perfor-
mances of the SITR fractal system-based coronavirus. An objective function using the differential
system and initial conditions is formulated using the optimization computing strength of global
and local search schemes of GA-ASA. The validation of the designed method is experiential
through the comparison of the results. The absolute error values are also performed in good
measures based on the nonlinear SITR fractal system. The performances of EVAF, MAD and
TIC operators have been investigated in good measures for 15 variables to solve the SITR fractal
system. The convergence performance through TIC, MAD and EVAF operators using MWNN-
GA-ASA for 30 independent executions is also performed. One can prove that these measures
prove good performances to solve the nonlinear SITR fractal system. The statistically based gages
Min, Mean, Max, Median, STD and S.I.R are also performed in good ranges to solve each class
of the SITR fractal model. On the behalf of these assessments, one can authenticate that the
designed method is stable, precise and robust to solve the SITR fractal system.

This paper can be regarded as the continuation of the work of the authors contained in
papers [51–53]. In the future, the proposed computational approach can be implemented to solve
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the nonlinear models of a higher order [54–56], software-defined networks (SDN) models [57–64],
and nonlinear fluids models [65–69].
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