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a b s t r a c t 

An analytical investigation for a famous class of evolution equations with double exponential nonlin- 

earities that has vast applications in many nonlinear sciences is presented. These equations include the 

Tzitzéica Equation (TE), Dodd-Bullough-Mikhailov Equation (DBME), Tzitzéica-Dodd-Bullough-Mikhailov 

equation (TDBME) and the Peyrard Bishop DNA Equation (PB-DNA-E). Furthermore, the Kudryashov 

method for constructing exponential function solutions has been employed to reveal various sets of trav- 

eling wave solutions with different geometrical structures to the identified models. We also give the 

graphical illustrations of certain solutions to further analyze the results. 
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. Introduction 

Many natural phenomena in hydrodynamics, nonlinear optics, 

lasma physics, Bose-Einstein condensates, chemistry, engineering 

nd fluid mechanics among others can be modeled via Partial Dif- 

erential Equations (PDEs) [1–16] The studying of different cat- 

gories of solutions for various models contribute immensely in 

he explanation of the physical meanings of such models [17–25] . 

any important PDEs in applications as the celebrated Tzitzéica- 

ased evolution equations are completely integrable, a general- 

zation of the notion of integrable Ordinary Differential Equa- 

ions (ODEs) to the case of PDEs which can be seen in this con- 

ext as infinite dimensional ODE systems. In practice this means 

hat powerful solution generating methods exist for these equa- 

ions which allow the construction of interesting solutions as soli- 

ons, stable wave packets behaving in collision as particles. Con- 
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double exponential nonlinearities, Journal of Ocean Engineering and Sc
ider the following generalized nonlinear evolution equation with 

ouble exponential nonlinearities 

 xt − αe m v − βe n v = 0 , (1) 

here α � = 0 , β � = 0 are real constant and m, n are inte-

ers. Eq. (1) encompasses Tzitzéica Equation (TE), Dodd- 

ullough-Mikhailov Equation (DBME) and Tzitzéica-Dodd- 

ullough-Mikhailov equation (TDBME). The equation is such 

egarded as the generalized Tzitzéica Dodd-Bullough-Mikhailov 

quation. If we take α = 1 , β = −1 , m = 1 , n = −2 or

= −1 , β = 1 , m = −2 , n = 1 , particularly Eq. (1) turns

ut to be the classical TE [26–28] as follows: 

 xt − e v + e −2 v = 0 , (2) 

hich was originated in 1907 by G. Tzitzéica in the field of ge- 

metry and has many applications in different fields of science. 

q. (2) usually called the Dodd-Bullough equation, which was ini- 

iated by Bullough and Dodd [29] and Ziber and Sabat [30] . As a

atter of fact, Eq. (2) has another form 

 tt − v xx − e v + e −2 v = 0 , (3) 
access article under the CC BY-NC-ND license 
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ee [31,32] and the references therein. Taking α = 1 , β = 

1 , m = 1 , n = −2 , Eq. (1) turns out to be the DBME given by

 xt − e v − e −2 v = 0 . (4) 

ore, when α = 1 , β = 1 , m = 1 , n = −2 , Eq. (1) turns out

o be Tzitzéica Dodd-Bullough equation 

 xt + e v + e −2 v = 0 . (5) 

he DBME and Tzitzéica-Dodd-Bullough equation appeared in 

any problems varying from fluid flow to quantum field the- 

ry [32] . Furthermore, when m = 1 , n = −1 , α = 1 / 2 , β = 1 / 2 , or

 = −1 , n = 1 , α = −1 / 2 , β = 1 / 2 , Eq. (1) turns out to be the

inh-Gordon equation 

 xt − sinh v = 0 , (6) 

hich was also shown in [33] and the references therein. Also, 

hen m = 1 , n = −1 , α = 1 / 2 , β = 1 / 2 , or m = −1 , n = 1 , α =
 / 2 , β = 1 / 2 , Eq. (1) turns out to be the cosh-Gordon equation

 xt − cosh v = 0 , (7) 

ee [34] for details. Finally, when m = 1 , n = 0 , particularly

q. (1) becomes the Liouville equation 

 xt − αe v = 0 . (8) 

he above mentioned equations play extremely important roles in 

any scientific applications. It worth to be mention that several 

ethods have been presented to find analytical solutions of these 

onlinear PDEs. Such as in [35] , where Wazwaz introduced soli- 

ary and periodic wave solutions for the Dodd-Bullough-Mikhailov 

nd Dodd-Bullough equations, by using the tanh method. Andreev 

resented the Backlund transformation for Bullough-Dodd-Jiber- 

habat equation [36] . Cherdantzev and Sharipov obtained finite- 

ap solutions of the Bullough-Dodd-Jiber-Shabat equation [37] . In 

38] , Cherdantzev and Sharipov explored solitons on the finite-gap 

ackground in the Bullough-Dodd-Jiber-Shabat model. In addition, 

he Darboux transformation, self-dual Einstein spaces and consis- 

ency and general solution of TE were studied in [39–43] . 

This study use the Kudryashov method to find and discuss 

bundant analytical solutions for three types of models that em- 

nated from Eq. (1) and also the Peyrard Bishop DNA Equa- 

ion (PB-DNA-E) [44] , having double exponential nonlinearities. In- 

eed, Kudryashov method has successfully been combined with 

he computer method and some transformations [45–47] for in- 

estigating exact traveling wave solutions of some nonlinear PDEs, 

ee also [48–60] and the references therewith for more on the an- 

lytical methods for tackling a variety of nonlinear evolution equa- 

ions. Therefore, using this method, we will obtain some new re- 

ults which are different from those in the above references. The 

est of this paper is organized as follows: in Section 2, we present 

n analysis of the model under study. In Sections 3 and 4, by 

sing the Kudryashov method, we will obtain some new travel- 

ng wave solutions of the aiming governing equations; while in 

ections 5 and 6 we give some results discussion and concluding 

emarks, respectively. 

. Governing equations 

In this manuscript, we consider a famous class of the Tzitzéica- 

ased evolution equations that occur with some exponential non- 

inearities. These equations which need to be transformed to stan- 

ard partial differential equations include the following 

1. Tzitzéica Equation (TE) [26–28] 

 tt − v xx − e v + e −2 v = 0 . (9) 
2

. Dodd-Bullough-Mikhailov Equation (DBME) [26–28] 

 xt + e v + e −2 v = 0 . (10) 

. Tzitzéica-Dodd-Bullough-Mikhailov Equation (TDBME) [26–

8] 

 xt − e −v − e −2 v = 0 . (11) 

. Peyrard Bishop DNA Equation (PB-DNA-E) [44] 

 tt + α1 v xx + α2 v 2 x v xx + α3 e 
−a v + α4 e 

−2 a v = 0 , (12) 

here a, α j , ( j = 1 , 2 , 3 , 4) are real constants. 

.1. Transformed equations 

However, we transform the aforementioned partial differential 

quations in the presence of these exponential nonlinearities to 

tandard nonlinear differential equations using the Painlevé trans- 

ormation [28] . In fact, this transformation will allow us to tackle 

he equations squarely using the method to be given in the next 

ession. 

1. Transformed TE 

The TE is transformed to standard nonlinear differential equa- 

ion using v = ln (u ) and yields 

u tt − uu xx − u 

2 
t + u 

2 
x − u 

3 + 1 = 0 . (13) 

. Transformed DBME 

The DBME is transformed to standard nonlinear differential 

quation using v = ln (u ) and reveals 

u xt − u x u t + u 

3 + 1 = 0 . (14) 

. Transformed TDBME 

The TDBME is transformed to standard nonlinear differential 

quation using v = − ln (u ) and gives 

u xt − u x u t + u 

3 + u 

4 = 0 . (15) 

. Transformed PB-DNA-E 

The PB-DNA-E is transformed to standard nonlinear differential 

quation using v = − 1 
a ln (u ) and get 

−a 2 u 

3 ( u tt + α1 u xx ) + a 2 u 

2 
(
u 

2 
t + α1 u 

2 
x 

)
−α2 u 

2 
x (uu xx − u 

2 
x ) + a 3 u 

5 (α3 + α4 u ) = 0 , (16) 

here α j , j = 1 , 2 , 3 , 4 are constants. 

We therefore tackle these transformed equations in Section 4 . 

. Methodology 

We consider the famous Kudryashov method while solving the 

bove mentioned equations. Thus, considering the following gener- 

lized partial differential equation 

(u, u t , u x , u xt , u tt , u xx , · · · ) = 0 . (17)

ow, on using the traveling wave transformation of the form 

 (x, t) = w (η) , η = kx − ct, (18) 

ith c and k are non-zero constants; then (17) reduces to the fol- 

owing ordinary differential equation 

 (w, −cw 

′ , kw 

′ , −ckw 

′′ , c 2 w 

′′ , k 2 w 

′′ , . . . ) = 0 . (19)

Therefore, the method offers a finite series of the following 

orm 

 (η) = a 0 + 

M ∑ 

j=1 

a j �
j (η) , (20) 

here, a 0 , a j , ( j = 1 , 2 , . . . , N) are constants that are not all equal

o zero. More, M is a whole number to be determined by balancing 
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he highest-order nonlinear and derivatives terms emerging in (19) . 

dditionally, �(ξ ) satisfies the following equation 

′ (η) = �(η)(�(η) − 1) , (21) 

here the function �(η) is considered to be 

(ξ ) = 

1 

1 + f e η
, (22) 

here f is an arbitrary constant. Putting (20) into Eq. (19) gives a 

olynomial in terms of � j (ξ ) , ( j = 0 , 1 , 2 , . . . , M) which will then

e set to zero for each j to obtain a system of algebraic equations. 

hese equations are further then solved for a 0 , a j , ( j = 1 , 2 , · · · , M)

lgebraically with the aid of mathematical software. We adopted 

athematica software in this study. 

. Application 

In this section, we sought for the Kudryashov method as de- 

cribed above to demonstrate its application on the transformed 

E, DBME, TDBME, and PB-DNA-E, respectively. 

.1. TE 

Considering the transformed TE given in (13) with the applica- 

ion of the travelling wave transformation given in (18), (13) re- 

uces to the following ordinary nonlinear differential equation 

c 2 − k 2 
)
w (η) w 

′′ (η) + 

(
k 2 − c 2 

)
w 

′ (η) 2 − w (η) 3 + 1 = 0 . (23)

alancing ww 

′′ and w 

3 gives M = 2 . Thus, (20) in this regards of-

ers the following solution form 

 (η) = a 0 + a 1 �(η) + a 2 �
2 (η) . (24) 

ubstituting the above equation into (23) and do as explained in 

he procedure, we obtain the following system of equations 

 − a 3 0 = 0 , a 0 a 1 c 
2 − a 0 a 1 k 

2 − 3 a 2 0 a 1 = 0 , 

3 a 0 a 1 c 
2 + 4 a 0 a 2 c 

2 + 3 a 0 a 1 k 
2 − 4 a 0 a 2 k 

2 − 3 a 0 a 
2 
1 − 3 a 2 0 a 2 = 0 , 

 

2 
1 c 

2 + 6 a 0 a 2 c 
2 − 5 a 1 a 2 c 

2 − a 2 1 k 
2 − 6 a 0 a 2 k 

2 + 5 a 1 a 2 k 
2 − 3 a 0 a 

2 
2 − 3 a 2 1 a 2 = 0 , 

−2 a 2 2 c 
2 + 4 a 1 a 2 c 

2 + 2 a 2 2 k 
2 − 4 a 1 a 2 k 

2 − 3 a 1 a 
2 
2 = 0 , 

2 a 2 2 c 
2 − 2 a 2 2 k 

2 − a 3 2 = 0 , 

−a 2 1 c 
2 + 2 a 0 a 1 c 

2 + a 2 a 1 c 
2 − 10 a 0 a 2 c 

2 + a 2 1 k 
2 − 2 a 0 a 1 k 

2 

−a 2 a 1 k 
2 + 10 a 0 a 2 k 

2 − a 3 1 − 6 a 0 a 2 a 1 = 0 . 

herefore, solving the above system reveals 

Set-I 

 0 = 1 , a 1 = −6 , a 2 = 6 , k = ∓
√ 

c 2 − 3 . (25)

his solution set gives the following solutions 

 1 , 2 (x, t) = ln 

(
1 − 6 

1 + f exp (kx − ct) 
+ 

6 

(1 + f exp (kx − ct)) 2 

)
. 

(26) 

et-II 
 

 

 

a 0 = 

1 
2 

(
−1 − i 

√ 

3 

)
, a 1 = 3 

(
1 + i 

√ 

3 

)
, 

a 2 = 3 

(
−1 − i 

√ 

3 

)
, k = ±

√ 

2 c 2 −3 i 
√ 

3 +3 √ 

2 
. 

(27) 

his solution set gives the following solutions 

v 3 , 4 (x, t) 
3 
= ln 

( 

− 1 

2 

(
1 + i 

√ 

3 
)

+ 

3 
(
1 + i 

√ 

3 
)

1 + f exp (kx − ct) 
−

3 
(
1 + i 

√ 

3 
)

(1 + f exp (kx − ct)) 2 

) 

. (28) 

Set-III 
 

 

 

a 0 = 

1 
2 

(
−1 + i 

√ 

3 

)
, a 1 = 3 

(
1 − i 

√ 

3 

)
, 

a 2 = 3 

(
−1 + i 

√ 

3 

)
, k = ±

√ 

2 c 2 +3 i 
√ 

3 +3 √ 

2 
. 

(29) 

his solution set gives the following solutions 

 5 , 6 (x, t) = ln 

( 

− 1 

2 

(
1 − i 

√ 

3 
)

+ 

3 
(
1 − i 

√ 

3 
)

1 + f exp (kx − ct) 
−

3 
(
1 − i 

√ 

3 
)

(1 + f exp (kx − ct)) 2 

) 

. 

(30) 

.2. DBME 

Considering the transformed DBME given in (14) with the ap- 

lication of the travelling wave transformation given in Eq. (18) , 

14) reduces to the following ordinary nonlinear differential equa- 

ion 

ck (w (η) w 

′′ (η) − w 

′ (η) 2 ) + w (η) 3 + 1 = 0 . (31)

alancing ww 

′′ and w 

3 gives M = 2 . Thus, (20) in offers the follow-

ng solution form 

 (η) = a 0 + a 1 �(η) + a 2 �
2 (η) . (32) 

ubstituting the above equation into (31) and do as explained in 

he procedure, we obtain the following system of equations 

 

3 
0 + 1 = 0 , 3 a 2 0 a 1 − a 0 a 1 ck = 0 , 

 a 1 a 0 ck − 4 a 2 a 0 ck + 3 a 2 a 
2 
0 + 3 a 2 1 a 0 = 0 , 

 

2 
1 ck − 2 a 0 a 1 ck − a 2 a 1 ck + 10 a 0 a 2 ck + a 3 1 + 6 a 0 a 2 a 1 = 0 , 

 

2 
1 (−c) k + 5 a 2 a 1 ck − 6 a 0 a 2 ck + 3 a 2 a 

2 
1 + 3 a 0 a 

2 
2 = 0 , 

 a 2 2 ck − 4 a 1 a 2 ck + 3 a 1 a 
2 
2 = 0 , a 3 2 − 2 a 2 2 ck = 0 . 

herefore, solving the above system reveals 

Set-I 

 0 = −1 , a 1 = 6 , a 2 = −6 , k = −3 

c 
. (33)

his solution set gives the following solution 

 1 (x, t) = ln 

(
−1 + 

6 

1 + f exp (− 3 
c x − ct) 

− 6 

(1 + f exp (− 3 
c x − ct)) 2 

)
. (34) 

Set-II 
 

 

 

a 0 = 

1 
2 

(
1 ± i 

√ 

3 

)
, a 1 = 3 

(
−1 ∓ i 

√ 

3 

)
, 

a 2 = 3 

(
1 ± i 

√ 

3 

)
, k = 

3 ( 1 ±i 
√ 

3 ) 
2 c 

. 

(35) 

his solution set gives the following solutions 

 2 , 3 (x, t) = ln 

( 

1 

2 

(
1 ± i 

√ 

3 
)

+ 

3 
(
−1 ∓ i 

√ 

3 
)

1 + f exp (kx − ct) 
+ 

3 
(
1 ± i 

√ 

3 
)

(1 + f exp (kx − ct)) 2 

) 

. 

(36) 
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.3. TDBME 

Considering the transformed TDBME given in (15) with the 

pplication of the travelling wave transformation given in (18), 

15) reduces to the following ordinary nonlinear differential equa- 

ion 

ck (w (η) w 

′′ (η) − w 

′ (η) 2 ) + w (η) 3 + w (η) 4 = 0 . (37)

alancing ww 

′′ and w 

4 gives M = 1 . Thus, (20) in this regards of-

ers the following solution form 

 (η) = a 0 + a 1 �(η) . (38) 

ubstituting the above equation into (37) and do as explained in 

he procedure, we obtain the following system of equations 

 a 0 a 1 ck + 6 a 2 0 a 
2 
1 + 3 a 0 a 

2 
1 = 0 , 

 

4 
0 + a 3 0 = 0 , −a 1 a 0 ck + 4 a 1 a 

3 
0 + 3 a 1 a 

2 
0 = 0 , 

 

4 
1 − a 2 1 ck = 0 , a 2 1 ck − 2 a 0 a 1 ck + 4 a 0 a 

3 
1 + a 3 1 = 0 . 

herefore, solving the above system reveals 

Set-I 

 0 = 0 , a 1 = −1 , k = 

1 

c 
. (39) 

his solution set gives the following solution 

 1 (x, t) = − ln 

(
− 1 

1 + f exp ( 1 
c 

x − ct) 

)
. (40) 

et-II 

 0 = −1 , a 1 = 1 , k = 

1 

c 
. (41) 

his solution set gives the following solution 

 2 (x, t) = − ln 

(
−1 + 

1 

1 + f exp ( 1 
c 

x − ct) 

)
. (42) 

.4. PB-DNA-E 

Considering the transformed DBME given in (16) with the appli- 

ation of the traveling wave transformation given in (18), (16) re- 

uces to the following ordinary nonlinear differential equation (
w (η) w 

′′ (η) − w 

′ (η) 2 
)(

a 2 w (η) 2 
(
c 2 + α1 k 

2 
)

+ α2 k 
4 w 

′ (η) 2 
)

− a 3 ( α3 + α4 w (η) ) w (η) 5 = 0 . (43) 

alancing w 

′ 2 ww 

′′ and w 

6 gives M = 2 . Thus, (20) in offers the fol-

owing solution form 

 (η) = a 0 + a 1 �(η) + a 2 �
2 (η) . (44) 

ubstituting the above equation into (43) and do as explained in 

he procedure, we obtain the following system of equations 

6 a 3 a 1 α4 a 
5 
2 − 24 α2 a 

4 
2 k 

4 + 24 a 1 α2 a 
3 
2 k 

4 = 0 , 8 a 4 2 α2 k 
4 − a 3 a 6 2 α4 = 0 , 

a 3 α4 a 
6 
0 − a 3 α3 a 

5 
0 = 0 , −6 a 3 a 1 α4 a 

5 
0 − 5 a 3 a 1 α3 a 

4 
0 + a 2 a 1 a 

3 
0 c 

2 + a 2 a 1 α1 a 
3 
0 k 

2 = 0

a 3 α3 a 
5 
2 − 6 a 3 a 0 α4 a 

5 
2 − 15 a 3 a 2 1 α4 a 

4 
2 + 2 a 2 a 4 2 c 

2 + 2 a 2 α1 a 
4 
2 k 

2 + 24 α2 a 
4 
2 k 

4 

24 a 0 α2 a 
3 
2 k 

4 − 76 a 1 α2 a 
3 
2 k 

4 + 22 a 2 1 α2 a 
2 
2 k 

4 = 0 , 

 

 

 

herefore, solving the above system reveals 
4 
Set-I 
 

a 0 = 0 , a 2 = −a 1 , k = ∓ a 3 / 4 
√ 

a 1 4 
√ 

α4 

2 3 / 4 4 
√ 

α2 
, 

α1 = −
√ 

α2 ( 4 aa 1 α3 + aa 2 1 α4 +8 c 2 ) 
2 
√ 

2 a 3 / 2 a 1 
√ 

α4 

. 
(45) 

his solution set gives the following solutions 

 1 , 2 (x, t) = −1 

a 
ln 

(
a 1 

(1 + f exp (kx − ct)) 
− a 1 

(1 + f exp (kx − ct)) 2 

)
(46) 

Set-II 
 

a 0 = 0 , a 1 = −α3 

α4 
, a 2 = 

α3 

α4 
, k = ∓ a 3 / 4 

√ 

α3 

2 3 / 4 4 
√ 

α2 
4 
√ 

α4 
, 

α1 = 

3 
√ 

2 a 
√ 

α2 α
2 
3 −8 

√ 

2 
√ 

α2 α4 c 
2 

4 a 3 / 2 α3 
√ 

α4 
. 

(47) 

his solution set gives the following solutions 

 3 , 4 (x, t) = − 1 

a 
ln 

(
− α3 

α4 (1 + f exp (kx − ct)) 
+ 

α3 

α4 (1 + f exp (kx − ct)) 2 

)
. 

(48) 

Set-III 
 

a 0 = 0 , a 1 = −α3 

α4 
, a 2 = 

α3 

α4 
, k = ∓ a 3 / 4 

√ 

α3 

2 3 / 4 4 
√ 

α2 
4 
√ 

α4 
, 

c = −
√ 

a α3 √ 

α4 
, α1 = − 5 

√ 

α2 α3 

2 
√ 

2 
√ 

a 
√ 

α4 

. 
(49) 

his solution set gives the following solutions 

 5 , 6 (x, t) = − 1 

a 
ln 

(
− α3 

α4 (1 + f exp (kx − ct)) 
+ 

α3 

α4 (1 + f exp (kx − ct)) 2 

)
. 

(50) 

Set-IV 

 

a 0 = 0 , a 1 = −α3 

α4 
, a 2 = 

α3 

α4 
, k = ∓ a 3 / 4 

√ 

α3 

2 3 / 4 4 
√ 

α2 
4 
√ 

α4 
, 

c = 

√ 

a α3 √ 

α4 
, α1 = − 5 

√ 

α2 α3 

2 
√ 

2 
√ 

a 
√ 

α4 

. 
(51) 

his solution set gives the following solutions 

 7 , 8 (x, t) = − 1 

a 
ln 

(
− α3 

α4 (1 + f exp (kx − ct)) 
+ 

α3 

α4 (1 + f exp (kx − ct)) 2 

)
. 

(52) 

. Results discussion 

This section gives some graphical two-dimensional (2D) and 

hree-dimensional (3D) illustrations to certain solutions of our 

odels. Several exponential function solutions have been con- 

tructed via the application of the powerful Kudryashov method 

or the TE, DBME, TDBME and PB-DNA-E, respectively. Fig. 1 gives 

he graphical illustration of the TE | v 1 (x, t) | solution given in (26) .

ig. 2 shows the graphical illustration of the DBME | v 1 (x, t) | so-

ution given in (34) . Figs. 3 and 4 depict the graphical illustration 

f the TDBME | v 1 , 2 (x, t) | solution given in (40) and (42) , respec-

ively. Figs. 5 and 6 plot the graphical illustration of the PB-DNA- 

 | v 1 , 3 (x, t) | solution given in (46) and (48) , respectively. In fact, 

hese solutions are different from those outlined in [6] for the 

zitzéica-based equations and also different with those solutions 

onstructed in [22] for the DNA model. Thus, we can say that the 

mployed method reveals unique set of solutions to each of the 

odels under consideration. 

Fig. 1 represents a periodic soliton solution given by 

q. (26) for f = 0 . 1 and c = 0 . 1 exhibited in 3D by limiting

he coordinates of x and t as −10 ≤ x ≤ 10 and 0 ≤ t ≤ 2 . While,

he 2D propagation is drawn for the values of t = 0 , 1 , and 2,

espectively. 

Fig. 2 depicts a dark-bright soliton solution given by 

q. (34) for f = 3 and c = 2 sketched in 3D through the co-

rdinates of x and t as −10 ≤ x ≤ 10 and 0 ≤ t ≤ 2 . While, the 2D
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Fig. 1. 2D and 3D graphical illustrations of the TE solution | v 1 (x, t) | for (26) at f = 0 . 1 , c = 0 . 1 . 

Fig. 2. 2D and 3D graphical illustrations of the DBME solution | v 1 (x, t) | for (34) at f = 3 , c = 2 . 

Fig. 3. 2D and 3D graphical illustrations of the TDBME solution | v 1 (x, t) | for (40) at f = 8 , c = 1 . 

p  
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a  

−  

t  

s

 

a  

−  

t  

s

 

0

x  

v  

l

 

1  

3

ropagation is drawn for the values of t = 0 , 1 , and 2, respectively.

t is clear that the solution is weakly dispersed (or disappeared) 

long the x -axis when x → ±∞ . 

Fig. 3 depicts a kink soliton solution given by Eq. (40) for f = 8

nd c = 1 sketched in 3D through the coordinates of x and t as

10 ≤ x ≤ 10 and 0 ≤ t ≤ 2 . While, the 2D propagation is drawn for

he values of t = 0 , 1 , and 2, respectively. It is clear that the wave

olution is propagated from left to right. 

Fig. 4 depicts a kink soliton solution given by Eq. (42) for f = 1

nd c = 1 sketched in 3D through the coordinates of x and t as

10 ≤ x ≤ 10 and 0 ≤ t ≤ 2 . While, the 2D propagation is drawn for
5 
he values of t = 0 , 1 , and 2, respectively. It is clear that the wave

olution is propagated from right to left. 

Fig. 5 depicts a dark soliton solution given by Eq. (46) for 

f = 1 . 1 , c = 0 . 2 , α2 = 0 . 01 , α3 = 0 . 3 , α4 = 0 . 1 , a = 0 . 8 , and a 1 =
 . 1 sketched in 3D through the coordinates of x and t as −10 ≤
 ≤ 10 and 0 ≤ t ≤ 2 . While, the 2D propagation is drawn for the

alues of t = 0 , 1 , and 2, respectively. It is clear that the wave so-

ution is symmetric about the origin. 

Fig. 6 depicts a dark soliton solution given by Eq. (48) for f =
 . 1 , c = 0 . 6 , α2 = 0 . 01 , α3 = 0 . 3 , α4 = 0 . 1 , and a = 0 . 8 sketched in

D through the coordinates of x and t as −10 ≤ x ≤ 10 and 0 ≤ t ≤



M.S. Alharthi, D. Baleanu, K.K. Ali et al. Journal of Ocean Engineering and Science xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: JOES [m5G; June 3, 2022;0:23 ] 

Fig. 4. 2D and 3D graphical illustrations of the TDBME solution | v 2 (x, t) | for (42) at f = 1 , c = 1 . 

Fig. 5. 2D and 3D graphical illustrations of the TDBME solution | v 1 (x, t) | for (46) at f = 1 . 1 , c = 0 . 2 , α2 = 0 . 01 , α3 = 0 . 3 , α4 = 0 . 1 , a = 0 . 8 , a 1 = 0 . 1 . 

Fig. 6. 2D and 3D graphical illustrations of the TDBME solution | v 3 (x, t) | for (48) at f = 1 . 1 , c = 0 . 6 , α2 = 0 . 01 , α3 = 0 . 3 , α4 = 0 . 1 , a = 0 . 8 . 

2  

a

a

6

m
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e
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n

l

n

(

t

 . While, the 2D propagation is drawn for the values of t = 0 , 1 ,

nd 2, respectively. It is clear that the wave solution is symmetric 

bout the origin. 

. Conclusion 

In conclusion, we have employed the powerful Kudryashov 

ethod to construct various exponential traveling wave solutions 

o a class of evolution equations with double exponential nonlin- 

arities. More precisely, the models include the TE, DBME, TDBME 

nd PB-DNA-E, respectively. By these solutions, it is believed that a 
6 
eep understanding of the evolution and dynamicity of these mod- 

ls will be brought to the light. As a result, new solitonic wave pat- 

erns attain, like as periodic, dark-bright, kink, and dark solitonic 

tructures. The graphical 2D and 3D visualization of the obtained 

esults is presented to express the pulse propagation behaviors by 

ssuming the appropriate values of the involved parameters. Fi- 

ally, we recommend the use of the used solution method in tack- 

ing different nonlinear evolution equation with various forms of 

onlinearities; of course, after utilizing a required transformation 

recall that we made use of the Painlevé transformation to recast 

he given PDEs to standard equations). 
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