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A B S T R A C T

In this paper, a novel variable-order COVID-19 model with modified parameters is presented. The variable-
order fractional derivatives are defined in the Caputo sense. Two types of variable order Caputo definitions
are presented here. The basic reproduction number of the model is derived. Properties of the proposed model
are studied analytically and numerically. The suggested optimal control model is studied using two numerical
methods. These methods are non-standard generalized fourth-order Runge–Kutta method and the non-standard
generalized fifth-order Runge–Kutta technique. Furthermore, the stability of the proposed methods are studied.
To demonstrate the methodologies’ simplicity and effectiveness, numerical test examples and comparisons with
real data for Egypt and Italy are shown.
Introduction

Coronaviruses are a large family of viruses that are known to
cause illness ranging from the common cold to more severe diseases
such as severe acute respiratory syndrome (SARS). The World Health
Organization (WHO) has described this variant as a variant of serious
concern. The pandemic started in late December 2019 with patients
admitted to hospitals with an initial diagnosis of pneumonia in Wuhan,
the capital of Hubei, China. In the months that followed, the World
Health Organization recorded 1,133,758 total cases and 62,784 fatal-
ities globally in a report dated 5 April 2020. Italy has been severely
affected. The first Italy’s COVID-19 patient was detected on 21 February
2020 in a little town near Milan, in the northern region of Lombardy,
for more details see [1].

Recently, scientific researches focus on the study the coronavirus
infection in different scenarios, see for example [2–4].

Also, optimal control theory has successful applications in biological
and medical problems. Furthermore, fractional optimal control prob-
lems are a subclass of optimal control whose dynamics are described
by fractional differential equations. We can minimize the impact of
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COVID-19 pandemics by minimizing the number of detected asymp-
tomatic infected people who acquire life threatening symptoms and
the threatened percentage populations that become extinct. Fractional
derivatives are non-local in nature but the integer order derivative
can be used to characterize the short memory in time-dependent sys-
tems, whereas the variable-order fractional derivative (VOFD) is known
for explaining the impacts of long variable memory [5–13] in time-
dependent systems. Sweilam et al. recently published several research
papers in filed of variable-order optimal control problems (VOCPs), for
more details see [14–16].

In this article, we will study numerically the optimal control for
two types of variable-order COVID-19 epidemic models. We consider
the available data of daily confirmed cases in Italy, from 20 of February
2020 to 5 of April 2020 and in Egypt from 9 March to 13 June, 2020 [17].
The variable-order fractional derivative is defined in the Caputo sense.
Two methods will be used to study the suggested model. Non-standard
generalized Runge–Kutta of fourth-order method (NGRK4M) and the
non-standard generalized Runge–Kutta of fifth-order method
vailable online 5 September 2022
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(NGRK5M) are constructed. Comparative studies between these meth-
ods are presented. Comparisons with real data for Egypt and Italy are
implemented.

The remainder of this paper is organized as follows: Two types
of variable-order fractional and some definitions are given in Section
‘‘Basic Notations’’. In Section ‘‘COVID-19 Variable Order Mathematical
Model’’, the COVID-19 model of variable-order with required analysis
of equilibrium points is given. Formulation of variable-order optimal
control problem is introduced in Section ‘‘Formulation of the Control
Problem’’. Two numerical approaches are introduced for solving the
suggested model in Section ‘‘Numerical Methods’’. We simulated nu-
merically the proposed model in Section ‘‘Numerical Simulations’’. In
Section ‘‘Conclusions’’, the conclusions are presented .

Basic notations

In the following problem:
𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑦(𝑡) = 𝑓 (𝑡, 𝑦(𝑡)), 𝑇 ≥ 𝑡 > 0, 1 ≥ 𝛼(𝑡) > 0, (1)

𝑦(0) = 𝑦𝑜.

We introduce the Caputo variable-order fractional derivative, where
−∞ < 𝑎 < 𝑏 < +∞, 𝛼 ∈ C, ℜ(𝛼) > 0, as follows [8]:

efinition 1. The right-left side Caputo’s derivatives of order 𝛼(𝑡) type
ne (CVOT1) where 𝑓 (𝑡) is continuous function are defined respectively
s follows [18]:

𝐷𝛼(𝑡)
𝑏 𝑓 (𝑡) = 1

𝛤 (𝑛 − 𝛼(𝑡)) ∫

𝑏

𝑡

𝑓 𝑛(𝑠)
(𝑠 − 𝑡)1+𝛼(𝑡)−𝑛

𝑑𝑠, 𝑡 < 𝑏,

𝐶
𝑎 𝐷

𝛼(𝑡)
𝑡 𝑓 (𝑡) = 1

𝛤 (𝑛 − 𝛼(𝑡)) ∫

𝑡

𝑎

𝑓 𝑛(𝑠)
(𝑡 − 𝑠)1−𝑛+𝛼(𝑡)

𝑑𝑠, 𝑎 < 𝑡. (2)

Definition 2. The right-left side Caputo’s derivatives of order 𝛼(𝑡)
type two (CVOT2), where 𝑓 (𝑡) is continuous function are defined
respectively as follows [18]:

𝐶
𝑡 𝐷

𝛼(𝑡)
𝑏 𝑓 (𝑡) = ∫

𝑏

𝑡

1
𝛤 (𝑛 − 𝛼(𝑠))

𝑓 𝑛(𝑠)
(𝑠 − 𝑡)1+𝛼(𝑠)−𝑛

𝑑𝑠, 𝑡 < 𝑏,

𝐶
𝑎 𝐷

𝛼(𝑡)
𝑡 𝑓 (𝑡) = ∫

𝑡

𝑎

1
𝛤 (𝑛 − 𝛼(𝑠))

𝑓 𝑛(𝑠)
(𝑡 − 𝑠)1+𝛼(𝑠)−𝑛

𝑑𝑠, 𝑡 > 𝑎. (3)

COVID-19 variable order mathematical model

In the following, the COVID-19 model described in [2] will be de-
veloped here to variable-order fractional model. The model’s variables
and the parameters are listed in Tables 1 and 2 respectively. In the
following, the updated nonlinear variable-order mathematical model:
𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑆(𝑡) = −𝑆(𝑡)(𝛽𝛼(𝑡)𝐼(𝑡) + 𝛽𝛼(𝑡)𝐷 𝐼𝐷(𝑡) + 𝛾𝛼(𝑡)𝐼𝐴(𝑡) + 𝛿𝛼(𝑡)𝐼𝑅(𝑡)), (4)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼(𝑡) = 𝑆(𝑡)(𝛽𝛼(𝑡)𝐼(𝑡) + 𝛽𝛼(𝑡)𝐷 𝐼𝐷(𝑡) + 𝛾𝛼(𝑡)𝐼𝐴(𝑡) + 𝛿𝛼(𝑡)𝐼𝑅(𝑡))

− (𝜀𝛼(𝑡) + 𝜁𝛼(𝑡) + 𝜌𝛼(𝑡)𝐼 )𝐼(𝑡), (5)
𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐷(𝑡) = 𝜀𝛼(𝑡)𝐼(𝑡) − (𝜂𝛼(𝑡) + 𝜌𝛼(𝑡)𝐷 )𝐼𝐷(𝑡), (6)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐴(𝑡) = 𝜁𝛼(𝑡)𝐼(𝑡) − (𝜀𝛼(𝑡)𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡))𝐼𝐴(𝑡), (7)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝑅(𝑡) = 𝜂𝛼(𝑡)𝐼𝐷(𝑡) + 𝜀𝛼(𝑡)𝐴 𝐼𝐴(𝑡) − (𝜈𝛼(𝑡) + 𝜉𝛼(𝑡))𝐼𝑅(𝑡), (8)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝑇 (𝑡) = 𝜇𝛼(𝑡)𝐼𝐴(𝑡) + 𝜈𝛼(𝑡)𝐼𝑅(𝑡) − (𝜎𝛼(𝑡) + 𝑑𝛼(𝑡))𝐼𝑇 (𝑡), (9)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐻 (𝑡) = 𝜌𝛼(𝑡)𝐼 𝐼(𝑡) + 𝜌𝛼(𝑡)𝐷 𝐼𝐷(𝑡) + 𝜅𝛼(𝑡)𝐼𝐴(𝑡) + 𝜉𝛼(𝑡)𝐼𝑅(𝑡) + 𝜎𝛼(𝑡)𝐼𝑇 (𝑡),

(10)
𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐸 (𝑡) = 𝑑𝛼(𝑡)𝐼𝑇 (𝑡). (11)

Let,
2

𝐼 + 𝑆 + 𝐼𝐷 + 𝐼𝐴 + 𝑅 + 𝐼𝐻 + 𝐼𝐸𝐼𝑇 = 𝑁,
Table 1
Variables of the proposed model [2].

Variables Description

𝑆(𝑡) The susceptible population.

𝐼(𝑡) The infected population with asymptomatic infected and
undetected.

𝐼𝐷(𝑡) The diagnosed population with asymptomatic infected
and detected.

𝐼𝐴(𝑡) The ailing population with symptomatic infected and
undetected.

𝐼𝑅(𝑡) The recognized population with symptomatic infected and
detected.

𝐼𝑇 (𝑡) The threatened population which infected with
life-threatening symptoms and detected.

𝐼𝐻 (𝑡) The recovered population.

𝐼𝐸 (𝑡) The extinct population.

Table 2
All of the parameters in the proposed model, as well as their meanings [2].

Symbol Definition Values

𝑡 Time 𝑡 ≥ 0.

𝛽𝛼(𝑡) The transmission rate between a susceptible
and an infected population

(0.57)𝛼(𝑡)

𝛽𝛼(𝑡)𝐷 The transmission rate between a susceptible
and diagnosed population.

(0.0114)𝛼(𝑡)

𝛾𝛼(𝑡) The transmission rate between a susceptible
and ailing population.

(0.456)𝛼(𝑡)

𝛿𝛼(𝑡) The transmission rate between a susceptible
and a recognized population.

(0.011)𝛼(𝑡)

𝜀𝛼(𝑡) The detection rate, with respect to (w. r. t)
relative to asymptomatic cases.

(0.171)𝛼(𝑡)

𝜀𝛼(𝑡)𝐴 The detection rate w. r. t relative to
symptomatic cases.

(0.3705)𝛼(𝑡)

𝜁𝛼(𝑡) The rate which infected is not mindful of
being infected creates clinically pertinent
side effects and is comparable within the
nonappearance of a particular treatment.

(0.1254)𝛼(𝑡)

𝜂𝛼(𝑡) The rate which infected mindful of being
infected, creates clinically pertinent
indications, and is comparable within the
nonappearance of a particular treatment.

(0.1254)𝛼(𝑡)

𝜇𝛼(𝑡) If there is no known specific medicine that
is effective against the illness, the rate at
which infected persons are unaware creates
life-threatening symptoms.

(0.0171)𝛼(𝑡)

𝜈𝛼(𝑡) the rate at which infected aware develop
life-threatening symptoms; they are
comparable if there is no known specific
treatment that is effective against the
disease.

(0.0274)𝛼(𝑡)

𝜌𝛼(𝑡)𝐼 The recovered infected population rate. (0.0342)𝛼(𝑡)

𝜅𝛼(𝑡) The recovered ailing population rate. (0.0171)𝛼(𝑡)

𝜎𝛼(𝑡) The recovered threatened population rate. (0.017)𝛼(𝑡)

𝜉𝛼(𝑡) The recovered recognized population rate. (0.017)𝛼(𝑡)

𝜌𝛼(𝑡)𝐷 The recovered diagnosed population rate. (0.0342)𝛼(𝑡)

𝑑𝛼(𝑡) The death rate. (0.01)𝛼(𝑡)

and 𝑁 is the total population. The initial conditions are given as
follows:

𝑆(0) = 𝑆0, 𝐼(0) = 𝐼0, 𝐼𝐷(0) = 𝐼𝐷0, 𝐼𝐴(0) = 𝐼𝐴0, 𝐼𝑅(0) = 𝐼𝑅0,

𝐼𝑇 (0) = 𝐼𝑇 0, 𝐼𝐻 (0) = 𝐼𝐻0, 𝐼𝐸 (0) = 𝐼𝐸0.
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The basic reproduction number

To describe the fundamental of reproductive number (𝑅𝑜), for more
nformation, see [19]. Consider the matrices 𝐹 and 𝑉 where, the

matrix 𝐹 representing the new infection terms and 𝑉 representing the
remaining transfer terms associated with the baseline model are given,
respectively, by:

𝑉 =
𝜕𝐺𝑖
𝜕𝑥𝑗

, 𝐹 =
𝜕𝑖
𝜕𝑥𝑗

,

here 𝐺 is the individuals transfer rate into or out infected class
from subsystem (6)–(10). The order of infected variables 𝑥𝑗 =

(𝐼, 𝐼𝐷, 𝐼𝐴, 𝐼𝑅, 𝐼𝑇 ) and 𝛼(𝑡) ∈ (0, 1] and  is the appearance rate of new
nfected individuals in class 𝑖,

Then 𝑅𝑜 = 𝜌(𝐹𝑉 −1), where 𝜌 is the spectral radius of the matrix
𝐹𝑉 −1. Also,

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐻1
𝐻2
𝐻3
𝐻3
𝐻5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑆(𝛽𝛼(𝑡)𝐼 + 𝛽𝛼(𝑡)𝐷 𝐼𝐷 + 𝛾𝛼(𝑡)𝐼𝐴 + 𝛿𝛼(𝑡)𝐼𝑅)
0
0
0

⎞

⎟

⎟

⎟

⎟

⎠

and

𝐺 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝐺1
𝐺2
𝐺3
𝐺4
𝐺5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(𝜀𝛼(𝑡) + 𝜁𝛼(𝑡) + 𝜌𝛼(𝑡)𝐼 )𝐼
(𝜂𝛼(𝑡) + 𝜌𝛼(𝑡)𝐷 )𝐼𝐷 − 𝜀𝛼(𝑡)𝐼,

(𝜀𝛼(𝑡)𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡))𝐼𝐴 − 𝜁𝛼(𝑡)𝐼
(𝜈𝛼(𝑡) + 𝜉𝛼(𝑡))𝐼𝑅 − 𝜂𝛼(𝑡)𝐼𝐷 − 𝜀𝛼(𝑡)𝐴 𝐼𝐴
𝜇𝛼(𝑡)𝐼𝐴 + (𝜎𝛼(𝑡) + 𝑑𝛼(𝑡))𝐼𝑇 − 𝜈𝛼(𝑡)𝐼𝑅,

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

At 𝐸𝑜 = (1, 0, 0, 0, 0, 0, 0, 0), where 𝐸𝑜 is the disease-free equilibrium
point. The basic reproduction number 𝑅0 for the system (4)–(11)
is [20]:

𝑅0 = 𝜌(𝐹𝑉 −1) =
𝛽𝛼(𝑡)

𝑟1
+

𝜀𝛼(𝑡)𝛽𝛼(𝑡)𝐷
𝑟1𝑟2

+
𝜁𝛼(𝑡)𝛾𝛼(𝑡)

𝑟1𝑟3

+
𝛿𝛼(𝑡)(𝑟2𝜁𝛼(𝑡)𝜀

𝛼(𝑡)
𝐴 + 𝑟3𝜀𝛼(𝑡)𝜂𝛼(𝑡))

𝑟1𝑟2𝑟3𝑟4
,

here 𝑟1 = 𝜀𝛼(𝑡) + 𝜁𝛼(𝑡) + 𝜌𝛼(𝑡)𝐼 ,𝑟2 = 𝜂𝛼(𝑡) + 𝜌𝛼(𝑡)𝐷 , 𝑟3 = 𝜀𝛼(𝑡)𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡),
𝑟4 = 𝜈𝛼(𝑡) + 𝜉𝛼(𝑡) and 𝑟5 = 𝜎𝛼(𝑡) + 𝑑𝛼(𝑡).

The effective reproductive number (𝑅𝑒(𝑡)) is the average number of
secondary cases of infected population produced in completely suscep-
tible population. The effective reproduction number can be estimated
by the product of the basic reproductive number and the susceptible
population 𝑆(𝑡). So:

𝑅𝑒(𝑡) = 𝑆(𝑡)𝑅0.

We have that stability of the system occurs if: 𝑅𝑒(𝑡) < 1, and the system
becomes unstable if 𝑅𝑒(𝑡) > 1.

Equilibrium points

The aim now is to determine the equilibrium points for (4)–(11) and
explore their local asymptotic behavior:

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑆 =𝐶

0 𝐷𝛼(𝑡)
𝑡 𝐼 =𝐶

0 𝐷𝛼(𝑡)
𝑡 𝐼𝐷 =𝐶

0 𝐷𝛼(𝑡)
𝑡 𝐼𝐴 =𝐶

0 𝐷𝛼(𝑡)
𝑡 𝐼𝑅 =𝐶

0 𝐷𝛼(𝑡)
𝑡 𝐼𝑇 =𝐶

0
𝐷𝛼(𝑡)

𝑡 𝐼𝐻 =𝐶
0 𝐷𝛼(𝑡)

𝑡 𝐼𝐸 = 0. Then, from (1), we have

𝑓𝑗 (𝑆̄, 𝐼, ̄𝐼𝐷, 𝐼𝐴, 𝐼𝑇 , 𝐼𝑅, 𝐼𝑇 , ̄𝐼𝐻 , 𝐼𝐸 ) = 0, 𝑗 = 1,… , 8,

where, (𝑆̄, 𝐼, ̄𝐼𝐷, 𝐼𝐴, 𝐼𝑇 , 𝐼𝑅, 𝐼𝑇 , ̄𝐼𝐻 , 𝐼𝐸 ) denotes any equilibrium point.

Disease-free equilibrium
If 𝐼 = 𝐼𝐷 = 𝐼𝐴 = 𝐼𝑅 = 𝐼𝑇 = 0, and the right-hand side of the system

(4)–(11) are both equal to zero, we get the disease-free point as follows:

𝐸 (𝑆, 𝐼, 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 ) = (1, 0, 0, 0, 0, 0, 0, 0).
3

𝑜 𝐷 𝐴 𝑅 𝑇 𝐻 𝐸 𝑆
Endemic equilibrium
If the infected variables 𝐼, 𝐼𝐷, 𝐼𝐴, 𝐼𝑅, 𝐼𝑇 are not zero, the subsystem

(6)–(10) has an endemic equilibrium, [19]. If the right-hand side of
the subsystem (6)– (11) is equal to zero, then the endemic equilibrium
point 𝐸∗ = (𝑆̃, 𝐼, ̃𝐼𝐷, 𝐼𝐴, 𝐼𝑅, 𝐼𝑇 , ̃𝐼𝐻 , 𝐼𝐸 ) is given as follows:

From Eq. (6),

̃ =
𝑟1𝐼

𝛽𝛼(𝑡)𝐼 + 𝛽𝛼(𝑡)𝐷
̃𝐼𝐷 + 𝛾𝛼(𝑡)𝐼𝐴 + 𝛿𝛼(𝑡)𝐼𝑅

, (12)

from equations (7)–(9), we have

̃𝐼𝐷 = 𝜀𝛼(𝑡)𝐼
𝑟2

, 𝐼𝐴 =
𝜁𝛼(𝑡)𝐼
𝑟3

, (13)

𝐼𝑅 = (
𝜂𝛼(𝑡)𝜀𝛼(𝑡)

𝑟2𝑟4
+

𝜁𝛼(𝑡)𝜀𝛼(𝑡)𝐴 𝐼
𝑟3𝑟4

)𝐼. (14)

By substitution in (12)

𝑆̃ =
𝑟1𝑟2𝑟3𝑟4

𝛽𝛼(𝑡)𝑟2𝑟3𝑟4 + 𝛽𝛼(𝑡)𝐷 𝜀𝛼(𝑡)𝑟3𝑟4 + 𝛾𝛼(𝑡)𝜁𝛼(𝑡)𝑟2𝑟4 + 𝛿𝛼(𝑡)(𝜂𝛼(𝑡)𝜀𝛼(𝑡)𝑟3 + 𝜁𝛼(𝑡)𝜀𝛼(𝑡)𝐴 𝑟2)
(15)

= 1
𝑅𝑜

. (16)

From Eq. (10)

𝐼𝑇 =
𝜇𝛼(𝑡)𝐼𝐴 + 𝜈𝛼(𝑡)𝐼𝑅

𝑟5
, (17)

and ̃𝐼𝐻 + 𝐼𝐸 = 1 − 𝑆̃ − ̃𝐼𝐷 − 𝐼𝐴 − 𝐼𝑅.

Formulation of the control problem

We will extend the necessary conditions of Pontryagin’s maximum
principle to variable-order fractional differentiation equations. The
COVID-19 infection can be controlled and minimized in a community
by maximizing the number of healed people and minimizing the num-
ber infected individuals. For this purpose, we use three suitable control
variables depending on time 𝑢1(𝑡) for the reduction of diagnosed asymp-
tomatic infected; 𝑢2(𝑡) for the reduction of developing life-threatening
symptoms and 𝑢3(𝑡) for the percentage of threatened population being
extinct. Let,

𝐽 (𝑢1, 𝑢2, 𝑢3)

= 𝑚𝑖𝑛∫

𝑡𝑓

0

(

𝐶1𝐼𝑅(𝑡) + 𝐶2𝐼𝑇 (𝑡) +
𝑤1
2

𝑢21(𝑡) +
𝑤2
2

𝑢22(𝑡) +
𝑤3
2

𝑢23(𝑡)

)

𝑑𝑡,

(18)

be the cost (objective) functional which will be minimize and 𝐶1 and
𝐶2 are the weighting constants of recognized symptomatic infected
and threatened acutely symptomatic infected individuals respectively,
whereas 𝑤1, 𝑤2 and 𝑤3 are the positive weight constants used for
the treatment of diagnosed asymptomatic infected, recognized symp-
tomatic infected and threatened acutely symptomatic infected individ-
uals, respectively. subjected to the constraint (4)–(11) as follows:

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑆 = −𝑆(𝛽𝛼(𝑡)𝐼 + 𝛽𝛼(𝑡)𝐷 𝐼𝐷 + 𝛾𝛼(𝑡)𝐼𝐴 + 𝛿𝛼(𝑡)𝐼𝑅),

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼 = 𝑆(𝛽𝛼(𝑡)𝐼 + 𝛽𝛼(𝑡)𝐷 𝐼𝐷 + 𝛾𝛼(𝑡)𝐼𝐴 + 𝛿𝛼(𝑡)𝐼𝑅) − (𝜀𝛼(𝑡) + 𝜁𝛼(𝑡) + 𝜌𝛼(𝑡)𝐼 )𝐼,

𝐷𝛼(𝑡)
𝑡 𝐼𝐷 = 𝜀𝛼(𝑡)𝐼 − (𝜂𝛼(𝑡)𝑢1 + 𝜌𝛼(𝑡)𝐷 )𝐼𝐷,

𝐷𝛼(𝑡)
𝑡 𝐼𝐴 = 𝜁𝛼(𝑡)𝐼 − (𝜀𝛼(𝑡)𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡))𝐼𝐴,

𝐷𝛼(𝑡)
𝑡 𝐼𝑅 = 𝜂𝛼(𝑡)𝑢1𝐼𝐷 + 𝜀𝛼(𝑡)𝐴 𝐼𝐴 − (𝜈𝛼(𝑡)𝑢2 + 𝜉𝛼(𝑡))𝐼𝑅,

𝐷𝛼(𝑡)
𝑡 𝐼𝑇 = 𝜇𝛼(𝑡)𝐼𝐴 + 𝜈𝛼(𝑡)𝑢2𝐼𝑅 − (𝜎𝛼(𝑡) + 𝑑𝛼(𝑡)𝑢3)𝐼𝑇 ,

𝐷𝛼(𝑡)
𝑡 𝐼𝐻 = 𝜌𝛼(𝑡)𝐼 𝐼 + 𝜌𝛼(𝑡)𝐷 𝐼𝐷 + 𝜅𝛼(𝑡)𝐼𝐴 + 𝜉𝛼(𝑡)𝐼𝑅 + 𝜎𝛼(𝑡)𝐼𝑇 ,

𝐷𝛼(𝑡)
𝑡 𝐼𝐸 = 𝑑𝛼(𝑡)𝑢3𝐼𝑇 ,

(19)

nd satisfying the initial conditions:
(0) ≥ 0, 𝐼(0) = 0, 𝐼𝐷(0) = 0, 𝐼𝐴(0) = 0, 𝐼𝑅(0) = 0,
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T

𝐻

w
o
c
𝐶
𝑡

𝐶
0

𝑆
𝑆
C
𝐶
𝑡

𝑢

𝐶
0 ,
𝐶
0
𝐶
0
𝐶
0
𝐶
0

𝐶
0

W

N

𝑡

𝐾

𝐾

𝐼𝑇 (0) = 0, 𝐼𝐻 (0) ≥ 0, 𝐼𝐸 (0) ≥ 0.

he Hamiltonian is given as following:

= 𝐶1𝐼𝑅(𝑡) + 𝐶2𝐼𝑇 +
𝑤1
2

𝑢21 +
𝑤2
2

𝑢22 +
𝑤3
2

𝑢23 +
8
∑

𝑖=0
𝜆𝑖𝐹𝑖, (20)

here 𝜆𝑖 is the co-state variables 𝑖 = 1,… , 8 and 𝐹𝑖 right hand side
f system (19). From (18) and (20), we can derive the necessary
onditions as follows:

𝑓
𝐷𝛼(𝑡)

0 𝜆𝑖(𝑡) =
𝜕𝐻
𝜕𝑉𝑖

, 𝑉𝑖 = 𝑆, 𝐼, 𝐼𝐷, 𝐼𝐴, 𝐼𝑅, 𝐼𝑇 , 𝐼𝐻 , 𝐼𝐸 , (21)

𝜕𝐻
𝜕𝑢𝑗

= 0, 𝑗 = 1, 2, 3, (22)

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑆(𝑡) = 𝜕𝐻

𝜕𝜆𝑆
, 𝐶

0 𝐷
𝛼(𝑡)
𝑡 𝐼(𝑡) = 𝜕𝐻

𝜕𝜆𝐼
,

𝐷𝛼(𝑡)
𝑡 𝐼𝐷(𝑡) =

𝜕𝐻
𝜕𝜆𝐷

, 𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐴(𝑡) =

𝜕𝐻
𝜕𝜆𝐴

,

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝑅(𝑡) =

𝜕𝐻
𝜕𝜆𝑅

, 𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝑇 (𝑡) =

𝜕𝐻
𝜕𝜆𝑇

,

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐻 (𝑡) = 𝜕𝐻

𝜕𝜆𝐻
, 𝐶

0 𝐷
𝛼(𝑡)
𝑡 𝐼𝐸 (𝑡) =

𝜕𝐻
𝜕𝜆𝐸

,

(23)

and it is also required that: 𝜆𝑖(𝑡𝑓 ) = 0, where 𝑖 = 𝑆, 𝐼, 𝐼𝐷, 𝐴,𝑅, 𝑇 , 𝐼𝐻 , 𝐼𝐸 ,;
are the Lagrange multipliers. Eqs. (22) and (23) describe the necessary
conditions in terms of a Hamiltonian for the optimal control problem
defined above.

Theorem 1. If 𝑢1, 𝑢2 and 𝑢3 are optimal controls with corresponding state
∗, 𝐼∗, 𝐼∗𝐷, 𝐼

∗
𝐴, 𝐼

∗
𝑅, 𝐼

∗
𝑇 , 𝐼

∗
𝐻 , 𝐼∗𝐸 ; then there are adjoint variables 𝜆∗𝑖 , 𝑖 =

, 𝐼, 𝐼𝐷, 𝐴,𝑅, 𝑇 , 𝐼𝐻 , 𝐼𝐸 , :
ase(a): Co-state (Adjoint) equations

𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝑆 (𝑡) = −𝜆∗𝑆 (𝛽
𝛼(𝑡)𝐼∗ + 𝛽𝛼(𝑡)𝐷 𝐼∗𝐷 + 𝛾𝛼(𝑡)𝐼∗𝐴 + 𝛿𝛼(𝑡)𝐼∗𝑅) + 𝜆∗𝐼 (𝛽

𝛼(𝑡)𝐼∗

+ 𝛽𝛼(𝑡)𝐷 𝐼∗𝐷 + 𝛾𝛼(𝑡)𝐼∗𝐴
+ 𝛿𝛼(𝑡)𝐼∗𝑅),

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝐼 (𝑡) = −𝜆∗𝑆𝛽
𝛼(𝑡)𝑆∗−𝜆∗𝐼 (𝜀

𝛼(𝑡)+𝜁𝛼(𝑡)+𝜌𝛼(𝑡)𝐼 −𝛽𝛼(𝑡)𝑆∗)+𝜆∗𝐴𝜁
𝛼(𝑡)+𝜆∗𝐻𝜌𝛼(𝑡)𝐼 ,

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝐷(𝑡) = −𝜆∗𝑆𝛽
𝛼(𝑡)
𝐷 𝑆∗ + 𝜆∗𝐼𝛽

𝛼(𝑡)𝑆∗ − 𝜆∗𝐷(𝜂
𝛼(𝑡)𝑢∗1(𝑡) + 𝜌𝛼(𝑡)𝐷 )

+ 𝜆∗𝑅𝜂
𝛼(𝑡)𝑢∗1(𝑡) + 𝜆∗𝐻𝜌𝛼(𝑡)𝐷 ,

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝐴(𝑡) = −𝜆∗𝑆𝛾
𝛼(𝑡)𝑆∗ + 𝜆∗𝐼 𝛾

𝛼(𝑡)𝑆∗ − 𝜆∗𝐴(𝜀
𝛼(𝑡)
𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡))

+ 𝜆∗𝑅𝜀
𝛼(𝑡)
𝐴 + 𝜆∗𝑇 𝜇

𝛼(𝑡) + 𝜆∗𝐻𝜅𝛼(𝑡),

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝑅(𝑡) = 𝐶1 − 𝜆∗𝑆𝛿
𝛼(𝑡)𝑆∗ + 𝜆∗𝐼𝛿

𝛼(𝑡)𝑆∗ − 𝜆∗𝑅(𝜈
𝛼(𝑡)𝑢∗2(𝑡) + 𝜉𝛼(𝑡))

+ 𝜆∗𝑇 𝜈
𝛼(𝑡)𝑢∗2(𝑡) + 𝜆∗𝐻 𝜉𝛼(𝑡),

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝑇 (𝑡) = 𝐶2 − 𝜆∗𝑇 (𝜎
𝛼(𝑡)𝑢∗3(𝑡) + 𝑑𝛼(𝑡)) + 𝜆∗𝐻𝜎𝛼(𝑡) + 𝜆∗𝑇 𝑑

𝛼(𝑡)𝑢3(𝑡),

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝐻 (𝑡) = 0,

𝐶
𝑡𝑓
𝐷𝛼(𝑡)

0 𝜆∗𝐸 (𝑡) = 0. (24)

Case(b): The transversality conditions:

𝜆∗𝑖 (𝑡𝑓 ) = 0, 𝑖 = 𝑆, 𝐼, 𝐼𝐷, 𝐴,𝑅, 𝑇 , 𝐼𝐻 , 𝐼𝐸 .

Case(c): optimality conditions:
From (22), the control functions 𝑢∗1 , 𝑢

∗
2 and 𝑢∗3:

𝑢∗1 = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥{0,
𝜂𝛼(𝑡)𝐼𝐷(𝜆𝐷 − 𝜆𝐻 )

𝑤1
}},

∗ = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥{0,
𝜈𝛼(𝑡)𝐼𝑅(𝜆𝑅 − 𝜆𝐻 )

}}
4

2 𝑤2
and

𝑢∗3 = 𝑚𝑖𝑛{1, 𝑚𝑎𝑥{0,
𝑑𝛼(𝑡)𝐼𝑇 (𝜆𝑇 − 𝜆𝐻 )

𝑤2
}}.

Now, by substituting 𝑢∗1, 𝑢∗2 and 𝑢∗2 in (19), we have the state
equations as follows:

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑆∗ = −𝑆∗(𝛽𝛼(𝑡)𝐼∗ + 𝛽𝛼(𝑡)𝐷 𝐼∗𝐷 + 𝛾𝛼(𝑡)𝐼∗𝐴 + 𝛿𝛼(𝑡)𝐼∗𝑅),

𝐷𝛼(𝑡)
𝑡 𝐼∗ = 𝑆∗(𝛽𝛼(𝑡)𝐼∗ + 𝛽𝛼(𝑡)𝐷 𝐼∗𝐷 + 𝛾𝛼(𝑡)𝐼∗𝐴 + 𝛿𝛼(𝑡)𝐼∗𝑅) − (𝜀𝛼(𝑡) + 𝜁𝛼(𝑡) + 𝜌𝛼(𝑡)𝐼 )𝐼∗

𝐷𝛼(𝑡)
𝑡 𝐼∗𝐷 = 𝜀𝛼(𝑡)𝐼∗ − (𝜂𝛼(𝑡)𝑢∗1 + 𝜌𝛼(𝑡)𝐷 )𝐼∗𝐷,

𝐷𝛼(𝑡)
𝑡 𝐼∗𝐴 = 𝜁𝛼(𝑡)𝐼∗ − (𝜀𝛼(𝑡)𝐴 + 𝜇𝛼(𝑡) + 𝜅𝛼(𝑡))𝐼∗𝐴,

𝐷𝛼(𝑡)
𝑡 𝐼∗𝑅 = 𝜂𝛼(𝑡)𝑢∗1𝐼

∗
𝐷 + 𝜀𝛼(𝑡)𝐴 𝐼∗𝐴 − (𝜈𝛼(𝑡)𝑢∗2 + 𝜉𝛼(𝑡))𝐼∗𝑅,

𝐷𝛼(𝑡)
𝑡 𝐼∗𝑇 = 𝜇𝛼(𝑡)𝐼∗𝐴 + 𝜈𝛼(𝑡)𝑢∗2𝐼

∗
𝑅 − (𝜎𝛼(𝑡) + 𝑑𝛼(𝑡)𝑢∗3)𝐼

∗
𝑇 ,

𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝐼𝐻 = 𝜌𝛼(𝑡)𝐼 𝐼 + 𝜌𝛼(𝑡)𝐷 𝐼𝐷 + 𝜅𝛼(𝑡)𝐼𝐴 + 𝜉𝛼(𝑡)𝐼∗𝑅 + 𝜎𝛼(𝑡)𝐼∗𝑇 ,

𝐷𝛼(𝑡)
𝑡 𝐼∗𝐸 = 𝑑𝛼(𝑡)𝑢∗3𝐼

∗
𝑇 ,

(25)

Numerical methods

The mathematical models (25) and (24) will be studied in this
section, moreover, two non-standard methods are constructed in the
next sections.

A numerical method is considered non-standard if at least one of
the following conditions is satisfied [21]:

1-It is decided to use the non-local approximation.
2- Discretization of a derivative is not traditional and use a nonnegative
function,

𝜑(ℎ) = ℎ + 𝑂(ℎ2), 0 < 𝜑 < 1, ∀ ℎ > 0,

e will give a quick rundown of these methods:

GRK4M

Let a collection of mesh points ℑ = {𝑡0, 𝑡1,… , 𝑡𝑛}, such that 𝑡0 = 0,
𝑛 = 𝑇 , 𝑇 is the final time and ℎ = 𝑇

𝑛
, 𝑛 = 1, 2,… , 𝑁 .

Now, we can write the approximation solution of Eq. (1) [22]:

𝑦𝑛+1 =
1
6
(𝐾1 + 2𝐾2 + 2𝐾3 +𝐾4) + 𝑦𝑛, (26)

1 = 𝜅𝑓 (𝑡𝑛, 𝑦𝑛),

2 = 𝜅𝑓 (𝑡𝑛 +
1
2
𝜅, 𝑦𝑛 +

1
2
𝐾1),

𝐾3 = 𝜅𝑓 (𝑡𝑛 +
1
2
𝜅, 𝑦𝑛 +

1
2
𝐾2),

𝐾4 = 𝜅𝑓 (𝑡𝑛 + 𝜅, 𝑦𝑛 +𝐾3), 𝜅 = (𝛤 (𝛼(𝑡) + 1))−1𝜑(ℎ)𝛼(𝑡).

For more details on the fractional NGRK4M stability analysis, see [10].
We use the proposed method to solve (25) with initial condition. Also,
we discretize (24) with transitivity condition using the same tech-
nique with backward in time discretization, we get system of algebraic
equations which can be solved easily.

NGRK5M

Let a collection of mesh points ℑ = {𝑡0, 𝑡1,… , 𝑡𝑛}, such that 𝑡0 = 0,
and 𝑡𝑛 = 𝑇 , ℎ = 𝑇

𝑛
, 𝑛 = 1, 2,… , 𝑁 .

In the proposed GRK5M [22], to approximate solution for Eq. (1),
we will substitute the step size in GRK5M, by a function in ℎ, and this
function is continuous:

The general formula for NGRK5M type 1 is given as follows:

𝑦 = 𝑦 + 1 (7𝐾 + 32𝐾 + 12𝐾 + 32𝐾 + 7𝐾 ), (27)
𝑛+1 𝑛 90 1 3 4 5 6
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Fig. 1. Real data compared to the approximate solutions using GRK5M, when 𝛼(𝑡) = 1.
Fig. 2. Approximate solutions behavior compared to real data in Egypt, when 𝛼(𝑡) = 1.
𝐾1 = 𝜅𝑓 (𝑡𝑛, 𝑦𝑛),

𝐾2 = 𝜅𝑓 (𝑡𝑛 +
1
4
𝜅, 𝑦𝑛 +

1
4
𝐾1),

𝐾3 = 𝜅𝑓 (𝑡𝑛 +
1
4
𝜅, 𝑦𝑛 +

1
8
𝐾1 +

1
8
𝐾2),

𝐾4 = 𝜅𝑓 (𝑡𝑛 +
1
2
𝜅, 𝑦𝑛 −

1
2
𝐾2 +𝐾3),

𝐾5 = 𝜅𝑓 (𝑡𝑛 +
3
4
𝜅, 𝑦𝑛 +

3
16

𝐾1 +
9
16

𝐾4),

𝐾6 = 𝜅𝑓 (𝑡𝑛+𝜅, 𝑦𝑛−
3𝐾1+

2𝐾2+
12𝐾3−

12𝐾4+
8𝐾5), 𝜅 =

𝜑(ℎ)𝛼(𝑡)
.

5

7 7 7 7 7 𝛤 (𝛼(𝑡) + 1)
We use the proposed method to solve (25) with initial condition. Also,
we discretize (24) with transitivity condition using the same tech-
nique with backward in time discretization, we get system of algebraic
equations which can be solved easily.

∙ Stability analysis of NGRK5M type 1

To study the stability of NSRK5M. Consider (1), then, we can approxi-
mate (1) using NGRK5M type 1 as:

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗 ) +
1

𝜑(ℎ)−𝛼(𝑡)(1 + 𝛤 (𝛼(𝑡)))90
𝐺(𝑡𝑗 , 𝑦(𝑡𝑗 )) + 𝑂(𝜑(ℎ)5𝛼(𝑡𝑗 )), (28)

𝑗 = 0, 1,… , 𝑛 − 1.
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Fig. 3. Behavior of the approximate solutions compared to real data, when 𝛼(𝑡) =
1 − 0.1(𝑡∕𝑡𝑓 ) type one using GRK5M.
6

Fig. 4. Behavior of the approximate solutions compared to real data, when 𝛼(𝑡) =
1 − 0.1(𝑡∕𝑡𝑓 ) type two using GRK5M.

In order to study the stability of proposed method (28), the test problem
is used as follows:
𝐶
0 𝐷

𝛼(𝑡)
𝑡 𝑦(𝑡) = 𝜐𝑦(𝑡), 𝜐 < 0, 𝑇 > 𝑡 ≥ 0, 1 > 𝛼(𝑡) ≥ 0, (29)

𝑦(0) = 𝑦0.

The solution is asymptotically stable if 𝜐 is a negative number and
becomes unstable if 𝜐 is positive and increasing, [9]. NGRK5M is
applied to (29), the equation becomes:

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗 ) +
1
90

𝜑(ℎ)𝛼(𝑡)𝜐
𝛤 (1 + 𝛼(𝑡))

𝑦(𝑡𝑗 ), 𝑗 = 0, 1,… , 𝑛 − 1, (30)

= (1 + 1
90

𝜑(ℎ)𝛼(𝑡)𝜐
𝛤 (𝛼(𝑡) + 1)

)𝑗𝑦0. (31)

Therefore the stability condition:
|

|

|

|

|

(1 + 𝜐
90

1
𝜑(ℎ)−𝛼(𝑡)𝛤 (1 + 𝛼(𝑡))

)
|

|

|

|

|

< 1.

The general formula for NGRK5M type 2 is given as follows:

𝑦𝑛+1 = 𝑦𝑛 +
1
90

(7𝐾1 + 32𝐾3 + 12𝐾4 + 32𝐾5 + 7𝐾6), (32)

𝐾1 = 𝜅𝑓 (𝑡𝑛, 𝑦𝑛),

𝐾2 = 𝜅𝑓 (𝑡𝑛 +
1
4
𝜅, 𝑦𝑛 +

1
4
𝐾1),

𝐾3 = 𝜅𝑓 (𝑡𝑛 +
1
4
𝜅, 𝑦𝑛 +

1
8
𝐾1 +

1
8
𝐾2),

𝐾 = 𝜅𝑓 (𝑡 + 1𝜅, 𝑦 − 1𝐾 +𝐾 ),
4 𝑛 2 𝑛 2 2 3
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Fig. 5. Behavior of the approximate solutions of 𝐼𝑅, 𝐼𝑇 and the growth rate of 𝐼𝐻 at different methods when 𝛼(𝑡) = 1 − 0.004(𝑡∕𝑡𝑓 ).
Fig. 6. Optimization of the approximation solutions of 𝐼𝐻 at different types of 𝛼(𝑡).
𝐾 = 𝜅𝑓 (𝑡 + 3𝜅, 𝑦 + 3 𝐾 + 9 𝐾 ),
7

5 𝑛 4 𝑛 16 1 16 4
 𝐾 = 𝜅𝑓 (𝑡 + 𝜅, 𝑦 − 3𝐾 + 2𝐾 + 12𝐾 − 12𝐾 + 8𝐾 ),
6 𝑛 𝑛 7 1 7 2 7 3 7 4 7 5
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Fig. 7. The impact of 𝛽𝛼 (𝑡) and 𝛾𝛼 (𝑡) on behavior of 𝑅𝑒 at 𝛼(𝑡) = 0.9 − 0.2(𝑡∕𝑡𝑓 ). Case(a) when 𝑅𝑒 < 1 and case (b) when 𝑅𝑒 > 1.
Fig. 8. The impact of 𝛽𝛼 (𝑡) and 𝛾𝛼 (𝑡) on behavior of 𝑅𝑒 at different value of 𝛼(𝑡).

and 𝜑(ℎ)𝛼(𝑡𝑛)

𝛤 (𝛼(𝑡𝑛) + 1)
= 𝜅. We use the proposed method to solve (25) with

initial condition. Also, we discretize (24) with transitivity condition
using the same technique with backward in time discretization, we get
system of algebraic equations which can be solved easily.

∙ Stability of NGRK5M type 2

In the following, we can approximate (1) using NGRK5M type 2 as:

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗 ) +
1

𝜑(ℎ)−𝛼(𝑡𝑗 )(𝛤 (1 + 𝛼(𝑡𝑗 )))90
𝐺(𝑡𝑗 , 𝑦(𝑡𝑗 )) +𝑂(𝜑(ℎ)5𝛼(𝑡𝑗 )), (33)

𝑗 = 0, 1,… , 𝑛 − 1.

Using (29) and (32), we have:

𝑦(𝑡𝑗+1) = 𝑦(𝑡𝑗 ) +
1
90

𝜐
𝜑(ℎ)−𝛼(𝑡𝑗 )𝛤 (1 + 𝛼(𝑡𝑗 ))

𝑦(𝑡𝑗 ), 𝑗 = 0, 1,… , 𝑛 − 1, (34)

= (1 + 1
90

𝜐
𝜑(ℎ)−𝛼(𝑡𝑗 )𝛤 (1 + 𝛼(𝑡𝑗 ))

)𝑗𝑦0. (35)

Therefore, the stability condition:
|

|

|(1 + 𝜐 𝜑(ℎ)𝛼(𝑡𝑗 )
)
|

|

| < 1.
8

|

|

90 𝛤 (𝛼(𝑡𝑗 ) + 1) |

|

The algorithm of NGRK5M

This algorithm consists of the following steps:
Consider 𝑥̃ = (𝑥1; ...; 𝑥𝑁+1) and 𝜆̃ = (𝜆1; ...; 𝜆𝑁+1) represent the vector

approximations for the state and adjoint systems respectively.
Step 1. Make an initial guess for 𝑢1, 𝑢2 and 𝑢3.
Step 2. Solve 𝑥̃ forward NGRK5M in time, using the initial condition
𝑥1 = 𝑥(𝑡0) and the values for 𝑢1, 𝑢2 and 𝑢3.
Step 3. Solve 𝜆̃𝑖 backward NGRK5M in time using the transversality
condition 𝜆̃𝑁+1 = 𝜆(𝑡1) = 0 and the values for 𝑢1, 𝑢2 and 𝑢3 and 𝑥̃.
Step 4. By entering the new 𝑥̃ and 𝜆̃ values into the characterization of
the optimal control, update 𝑢1, 𝑢2 and 𝑢3.
Step 5. Output the current values as solutions, if values of the variables
in this iteration and the last iteration are negligibly close. Return to
Step 2, if values are not close.

Numerical simulations

The solutions of the variable-order fractional optimality systems
(24) and (25) are simulated using two numerical methods in this
section. These methods are NGRK4M and NGRK5M forward with time
to solve the state system (25) with initial condition and backward with
time to solve the co-state systems (24) with transversality conditions:

𝜆∗𝑖 (𝑡𝑓 ) = 0, 𝑖 = 𝑆, 𝐼, 𝐼𝐷, 𝐴,𝑅, 𝑇 , 𝐼𝐻 , 𝐼𝐸 .

. Also, we will use the modified parameters from Table 2. We con-
sider the initial states of the population at day is set as [2]: 𝐼(1) =
200∕60𝑒6, 𝐼𝐷(1) = 20∕60𝑒6, 𝐼𝐴(1) = 1∕60𝑒6, 𝐼𝑅(1) = 2∕60𝑒6, 𝐼𝑇 (0) =
10, 𝐼𝐻 = 0, 𝐼𝐸 (1) = 0, and 𝑆(1) = 1 − 𝐼(1) − 𝐼𝐷(1) − 𝐼𝐴(1) − 𝐼𝑅(1) −
𝐼𝑇 (1)−𝐼𝐻 (1)−𝐼𝐸 (1), where Italian population (60 𝑚𝑖𝑙𝑙𝑖𝑜𝑛) and Egyptian
population (100500159). Figs. 1–4, show the comparison between the
behavior of approximation solutions and real data [2], using GRK5M
and different 𝛼(𝑡). The number of diagnosed recovered cases represent
as:

𝐼𝐻𝐷 = ∫

𝑡

0
(𝜌𝛼(𝑡)𝐷 𝐼𝐷(𝜙) + 𝜉𝛼(𝑡)𝐼𝑅(𝜙)) + 𝜎𝛼(𝑡)𝐼𝑇 (𝜙)𝑑𝜙.

Also, the number of cumulative diagnosed cases are the sum of the
following variables 𝐼𝐷, 𝐼𝑅, 𝐼𝑇 , 𝐼𝐸 , 𝐼𝐻𝐷.

Table 3, shows the values of the objective functional for different
𝛼(𝑡) with and without controls using NGRK5M when 𝜑(ℎ) = 0.2(1−𝑒−5ℎ).
Fig. 5, shows the behavior of the solutions the threatened population
𝐼𝑇 , the recognized population 𝐼𝑅 and the growth rate of recovered
population 𝐼 (𝑡) using different methods in case 𝛼(𝑡) = −0.004(𝑡∕𝑡 ) + 1
𝐻 𝑓
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Table 3
The values of objective functional 𝐽 and 𝑡 ∈ [0, 100] using NGRK5M.
𝛼(𝑡) 𝐽 values without controls 𝐽 values with controls

𝛼(𝑡) = 1 20.3132 10.4946
𝛼(𝑡) = 1 − 0.009𝑡 17.5503 9.6116
𝛼(𝑡) = 1 − 0.001(𝑐𝑜𝑠2(𝑡)) 20.3113 10.4971
𝛼(𝑡) = 1 − 0.05𝑐𝑜𝑠(10𝑡) 19.4945 10.4954
𝛼(𝑡) = 0.98 20.0478 10.4552
𝛼(𝑡) = 0.98 − 0.001𝑡 15.4357 8.7975
𝛼(𝑡) = 0.85 − 0.0001𝑡 10.582 6.6575
𝛼(𝑡) = 0.99 − 0.001𝑠𝑖𝑛(𝑡) 20.2403 10.4981
𝛼(𝑡) = 0.90 − 0.001𝑠𝑖𝑛2(𝑡) 15.3228 8.7522
𝛼(𝑡) = 0.95 − 0.05𝑐𝑜𝑠2(𝑡) 18.5981 9.9883

and 𝜑(ℎ) = 2(−𝑒−ℎ+1). We noted that the results obtained by NGRK5M
re better than the result obtained by NGRK4M. Fig. 6, illustrates the
olution for 𝐼𝐻 using NGRK5M with linear and nonlinear 𝛼(𝑡) when
(ℎ) = 2(1− 𝑒−ℎ) and at three different cases of 𝛼(𝑡) i.e., 𝛼(𝑡) is constant
rder and 𝛼(𝑡) is defined using type 1 of NGRK5M and type 2 of
GRK5M. We noted that the results obtained by type 2 of NGRK5M are
onvergent to the solution obtained by constant fractional order better
han the results obtained by type 1 of NGRK5M. Figs. 7 and 8 show the
mpact of 𝛽𝛼(𝑡) and 𝛾𝛼(𝑡) on behavior of 𝑅𝑒 at different values of 𝛼(𝑡). We
oted that the model of variable-order is general model than the model
f fractional order and integer order, new behavior of the solution is
ppeared by using different values of 𝛼(𝑡).

onclusions

The current paper analyzed a novel optimal control variable-order
OVID-19 pandemic with modified parameters. Moreover, two variable
rder definitions in the Caputo’s sense are presented to extended the
OVID-19 pandemic model. From the comparison with real data from
gypt and Italy, we concluded that the proposed model is described
ell the real data in Italy compared the real data in Egypt. Specifically,
e had successfully applied a kind of Pontryagin’s maximum principle

o reduce the threatened population by using three suitable control
ariables depending on time. NGRK4M and NGRK5M are constructed to
olve the optimality system. We can claim from Fig. 6 that the solutions
btained using CVOT2 is the best. Numerical outcomes are introduced
o show the validity and applicability of the proposed scheme. In future,
he present study can be extended to piecewise differential model.
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