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Abstract: Recent decades have witnessed the emergence of interesting models of fractional partial
differential equations. In the current work, a class of parabolic equations with regularized Hyper-
Bessel derivative and the exponential source is investigated. More specifically, we examine the
existence and uniqueness of mild solutions in Hilbert scale-spaces which are constructed by a
uniformly elliptic symmetry operator on a smooth bounded domain. Our main argument is based on
the Banach principle argument. In order to achieve the necessary and sufficient requirements of this
argument, we have smoothly combined the application of the Fourier series supportively represented
by Mittag-Leffler functions, with Hilbert spaces and Sobolev embeddings. Because of the presence
of the fractional operator, we face many challenges in handling proper integrals which appear in
the representation of mild solutions. Besides, the source term of an exponential type also causes
trouble for us when deriving the desired results. Therefore, powerful embeddings are used to limit
the growth of nonlinearity.

Keywords: exponential nonlinearity; fractional diffusion equation; Hyper-Bessel operators; symmetric
elliptic operator

1. Introduction

In this paper, we modify the classical parabolic equation ∂tu− ∆u = J(u) by changing
the usual time-derivative by the following fractional Caputo-type Hyper Bessel derivative

C(tσ∂t)
αu(t) := (tσ∂t)

αu(t)− (1− σ)α

Γ(1− α)
u(0)tα(σ−1), (1)

where σ ∈ (−∞, 1), α ∈ (0, 1), Γ is the Gamma function and (tσ∂t)
α is the Hyper-Bessel

operator (see [1] and also the interesting work [2] for more extensive discussion about
the properties of the fractional Caputo-type Hyper Bessel derivative). According to this
modification, for a bounded domain D ⊂ Rn (n > 1) with suitably smooth boundary ∂D,
we study the following initial-value boundary problem
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C(tσ∂t)
αu(t, x)− ∆u(t, x) = J(u(t, x)), in [0, T]×D,

u(t, x) = 0 on [0, T]× ∂D,

u(0, x) = u0(x) in D,

(2)

where H is the source function that satisfies the following exponential growth

∣∣J(u)− J(v)
∣∣ 6 L0

(
|u|qeu2

+ |v|qev2
)
|u− v|, u, v ∈ R, q > 1, L0 > 0

J(u) = 0, u = 0.
(3)

In recent decades, many models of PDEs have been proposed as an alternative to
classical models in many situations. For example, based on the law of the classical heat
equation, the heat can be transfered with infinite speed. However in real modeling, the
speed of the heat flow can be finite because of disruption of the response of the material.
Many authors have proved that it is reasonable to investigate heat model with memory
term and the most common way is replacing the classical derivative by the fractional one
(see [3] for more details). This alternative leads us to fractional partial differential equations
which have been proven to be applicable to many fields of applied science such as physics,
hydrology, engineering, finance, see e.g., [4–8] and references given there. One of the most
common famous counterparts of the first Equation in (2) is the time-fractional parabolic
equation given by

Dα
t u(t, x)− ∆u(t, x) = J(u(t, x)), in [0, T]×D, (4)

where Dα
t is defined in the sense of Riemann-Liouville or Caputo. Derived from many

practical application problems, many similar versions of (4) were produced by replacing Dα
t

with other types of non-integer derivatives. For sake of clarity, we refer the reader to [9–29]
and references therein, for engaging studies about (4), other models and relative problems.

The main object of this work, Problem (2), is studied with the fractional Caputo-type
Hyper Bessel derivative instead of Riemann-Liouville or Caputo operators. It turns out that,
compared with results in [30–32], there are many differences in approach and method for
dealing with the well-posedness of mild solutions. In fact, in the mild formula of solutions
to Problem (2), the singular integral is given by

∫ t
0 (t− τ)α−1dτ while in (9), the integral

term is more complicated. In view of this variation, it seems that (9) causes more trouble for
us in deriving desired results. We note that, until the time we carry out this work, there are
not many studies about the initial-value boundary problems similar to (2). However, there
are still high-quality papers about mild solutions of parabolic equations with regularized
Hyper-Bessel operators. Among them, we would like to make an overview of beautiful
works which are our great motivation to carry out this paper. In [33], Tuan et al. investigated
an initial data recovering problem associated with the first Equation of (2). They have
showed the mild solution uniquely exists. However, this solution is not stable. Therefore,
they applied a Tikhonov method to construct a approxiamting solution which converges to
the unstable one. Au et al. [34] studied a fractional parabolic equation with C(tσ∂t)

α. In
this work, they provided results about the local existence, uniqueness ans regularity for
mild solutions for three cases: linear source, global Lipschitz source and semi-linear source.
Moreover, for the case of locally Lipschitz source term, they showed that the solution exists
globally or blows up in finite time. Furthermore, another fascinating point of our work is
the presence of the source function J which satisfies the exponential growth. It is obvious for
us whether it is a classical or fractional model, linear version is often easier to handle than
nonlinear one, in term of existence and uniqueness of solutions. One of the most famous
and most frequently surveyed nonlinear source term is the polynomial given by uq+1 or
|u|qu (q > 1). It should be noticed that parabolic equations with these polynomial source
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have been studied almost completely, to our awareness. Indeed, we desire to mention
great works [14,15,23,24] as proof of the great interest among mathematicians around the
world on this subject. However, as derived by many authors [35–38] that approximation to
infinity behavior of q is more appriciate in some specific cases. In these cases, they proposed
nonlinearities of exponential type as alternatives. Some typical examples for J are eu2 − 1
and (eu2 − 1− u2)u.

In order to help the reader has a more complete view of our work, we clearly explain
the difficulties in studying Problem (2) and shortly sketch our methods for dealing with
these troubles.

• The first drawback is the integral term of the form
∫ t

0 (t
σ̃− τσ̃)α−1dτσ̃, where σ̃ = 1− σ.

Because of the complicated definition of C(tσ∂t)
α, we use Fourier series of functions in

L2(D) as our basis for defining mild solutions to Problem (2). Furthermore, besides
the singularity of the kernel in the integral symbol, the upper limit does not possesses
the same power as the integrating variable. Hence, we can not easily apply the Beta
function to derive wished results. In our proof, we recall the bounded property of
Mittag-Leffler functions and basic inequalities to handle the singular kernel and obtain
sharp upper bound for mild solutions.

• The second and also the most difficult problem for us as mentioned above, the fast
growth of the nonlinearity J. In order to overcome this issue, previous work [23,24]
made smallness assumption on the initial data function. It seems to be a efficient
method. In this study, instead of following this method, we apply powerful embed-
dings to get L∞-bounds for the exponential term. Then, by making the relationships
between Hilbert scale spaces and well-known Sobolev spaces, we can apply the Picard
ilteration to derive the local existence and uniqueness of mild solutions to Problem (2).

The rest of this study is outlined as follows. Section 2 provides basic settings about
function spaces, useful lemma and mild formula. The main result is stated and proved in
Section 3. Section 4 is the summary of our work and proposes potential developing results
of this study in the future.

2. Preliminaries

Throughout this paper, the symbols N,B(0, K) respectively stand for the set of nonzero
natural numbers and an open ball with center at zero and radius K > 0. We begin this
section by recalling the Lebesgue space

L2(D) :=

{
u : D → R

∣∣∣
∫

D
|u(x)|2dx < ∞

}
.

Also, for a Banach space (X, ‖‖X), we define

C
(

0, T;D
)

:=

{
u : [0, T]→ X

∣∣∣ u is continuous on [0, T]

}
.

Next, for a bounded domain D with smooth boundary ∂D, the Laplace operator
(a uniform elliptic symmetry operator) subject to Dirichlet conditions possesses a set of
eigenvalues {κj}j>1 which satisfies

0 < κ1 6 κ2 6 · · · 6 κj ↗ ∞,

and a corresponding eigenvectors {φj}j>1 which is also an orthonormal basis of L2(D)
such that




−∆φj = κjφj, x ∈ D, j > 1,

φj = 0, x ∈ ∂D, j > 1.
(5)
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Based on these settings, we define Hilbert scale spaces by which we provide main
results more efficiently. For η > 0, we define the Hilbert scale space Hη(D) by

Hη(D) :=

{
u ∈ L2(D)

∣∣∣ ∑
j>1

κ
η
j (u, ϑj)

2
L2 < ∞

}
.

The space Hη(D) is equipped with the following norm

∥∥u
∥∥

Hη(D) :=

[
∑
j>1

κ
η
j (u, ϑj)

2
L2

] 1
2

, u ∈ Hη(D).

Throughout this paper, we use the convention that X ↪→ Y, where X, Y are Banach
spaces, implies X ⊂ Y and the identity operator from X into Y is continuous (it is equivalent
that a constant C0 > 0 exists such that ‖ · ‖Y 6 C0‖ · ‖X).

We now provide the representation of mild solutions of Problem (2). First, the defini-
tion of Mittag-Leffler functions are given. For any α ∈ (0, 1), two-parameters Mittag-Leffler
functions Eα,1 and Eα,2α are defined as follows

Eα,1(w) := ∑
j>1

wj

Γ(αj + 1)
, w ∈ C

and

Eα,2α(w) := ∑
j>1

wj

Γ(αj + α)
, w ∈ C.

We also provide the following lemmas for upper bounds of Mittag-Leffler functions
and solution formula of a fractional ordinary differential equation which is a counterpart
of (2).

Lemma 1 ([39], Theorem 1.6). Let (α1, α2) ∈ (0, 1)×R and φ ∈ (πα1
2 ; π). Then, there exists a

positive constant C1 > 0 such that

∣∣∣Eα1,α2(w)
∣∣∣ 6 C1

1 + |w| ,

for any w ∈ C which satisfies φ 6 | arg(w)| 6 π.

Lemma 2 ([1], Theorem 2.4). The solution of the following non-homogeneous fractional differential
equation





C(tσ∂t)
αu(t) + γu(t) = f (t), t > 0,

u(0) = u0,

is given by the integral equality

u(t) = Eα,1

(
−γσ̃−αtσ̃α

)
u0 +

∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α
Eα,2α

[
−γ(tσ̃ − τσ̃)α

σ̃α

]
f (t)d(τσ̃),
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In view of (5), we take the inner product (·, ·)L2 to the first Equation of (2) with respect
to ϑj (j > 1) to obtain the following ordinary differential equation

(
(tσ∂t)

αu(t), ϑj
)

L2 + κj
(
u(t), ϑj

)
L2 =

(
J(u(t)), ϑj

)
L2 , t > 0, (6)

associated to the initial condition
(
u(0), ϑj

)
L2 =

(
u0, ϑj

)
L2 . (7)

According to Lemma 2, the solution of (6) and (7) is given as follows

(
u(t), ϑj

)
L2 = Eα,1

(
−κjσ̃

−αtσ̃α
)
(u0, ϑj)L2

+
∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α
Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2d(τσ̃), (8)

here we denote σ̃ = 1− σ. Suppose that u ∈ L2(D), from (8), u can be defined via the
following Fourier series

u(t, x) = ∑
j>1

(
u(t), ϑj

)
L2 ϑj(x)

= ∑
j>1

Eα,1

(
−κjσ̃

−αtσ̃α
)
(u0, ϑj)L2 ϑj(x) (9)

+ ∑
j>1

∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α
Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2 ϑj(x)d(τσ̃).

3. Existence and Uniqueness

Before providing main results of the paper, we first introduce two different ways to
estimate the source function J.

Lemma 3. Let n ∈ {1, 2, 3} and s ∈ (n/2; 2). A positve constant L exists such that for any u1
and u2 in Hs(D), the following estimate holds
∥∥∥J(u1)− J(u2)

∥∥∥
L2(D)

6 L
(

eλ‖u2
1‖Hη (D)‖u1‖q

Hη(D) + eλ‖u2
2‖Hη (D)‖u2‖q

Hη(D)
)
‖u1 − u2‖Hη(D).

Proof. Using Hölder’s inequality and the triangle inequality, for any u1, u2 ∈ we obtain

∥∥∥J(u1)− J(u2)
∥∥∥

L2(D)
6 L0

(∥∥∥|u1|qeλu2
1

∥∥∥
L4(D)

+
∥∥∥|u2|qeλu2

2

∥∥∥
L4(D)

)
‖u1 − u2‖L4(D)

6 L0

(
eλ‖u2

1‖L∞(D)‖u1‖q
L4q(D) + eλ‖u2

2‖L∞(D)‖u2‖q
L4q(D)

)
‖u1 − u2‖L4(D). (10)

Then, by applying the following embeddings

L∞(D) ↪→ Lp(D), for p > 1

and

Hη(D) ↪→ C(D̄), for
d
2
< η 6 2,

we can derive
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∥∥∥J(u1)− J(u2)
∥∥∥

L2(D)
6 C0L0

(
eλ‖u2

1‖Hη (D)‖u1‖q
Hη(D) + eλ‖u2

2‖Hη (D)‖u2‖q
Hη(D)

)
‖u1 − u2‖Hη(D).

The proof is completed.

Theorem 1. Let α ∈ (0, 1), σ ∈ (−∞, 1), n ∈ {1, 2, 3} and η ∈ (n/2; 2). Suppose that
u0 ∈ Hη(D) and positive real constants K and T exist such that

K = 2C1‖u0‖Hη(D)

and

T 6 1K
4


 C1Lκ

η−2θ
2

1
σ̃α−θα(α− θα)

eλKKq+1




−1
σ̃(α−θα)

. (11)

Then, Problem (2) possesses a unique mild solution u ∈ C([0, T]; Hη(D)).

Proof. Our main aim is to apply the Banach principle argument. To this end, we define the
sequence of approximating solutions {uk}k∈N as follows




u1(t, x) := ∑
j>1

Eα,1

(
−κjσ̃

−αtσ̃α
)
(u0, ϑj)L2 ϑj(x),

uk(t, x) := u1(t, x) + ∑
j>1

∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α
Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2 ϑj(x)d(τσ̃).

We prove that {uk}k∈N is a Cauchy sequence in B(0, K) ⊂ C([0, T]; Hη(D)). Our proof
includes two main parts
Part 1: We prove that {uk}k∈N is a subset of B(0, K). For a clear presentation, we devide the
proof into 2 steps.
Step 1: By Parseval’s identity, for u0 ∈ Hη(D), we have

∥∥∥∥∥∑
j>1

Eα,1

(
−κjσ̃

−αtσ̃α
)
(u0, ϑj)L2 ϑj(x)

∥∥∥∥∥
Hη(D)

6 C1

[
∑
j>1

κ
η
j (u0, ϑj)

2
L2

] 1
2

6 C1‖u0‖Hη(D).

This result implies that

‖u1‖C([0,T];Hη(D)) 6 C1‖u0‖Hη(D) (12)

Step 2: Suppose that wk ∈ B(0, K) for k > 1, we show that wk+1 ∈ B(0, K). To this end, we
first observe that

∥∥wk+1(t)− u1(t)
∥∥

Hη(D)

6
∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α

∥∥∥∥∥∑
j>1

Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2 ϑj(x)

∥∥∥∥∥
Hη(D)

d(τσ̃). (13)

Similar to Step 1, we apply Parseval’s formula to derive

∥∥∥∥∥∑
j>1

Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2 ϑj(x)

∥∥∥∥∥

2

Hη(D)
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= ∑
j>1

κ
η
j

∣∣∣∣∣Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]∣∣∣∣∣

2(
J(u(τ)), ϑj

)2
L2 .

Then, a repeated application of Lemma 1 implies

∣∣∣∣∣Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]∣∣∣∣∣

2

6 C2
1[

1 + κjσ̃−α(tσ̃ − τσ̃)α
]2 .

For θ ∈ (η/2, 1), we can derive from basic inequalities that

∣∣∣∣∣Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]∣∣∣∣∣

2

6 C2
1

κ2θ
j σ̃−2θα(tσ̃ − τσ̃)2θα

.

Then, it follows that

∥∥∥∥∥∑
j>1

Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]
(

J(u(τ)), ϑj
)

L2 ϑj(x)

∥∥∥∥∥

2

Hη(D)

6 C2
1

σ̃2θα
(tσ̃ − τσ̃)−2θα ∑

j>1
κ

η−2θ
j

(
J(u(τ)), ϑj

)2
L2 .

Based on this result, (13) is equivalent to the following estimate

∥∥wk+1(t)− u1(t)
∥∥

Hη(D) 6
C1

σ̃α−θα
κ

η−2θ
2

1

∫ t

0
(tσ̃ − τσ̃)α−θα−1

∥∥∥J(wk(τ))
∥∥∥

L2(D)
d(τσ̃). (14)

In view of Lemma 3, we can find that
∥∥∥J(wk(τ))

∥∥∥
L2(D)

6 Leλ‖wk(τ)‖Hη (D)‖wk(τ)‖q+1
Hη(D)

6 Leλ‖wk‖C([0,T];Hη (D))‖wk‖q+1
C([0,T];Hη(D))

6 LeλKKq+1.

for every τ ∈ [0, T], provided that wk ∈ B(0, K). This result together with (14) ensure
∥∥wk+1(t)− u1(t)

∥∥
Hη(D)

6 L
C1

σ̃α−θα
κ

η−2θ
2

1

[∫ t

0
(tσ̃ − τσ̃)α−θα−1d(τσ̃)

]
eλKKq+1. (15)

Since θ < 1, we can easily obtain

∫ t

0
(tσ̃ − τσ̃)α−θα−1d(τσ̃) =

Tσ̃(α−θα)

α− θα
.

combining the above equality and (15) enables us to derive the following estimate

∥∥wk+1 − u1
∥∥

C([0,T];Hη(D)) 6
C1Lκ

η−2θ
2

1
σ̃α−θα(α− θα)

eλKKq+1Tσ̃(α−θα)

6 3K
4

. (16)

As a result of (12) and (16), we use the triangle inequality to find that

‖uk+1‖C([0,T];Hη(D)) 6 ‖u1‖C([0,T];Hη(D)) + ‖uk+1 − u1‖C([0,T];Hη(D))
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6 K,

provided that uk ∈ B(0, K).
As a consequence of Step 1 and Step 2, we can apply a conductive argument to

conclude that {uk}k>1 is a subset of B(0, K). We end Part 1 and move on to the next part.
Part 2: We show that {uk}k>1 is a Cauchy sequence in B(0, K). First, for k > 2, w e suppose
that uk−1, uk ∈ B(0, R). Then, by Parseval’s identity we have

∥∥uk+1(t)− uk(t)
∥∥

Hη(D)

6
∫ t

0

(tσ̃ − τσ̃)α−1

σ̃α


∑

j>1
κ

η
j

∣∣∣∣∣Eα,2α

[
−κj(tσ̃ − τσ̃)α

σ̃α

]∣∣∣∣∣

2(
J(uk(τ)− J(uk−1(τ)), ϑj

)2
L2




1
2

d(τσ̃).

Then, we can now proceed analogously to arguments in Step 1, there holds
∥∥uk+1(t)−uk(t)

∥∥
Hη(D)

6 C1

σ̃α−θα
κ

η−2θ
2

1

∫ t

0
(tσ̃ − τσ̃)α−θα−1

∥∥∥J(wk(τ))− J(wk−1(τ))
∥∥∥

L2(D)
d(τσ̃). (17)

Repeated application of Lemma 3 yields
∥∥∥J(uk(t))− J(uk−1(t))

∥∥∥
L2(D)

6 Leλ‖u2
k(t)‖Hη (D)‖uk(t)‖Hη(D)‖uk(t)− uk−1(t)‖Hη(D)

+ Leλ‖u2
k(t)‖Hη (D)‖uk(t)‖Hη(D)‖uk(t)− uk−1(t)‖Hη(D).

It follows from the assumption wk, wk−1 ∈ B(0, K) that
∥∥∥J(uk(t))− J(uk−1(t))

∥∥∥
L2(D)

6 2LeλKKq‖uk − uk−1‖C([0,T];Hη(D)), for any t ∈ [0, T]. (18)

Combining (17) and (18), we can assert that

∥∥uk+1(t)− uk(t)
∥∥

Hη(D) 6
2C1Lκ

η−2θ
2

1
σ̃α−θα

eλKKq
[∫ t

0
(tσ̃ − τσ̃)α−θα−1d(τσ̃)

]
‖uk − uk−1‖C([0,T];Hη(D))

6 2C1Lκ
η−2θ

2
1

σ̃α−θα(α− θα)
eλKKqTσ̃(α−θα)‖uk − uk−1‖C([0,T];Hη(D)),

for any t ∈ [0, T]. Consequently, we have

∥∥uk+1 − uk
∥∥

C([0,T];Hη(D)) 6
2C1Lκ

η−2θ
2

1
σ̃α−θα(α− θα)

eλKKqTσ̃(α−θα)‖uk − uk−1‖C([0,T];Hη(D)).

∥∥uk+1 − uk
∥∥

C([0,T];Hη(D)) 6
1
2
‖uk − uk−1‖C([0,T];Hη(D)).

Hence, by some basic arguments, one can conclude that {uk}k>1 is a Cauchy sequence
in B(0, K).

Having disposed of these two parts, we can now use the completeness of C([0, T]; Hη(D))
to deduce that {uk}k>1 possesses a unique limit u ∈ B(0, K) which is the unique mild
solution of Problem (2). The theorem is thus proved.

Comment 1. In this paper, since we focus only on the mild solution of Problem (2) which is
represented by (9), the solution is showed to be in C([0, T]; Hη(D)). Then, Lemma 3 implies that
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J(u) ∈ C
(
[0, T]; L2(D)

)
. More results about the regularity of the solution will be investigated in

the future.

4. Numerical Example

The aim of this section is considering an example to show the asymptotic behavior of
the mild solutions in the non-homogeneous source function. Firstly, we choose the operator
−∆ on the domain D = (0, π) with the homogeneous Dirichlet boundary condition,
then the eigenvectors and eigenvalues of −∆ are given by φj(x) =

√
2/π sin(jx) and

j2, (j = 1, 2, 3, . . . ), respectively.
We consider the problem to find a function u : [0, 1]→ L2(0, π) satisfying





C(tσ∂t)
αu(t, x)− ∆u(t, x) = J(u(t, x)), in [0, 1]× [0, π],

u(t, x) = 0 on [0, 1]× {0, π},

u(0, x) = u0(x) in [0, π],

(19)

By using the following finite difference method and partitions of spatial and temporal
variables ft ×fx

ft :=
{

tn = (n− 1)
1

Nt + 1
, for n = 1, 2, ..., Nt + 1

}
,

fx :=
{

xm = (m− 1)
π

Mx + 1
, for m = 1, 2, ..., Mx + 1

}
.

Additionally, thanks to the code in Python software mlf(a, b, z) to calculate the Mittag-
Leffler function Eα,β(z) as follows

Eα,β(z) = mlf(a, b, z).

Next, using the Simpson rule of the approximation of numerical integration, we have

ti+1 − ti
3k

[
f (z1) + 2

(k+1)/2−1

∑
k=1

f (z2k) + 4
(k+1)/2

∑
k=1

f (z2k−1) + f (zk+1)

]
≈
∫ ti+1

ti

f (z)dz.

In this example, we apply the truncation Fourier series by parameters Fj, the mild
solution of Problem (19) is giving by a matrix form by fixing the temporal variable t

u(tn, xm) =

√
2
π

Fj

∑
j=1

Uj(tn) sin(jxm)

=

√
2
π

[
U1(tn) U2(tn) U3(tn) · · · UFj(tn)

]
×




sin(xm)
sin(2xm)
sin(3xm)

...
sin(Fjxm)




, (20)

where

Uj(tn) = Eα,1

(
−κjσ̃

−αtσ̃α
n

) ∫ π

0
u0(?)ϑj(?)d?

+
∫ tn

0

(tσ̃
n − τσ̃)α−1

σ̃α
Eα,2α

[
−κj(tσ̃

n − τσ̃)α

σ̃α

] ∫ π

0
J(tn, ?)ϑj(?)d ? d(τσ̃). (21)
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Then, a matrix form of the solution (20) can be presented in as follows




u(t1, x1) u(t1, x2) · · · u(t1, xMx ) u(t1, xMx+1)
u(t2, x1) u(t2, x2) · · · u(t2, xMx ) u(t2, xMx+1)
u(t3, x1) u(t3, x2) · · · u(t3, xMx ) u(t3, xMx+1)

...
...

...
...

...
u(tNt , x1) u(tNt , x2) · · · u(tNt , xMx ) u(tNt , xMx+1)

u(tNt+1, x1) u(tNt+1, x2) · · · u(tNt+1, xMx ) u(tNt+1, xMx+1)




(Nt+1)×(Mx+1)

.

For (t, x) ∈ [0, 1]× [0, π], we choose σ = α = 0.5, Fj = 10, Nt = Mx = 100 and the
giving functions as follows

J(t, x) = 16(tα + 1) sin(4x)−
[(

1
2

)α

t−
1
4 +

t−
α
2

2αΓ( 1
2 )

]
sin(4x), (t, x) ∈ [0, 1]× [0, π] (22)

u0(x) = sin(4x), x ∈ [0, π]. (23)

The graphs of the solution u in some cases of α ∈ {0.1, 0.5, 0.7, 0.9} are mentioned,
which shown in Figures 1–4. For detail, case 1: t = 0.2 is presented in Figure 1; case 2:
t = 0.4 is presented in Figure 2; case 3: t = 0.6 is presented in Figure 3. And this final case
with t = 0.8 is shown in Figure 4.
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5. Conclusions

In this study, we apply the Banach principle argument to derive the well-posedness
of an initial-value boundary problem associated with fractional parabolic equation with
regularized Hyper-Bessel operator and exponential nonlinearity. Thanks to properties
of Mittag-Leffler functions, powerful Sobolev embeddings and the usefulness of Hilbert
scale spaces, we have proved the local existence and uniqueness of a mild solution. In the
future, we aim to improve our result to global one and consider more regularity results for
solutions. It seems to be very difficult, but also very engaging. In addition, the case σ > 1
will also be studied in upcomming works.
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In this study, we apply the Banach principle argument to derive the well-posedness
of an initial-value boundary problem associated with fractional parabolic equation with
regularized Hyper-Bessel operator and exponential nonlinearity. Thanks to properties
of Mittag-Leffler functions, powerful Sobolev embeddings and the usefulness of Hilbert
scale spaces, we have proved the local existence and uniqueness of a mild solution. In the
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