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1. Introduction

This study investigates the oscillatory and asymptotic behavior of delay differential equations
(DDEs) of odd-order

(a (η) (ψ(n−1) (η))κ)′ + q (η) f (ψ (ϕ (η))) = 0 (1.1)
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and (
a (η)

(
υ(n−1) (η)

)κ)′
+ q (η) f (ψ (ϕ (η))) = 0, (1.2)

where n ≥ 3 is an odd integer and υ (η) = ψ (η) + p (η)ψ (τ (η)). Further, we assume that:

(i) κ is a ratio of odd natural numbers;
(ii) q, p ∈ C

([
η0,∞) , (0,∞)

)
and 0 ≤ p (η) < 1;

(iii) a, τ, ϕ ∈ C1 ([
η0,∞)

)
, a (η) > 0, a′ (η) ≥ 0, ϕ (η) ≥ η ≥ τ (η) , limη→∞ τ (η) = ∞;

(iv) f ∈ C (R,R), f (ψ) ≥ kψκ and

π (η) =
∫ η

η0

1
a1/κ (s)

ds→ ∞ as η→ ∞. (1.3)

If there exists a ηψ ≥ η0 with a continuous function ψ satisfies (1.1),
a (η)

(
ψ(n−1)

)κ
(η) ∈ C1

([
ηψ,∞

)
,R

)
, and sup {|ψ (η)| : η1 ≤ η} > 0 for every η1, η ∈

[
ηψ,∞

)
, then ψ is

said to be a proper solution of (1.1). A solution ψ of (1.1) is said to be non-oscillatory if it is positive
or negative, ultimately; otherwise, it is said to be oscillatory.

Lately, great attention has been devoted to the theory of oscillation in DDEs. The works [1–10]
develop techniques and methods for studying the oscillations of second-order DDEs. This development
was necessarily reflected in the study of the oscillation of even-order DDEs, and this can be seen
through the works, for example [11–18]. On the other hand, odd-order DDEs have received less
attention compared to even-order DDEs. The development of the study of such equations can be traced
through papers, [19–29], and the references cited therein.

Baculikova and Dzurina [30] studied the asymptotic properties of neutral DDE

(
a (η)

(
(ψ (η) ± p (η)ψ (δ (η)))′′

)κ)′
+ q (η)ψκ (ϕ (η)) = 0.

Li and Rogovchenko [31] investigated the oscillation of neutral DDE

(
a (η)

(
υ′′ (η)

)κ)′
+ q (η)ψκ (ϕ (η)) = 0,

where υ (η) = ψ (y) + p0ψ (η − δ0) and δ0 ≥ 0 (delayed argument) or δ0 ≤ 0 (advanced argument).
Lackova [32] deduced oscillatory and asymptotic behavior of neutral DDE

(ψ (η) + p (η)ψ (τ (η)))(n) + q (η) f (ψ (ϕ (η))) = 0,

where ϕ (η) is a delayed argument and n ≥ 2, f (ϱ) sgn ϱ ≥ k |ϱ|κ , κ ≥ 1, k > 0.
The half-linear differential equations arise in the study of p Laplace equations, porous medium

problems, chemotaxis models, and so forth; see, for instance, the papers [33–35] for more details. In
this study, we investigate the oscillatory and asymptotic properties of solutions for half-linear
differential equations (1.1) and (1.2) under the conditions mentioned above and present some new
results which are complementary and extend to [30–32]. We will support the results obtained with
two examples.
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2. Auxiliary lemmas

We start with some lemmas that we will need to use later. The next result is a well-known result;
see [36, Lemma 2], also see [37, Lemma 2.2.1].

Lemma 2.1. If ψ is a solution of (1.1) and positive eventually, then ψ(k) (η) , 1 ≤ k ≤ n − 1, are of
constant signs, a (η)

(
ψ(n−1) (η)

)κ
is decreasing. Moreover, ψ satisfies either

ψ′ (η) > 0, ψ′′ (η) > 0, ψ(n−1) (η) > 0, ψ(n) (η) < 0 (2.1)

or
(−1)m ψ(m) > 0, m = 1, 2, ..., n. (2.2)

Lemma 2.2. [36] Let ψ ∈ Cn ([
η0,∞) , (0,∞)

)
, ψ(n−1) (η)ψ(n) (η) ≤ 0 for η ≥ ηψ and assume that

limη→∞ ψ (η) , 0, then there exists an ηθ ∈
[
ηψ,∞

)
with

ψ (η) ≥
θ

(n − 1)!
ηn−1

∣∣∣ψ(n−1) (η)
∣∣∣ for all η ∈

[
ηθ,∞) and θ ∈ (0, 1) .

Lemma 2.3. Assume that ψ(i) (η) > 0 for i = 0, 1, 2, eventually. Then, for all δ0 ∈ (0, 1),

ψ′ (η) ≥
δ0

η
ψ (η)

and

ψ (ϕ (η)) ≥
(
ϕ (η)
η

)δ0

ψ (η) . (2.3)

Proof. Assume that ψ(i) (η) > 0 for i = 0, 1, 2 and for all η ≥ η1 ≥ η0, η1 large enough. Then, we get

ψ (ϕ (η)) − ψ (η) =
∫ ϕ(η)

η

ψ′ (s) ds ≥ ψ′ (η) (ϕ (η) − η) . (2.4)

It is easy to notice that limη→∞ ψ (η) = ∞. Hence, there exists η2 ≥ η1 large enough such that

δ0ψ (η) ≤ ψ (η) − ψ (η2) =
∫ η

η2

ψ′ (s) ds ≤ ψ′ (η) (η − η2) ≤ ηψ′ (η) , (2.5)

for all δ0 ∈ (0, 1). By integrating this inequality from η to ϕ (η), we find

ψ (ϕ (η)) ≥
(
ϕ (η)
η

)δ0

ψ (η) .

This completes the proof of this Lemma.

Lemma 2.4. Suppose that ψ is a positive solution of (1.2). Then,
(
a (η)

(
υ(n−1) (η)

)κ)′
< 0, υ(i) (η) , 1 ≤

i ≤ n − 1, are of constant signs, and υ (η) satisfies either

Case (1) : υ (η) > 0, υ′ (η) > 0, υ′′ (η) > 0, υ(n−1) (η) > 0 and υ(n) (η) ≤ 0 (2.6)

or
Case (2) : (−1)k υ(k) (η) > 0, for k = 1, 2, ..., n. (2.7)
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Proof. Suppose that ψ is a solution of (1.2) and positive eventually. Produces directly from (1.2) that(
a (η)

(
υ(n−1) (η)

)κ)′
≤ −kq (η)ψκ (ϕ (η)) < 0. (2.8)

Now, from the above inequality we find either υ(n−1) (η) > 0 or υ(n−1) (η) < 0.
If υ(n−1) (η) < 0, then

a (η)
(
υ(n−1) (η)

)κ
< −c < 0,

integration from η1 to η, we have

υ(n−2) (η) < υ(n−2) (η1) − c1/κ
∫ η

η1

1
a1/κ (s)

ds,

by using (1.3) we have υ(n−2) (η) → −∞ at η → ∞, and by doing this process several times we get
υ (η) → −∞. This contradicts the positive υ (η) , then υ(n−1) (η) > 0. Since υ(n−1) (η) > 0, we have that
either υ(n−2) (η) > 0 or υ(n−2) (η) < 0. But, υ(n−2) (η) > 0 leads to υ(i) (η) > 0 for 0 ≤ i ≤ n− 2. Repeating
these considerations, we verify that υ (η) satisfies either (2.6) or (2.7).
Now since υ(n−1) (η) > 0 and a′ ≥ 0. Then we have

0 >
(
a (η)

(
υ(n−1) (η)

)κ)′
= a′ (η)

(
υ(n−1) (η)

)κ
+ κa (η)

(
υ(n−1) (η)

)κ−1
υ(n) (η) ,

which shows us that υ(n) (η) < 0. This completes the proof of this lemma.

Lemma 2.5. Let Case (1) hold. Then

υ (ϕ (η))
υ (η)

≥

(
ϕ (η)
η

)δ0

, (2.9)

for all δ0 ∈ (0, 1) .

Proof. The proof of the above lemma is similar to that of Lemma 2.3 and so it is omitted.

Next, we will present the basic definitions and notations that we will use in our results.
{hm (η)}∞m=0 is a sequence of continuous functions defined as follows

h0 (η) = kΨ (η) , k ∈ (0, 1) fixed,

hm+1 (η) = h0 (η) +
κk

(n − 2)!

∫ ∞

η

h(κ+1)/κ
m (s)

sn−2

a1/κ (s)
ds, m = 0, 1, ..., (2.10)

Ψ (η) =
∫ ∞

η

q (s)
(
ϕ (s)

s

)κδ0

(1 − p (ϕ (s)))κ ds

and

Θ (η) =
k1/κ

a1/κ (η)

(∫ ∞

η

q (s) ds
)1/κ

,

where δ0 ∈ (0, 1) .
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3. Main results

Now, we present our results for (1.1) and (1.2).

Theorem 3.1. Assume that

lim inf
η→∞

1
Υ (η)

∫ ∞

η

sn−2Υ(κ+1)/κ (s)
a1/κ (s)

ds >
(n − 2)!

(κ + 1)(κ+1)/κ (3.1)

and ∫ ∞

η0

sn−2 1
a1/κ (s)

(∫ ∞

s
q (ϱ) dϱ

)1/κ

ds = ∞, (3.2)

where

Υ (η) =
∫ ∞

η

q (s)
(
ϕ (s)

s

)κδ0

ds,

then limη→∞ ψ (η) = 0, for every nonoscillatory solution ψ (η) of (1.1).

Proof. Assume that ψ is a solution of (1.1), positive eventually, and satisfies (2.1). By (3.1), we have

lim inf
η→∞

k(κ+1)/κ

Υ (η)

∫ ∞

η

sn−2Υ(κ+1)/κ (s)
a1/κ (s)

ds >
(n − 2)!

(κ + 1)1+1/κ , (3.3)

for some k ∈ (0, 1). From Lemma 2.3 and (1.1), we have

(
a (η)

(
ψ(n−1) (η)

)κ)′
+ kq (η)

(
ϕ (η)
η

)κδ0

ψκ (η) ≤ 0. (3.4)

Now we define ϖ (η) as follows

ϖ (η) =
a (η)

(
ψ(n−1) (η)

)κ
ψκ (η)

, (3.5)

then

ϖ′ (η) =

(
a (η)

(
ψ(n−1) (η)

)κ)′
ψκ (η)

− κ
a (η)

(
ψ(n−1) (η)

)κ
ψ′ (η)

ψκ+1 (η)
.

By using (3.4) and (3.5), we get

ϖ′ (η) ≤ −kq (η)
(
ϕ (η)
η

)κδ0

− κϖ (η)
ψ′ (η)
ψ (η)

.

By using Lemma 2.2, we have

ϖ′ (η) ≤ −kq (η)
(
ϕ (η)
η

)κδ0

− κϖ (η)
kηn−2

(n − 2)!
ψ(n−1) (η)
ψ (η)

,

from (3.5), we get

ϖ′ (η) ≤ −kq (η)
(
ϕ (η)
η

)κδ0

− κ
kηn−2

a1/κ (η) (n − 2)!
ϖ1+1/κ (η) . (3.6)
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Integrating (3.6) from η to∞, we have

ϖ (η) ≥ kΥ (η) +
κk

(n − 2)!

∫ ∞

η

sn−2

a1/κ (s)
ϖ1+1/κ (s) ds (3.7)

or
ϖ (η)
kΥ (η)

≥ 1 +
κk(κ+1)/κ

(n − 2)!Υ (η)

∫ ∞

η

sn−2Υ(κ+1)/κ (s)
a1/κ (s)

(
ϖ (s)
kΥ (s)

)(κ+1)/κ

ds,

eventually, let us say η ≥ η1. Since
ϖ (η) > kΥ (η) ,

then

inf
η≥η1

ϖ (η)
kΥ (η)

= ζ ≥ 1,

thus
ϖ (η)
kΥ (η)

≥ 1 +
κ (kζ)(κ+1)/κ

(n − 2)!Υ (η)

∫ ∞

η

sn−2Υ(κ+1)/κ (s)
a1/κ (s)

ds, (3.8)

from (3.3), we have

k(κ+1)/κ

(n − 2)!Υ (η)

∫ ∞

η

sn−2Υ(κ+1)/κ (s)
a1/κ (s)

ds > α > (κ + 1)−(κ+1)/κ , (3.9)

for some positive α. From (3.8) and (3.9), we have

ϖ (η)
kΥ (η)

≥ 1 + κζ(κ+1)/κα, (3.10)

therefore
ζ ≥ 1 + κζ(κ+1)/κα > 1 + κζ(κ+1)/κ (κ + 1)−(κ+1)/κ ,

that is,

0 ≥
1

κ + 1
+

κ

κ + 1

(
ζ

κ + 1

)(κ+1)/κ

−
ζ

κ + 1
.

But, we have

f (ϑ) =
1

κ + 1
+

κ

κ + 1
ϑ(κ+1)/κ − ϑ

is a non-negative function for every ϑ > 0. Thus, we obtain that ψ cannot satisfy (2.1).
Next, we suppose that (2.2) holds. Then there exists a finite limη→∞ ψ (η) = D. Suppose the contrary
that D > 0. By integrating (1.1) over

[
η,∞), we have

a (η) (ψ(n−1) (η))κ ≥ k
∫ ∞

η

q (s)ψκ (ϕ (s)) ds ≥ kDκ

∫ ∞

η

q (s) ds,

that is,

ψ(n−1) (η) ≥
k1/κD

a1/κ (η)

(∫ ∞

η

q (s) ds
)1/κ

. (3.11)
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Integrating (3.11) n − 2 times, we obtain

− ψ′ (η) ≥
k1/κD

(n − 3)!

∫ ∞

η

(s − η)n−3 1
a1/κ (s)

(∫ ∞

s
q (ϱ) dϱ

)1/κ ds, (3.12)

integrating (3.12) from η1 to∞, we get

ψ (η1) ≥
k1/κD

(n − 2)!

∫ ∞

η1

(s − η1)n−2 1
a1/κ (s)

(∫ ∞

s
q (ϱ) dϱ

)1/κ ds

≥
k1/κD

2n−2 (n − 2)!

∫ ∞

2η1

sn−2 1
a1/κ (s)

(∫ ∞

s
q (ϱ) dϱ

)1/κ ds,

which contradicts (3.2). Then, limη→∞ ψ (η) = 0. The proof is complete.

Theorem 3.2. If

lim inf
η→∞

1
Ψ (η)

∫ ∞

η

sn−2Ψ(κ+1)/κ (s)
a1/κ (s)

ds >
(n − 2)!

(κ + 1)(κ+1)/κ (3.13)

and ∫ ∞

η0

sn−2Θ (s) ds = ∞, (3.14)

then every nonoscillatory solution ψ (η) of (1.2) satisfies limη→∞ ψ (η) = 0.

Proof. Suppose that ψ is a solution of (1.2) and positive eventually. Assume that Case (1) holds. Since

ψ (η) = υ (η) − p (η)ψ (τ (η)) ≥ υ (η) − p (η) υ (τ (η)) ,

From η ≥ τ (η) , we have

ψ (η) ≥ υ (η) − p (η) υ (τ (η)) ≥ υ (η) − p (η) υ (η) = υ (η) (1 − p (η))

and so
ψ (ϕ (η)) ≥ υ (ϕ (η)) (1 − p (ϕ (η))) , (3.15)

from Lemma 2.2, we have

υ′ (η) ≥
kηn−2

(n − 2)!
υ(n−1) (η) . (3.16)

From (2.9), (3.15) and (2.8), we have

(
a (η)

(
υ(n−1) (η)

)κ)′
≤ −kq (η)

(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ υκ (η) . (3.17)

Now, we define the function φ (η) as follows

φ (η) =
a (η)

(
υ(n−1) (η)

)κ
υκ (η)

. (3.18)
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Differentiating (3.18) and using (3.17), we get

φ′ (η) ≤ −kq (η)
(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ −
κa (η)

(
υ(n−1) (η)

)κ
υ′ (η)

υκ+1 (η)
, (3.19)

by using (3.16) and (3.18), we have

φ′ (η) ≤ −kq (η)
(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ −
κkηn−2

(n − 2)!a1/κ (η)
φ(κ+1)/κ (η) . (3.20)

Integrating (3.20) from η to∞, we have

φ (η) ≥ kΨ (η) +
κk

(n − 2)!

∫ ∞

η

sn−2

a1/κ (s)
φ(κ+1)/κ (s) ds (3.21)

or equivalently,

φ (η)
kΨ (η)

≥ 1 +
κk(1+κ)/κ

(n − 2)!Ψ (η)

∫ ∞

η

sn−2Ψ(κ+1)/κ (s)
a1/κ (s)

φ(κ+1)/κ (s)
(kΨ (s))(κ+1)/κ ds, (3.22)

eventually, let us say η ≥ η1. From (3.22), we have

φ (η)
kΨ (η)

≥ 1,

then
inf
η≥η1

φ (η)
kΨ (η)

= ϱ ≥ 1, (3.23)

by using (3.22) and (3.23), we have

φ (η)
kΨ (η)

≥ 1 +
κ (ϱk)(κ+1)/κ

(n − 2)!Ψ (η)

∫ ∞

η

sn−2Ψ(κ+1)/κ (s)
a1/κ (s)

ds, (3.24)

by using (3.13), we have

lim inf
η→∞

k(1+κ)/κ

Ψ (η)

∫ ∞

η

sn−2Ψ(1+κ)/κ (s)
a1/κ (s)

ds >
(n − 2)!

(κ + 1)(1+κ)/κ , (3.25)

for some k ∈ (0, 1) , from above inequality there exists some positive ξ such that

k(1+κ)/κ

(n − 2)!Ψ (η)

∫ ∞

η

sn−2Ψ(1+κ)/κ (s)
a1/κ (s)

ds > ξ >
1

(κ + 1)(1+κ)/κ . (3.26)

From (3.26) and (3.24), we get
φ (η)

kΨ (η)
≥ 1 + κξϱ(1+κ)/κ, (3.27)

therefore, from (3.23), we have

ϱ ≥ 1 + κξϱ(1+κ)/κ > 1 + κ
(
ϱ

κ + 1

)(1+κ)/κ
,

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411–1425.
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that is,
1

κ + 1
+

κ

κ + 1

(
ϱ

κ + 1

)(1+κ)/κ
−

ϱ

κ + 1
< 0.

This contradicts the fact that the function

f (ς) =
1

κ + 1
+

κ

κ + 1
ς(1+κ)/κ − ς ≥ 0,

for all ς > 0. Thus υ (η) cannot satisfy Case (1).
Assume that Case (2) holds. Then there exists a constant c ≥ 0 such that limη→∞ ψ (η) = c. Suppose
that c > 0. Integrating (1.2), we see that

a (η)
(
υ(n−1) (η)

)κ
≥ k

∫ ∞

η

q (s)ψκ (ϕ (s)) ds ≥ kcκ
∫ ∞

η

q (s) ds, (3.28)

that is,
υ(n−1) (η) ≥ cΘ (η) . (3.29)

Integrating (3.29) twice, we obtain

υ(n−3) (η) ≥ c
∫ ∞

η

(∫ ∞

ϱ

Θ (s) ds
)

dϱ = c
∫ ∞

η

Θ (s) (s − η) ds, (3.30)

integrating (3.30) n − 4 times, we get

− υ′ (η) ≥
c

(n − 3)!

∫ ∞

η

Θ (s) (s − η)n−3 ds, (3.31)

integrating (3.31) from η1 to∞, we get

υ (η1) ≥
c

(n − 2)!

∫ ∞

η1

Θ (s) (s − η1)n−2 ds ≥
c

2n−2 (n − 2)!

∫ ∞

2η1

sn−2Θ (s) ds,

which contradicts (3.14), and so we have verified that limη→∞ ψ (η) = 0. The proof is complete.

Theorem 3.3. Let ψ be a nonoscillatory solution of (1.2), (3.14) hold, and∫ ∞

η0

q (η)
(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ exp
(

κk
(n − 2)!

∫ η

η0

h1/κ
m (s)

sn−2

a1/κ (s)
ds

)
dη = ∞, (3.32)

for some k ∈ (0, 1) and some m = 0, 1, ... . Then limη→∞ ψ (η) = 0.

Proof. Suppose that ψ is a solution of (1.2) and positive eventually, we conclude from Lemma 2.4
that υ (η) satisfies Case (1) or Case (2) . If Case (1) holds, then from proof of Theorem 3.2, we find
that (3.21) holds. By induction, using (3.21), we have that the sequence {hm (η)}∞m=0 is nondecreasing
and φ (η) ≥ hm (η). Thus the sequence {hm (η)}∞m=0 converges to h (η). By the Lebesgue monotone
convergence theorem and letting m→ ∞ in (2.10), we have

h (η) = h0 (η) +
κk

(n − 2)!

∫ ∞

η

h(κ+1)/κ (s)
sn−2

a1/κ (s)
ds,
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since φ (η) ≥ hm (η) , gives

h′ (η) = −kq (η)
(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ −
κk

(n − 2)!
h(κ+1)/κ (η)

ηn−2

a1/κ (η)

≤ −kq (η)
(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ −
κk

(n − 2)!
h (η) h1/κ

m (η)
ηn−2

a1/κ (η)
.

Therefore,

h′ (η) +
κk

(n − 2)!
h (η) h1/κ

m (η)
ηn−2

a1/κ (η)
≤ −kq (η)

(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ ,

that is, (
h (η) exp

(
κk

(n − 2)!

∫ η

η1

h1/κ
m (s)

sn−2

a1/κ (s)
ds

))′
≤ −kq (η)

(
ϕ (η)
η

)κδ0

(1 − p (ϕ (η)))κ exp
(

κk
(n − 2)!

∫ η

η1

h1/κ
m (s)

sn−2

a1/κ (s)
ds

)
.

Integrating the above inequality from η1 to η we obtain

h (η) exp
(

κk
(n − 2)!

∫ η

η1

h1/κ
m (s)

sn−2

a1/κ (s)
ds

)
(3.33)

≤ h (η1) − k
∫ η

η1

q (ϱ)
(
ϕ (ϱ)
ϱ

)κδ0

(1 − p (ϕ (ϱ)))κ exp
(

κk
(n − 2)!

∫ ϱ

η1

h1/κ
m (s)

sn−2

a1/κ (s)
ds

)
dϱ.

Since,

h (η) exp
(

κk
(n − 2)!

∫ η

η1

h1/κ
m (s)

sn−2

a1/κ (s)
ds

)
≥ 0, (3.34)

letting η→ ∞ in (3.33) and using (3.32), we obtain a contradiction with (3.34).
If Case (2) holds, then from proof of Theorem 3.2, condition (3.14) insures that ψ (η) tends to zero at
η→ ∞. This completes the proof of the theorem.

Theorem 3.4. Let ψ be a nonoscillatory solution of (1.2), (3.14) hold, and

lim sup
η→∞

k
ηκ(n−1)

a (η)
hm (η) > ((n − 1)!)κ , (3.35)

for some hm (η) and for some k ∈ (0, 1). Then limη→∞ ψ (η) = 0.

Proof. Suppose that ψ is an eventually positive solution of (1.2), we conclude from Lemma 2.4 that
υ (η) satisfies Case (1) or Case (2) . Assume that Case (1) holds. From Lemma 2.2, we have

υ (η) ≥
k1/κ

(n − 1)!
ηn−1υ(n−1) (η) ,
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where k is the same as in hm (η). Then

1
φ (η)

=
1

a (η)
υκ (η)(

υ(n−1) (η)
)κ ≥ k

a (η) ((n − 1)!)κ
ηκ(n−1),

that is,

((n − 1)!)κ ≥
k

a (η)
ηκ(n−1)φ (η) .

Since φ (η) ≥ hm (η) , we have

((n − 1)!)κ ≥
k

a (η)
ηκ(n−1)hm (η) , (3.36)

from (3.35) and (3.36) we get a contradiction. This completes the proof of the theorem.

Corollary 1. Let (3.14) be satisfied, and

lim sup
η→∞

ηκ(n−1)

a (η)

∫ ∞

η

q (s)
(
ϕ (s)

s

)κδ0

(1 − p (ϕ (s)))κ ds > ((n − 1)!)κ . (3.37)

Then every nonoscillatory solution ψ (η) of (1.2) satisfies limη→∞ ψ (η) = 0.

Proof. From (3.37) there exists some k ∈ (0, 1) such that

lim sup
η→∞

k2η
κ(n−1)

a (η)

∫ ∞

η

q (s)
(
ϕ (s)

s

)κδ0

(1 − p (ϕ (s)))κ ds > ((n − 1)!)κ ,

that is,

lim sup
η→∞

k
ηκ(n−1)

a (η)
h0 (η) > ((n − 1)!)κ .

The assertion now follows from Theorem 3.4.

Example 3.5. Consider the differential equation of third order(
η
(
ψ′′ (η)

)3
)′
+

q0

η6ψ
3 (2η) = 0. (3.38)

From (3.38), we find that n = 3, κ = 3, a (η) = η, q (η) = q0/η
6, q0 > 0 and ϕ (η) = 2η.

Now, from Theorem 3.1 we notice that condition (3.2) is satisfied and condition (3.1) is satisfied if
q0 > 625

256 . Thus, we obtain that all nonoscillatory solutions of (3.38) tend to zero at infinity when
q0 >

625
256 .

Example 3.6. Consider the third-order neutral differential equation(
η1/3 (

(ψ (η) + p0ψ (λη))′′
)1/3

)′
+

q0

η4/3ψ
1/3 (ϖη) = 0, (3.39)

where p0 and q0 are constants, κ = 1/3, n = 3, a (η) = η1/3, τ (η) = λη, λ ∈ (0, 1) , ϖ ≥ 1, ϕ (η) = ϖη,
p (η) = p0, q (η) = q0/η

4/3 and q0 > 0.
It is easy to get

Ψ (η) =
∫ ∞

η

q (s)
(
ϕ (s)

s

)κδ0

(1 − p (ϕ (s)))κ ds = q0ϖ
δ0/3 (1 − p0)1/3 3

η1/3
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and

Θ (η) =
k1/κ

a1/κ (η)

(∫ ∞

η

q (s) ds
)1/κ

= k3q3
0
33

η2

and condition (3.14) holds∫ ∞

η0

sn−2Θ (s) ds =
∫ ∞

η0

sk3q3
0
33

s2 ds = 33k3q3
0

∫ ∞

η0

1
s

ds = ∞

and

lim inf
η→∞

1
Ψ (η)

∫ ∞

η

sn−2Ψ(κ+1)/κ (s)
a1/κ (s)

ds = 34q3
0ϖ

δ0 (1 − p0) ,

then condition (3.13) reduces to

34q3
0ϖ

δ0 (1 − p0) >
1

(4/3)4 ,

which, by Theorem 3.2, guarantees that all nonoscillatory solutions of (3.39) tend to zero at infinity.

4. Conclusions

In this paper, several new results for (1.1) and (1.2) have been presented which complement and
expand some results introduced in the cited papers in the introduction. We obtain the conditions by
using Riccati transformation and some analytical skill. In fact, our results are applicable in the case
where κ is a ratio of odd positive integers. We supported the results obtained in this paper with two
examples. An interesting problem for further research is to study the problem of nonoscillation for(
a (η)

(
υ(n−1) (η)

)κ)′
+ q (η) f (ψ (ϕ (η))) = 0 where f (ψ) ≥ kψγ and γ , κ.
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