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Abstract: Recent decades have witnessed the emergence of interesting models of fractional partial
differential equations. In the current work, a class of parabolic equations with regularized Hyper-
Bessel derivative and the exponential source is investigated. More specifically, we examine the
existence and uniqueness of mild solutions in Hilbert scale-spaces which are constructed by a
uniformly elliptic symmetry operator on a smooth bounded domain. Our main argument is based on
the Banach principle argument. In order to achieve the necessary and sufficient requirements of this
argument, we have smoothly combined the application of the Fourier series supportively represented
by Mittag-Leffler functions, with Hilbert spaces and Sobolev embeddings. Because of the presence
of the fractional operator, we face many challenges in handling proper integrals which appear in
the representation of mild solutions. Besides, the source term of an exponential type also causes
trouble for us when deriving the desired results. Therefore, powerful embeddings are used to limit
the growth of nonlinearity.

Keywords: exponential nonlinearity; fractional diffusion equation; Hyper-Bessel operators; symmetric
elliptic operator

1. Introduction

In this paper, we modify the classical parabolic equation 0;u — Au = J(u) by changing
the usual time-derivative by the following fractional Caputo-type Hyper Bessel derivative

(1-0)®

c(t70) u(t) :== (t79¢)"u(t) — Ta—a)

w(0)4=1), 1)
where 0 € (—o0,1), & € (0,1), T is the Gamma function and (#79;)" is the Hyper-Bessel
operator (see [1] and also the interesting work [2] for more extensive discussion about
the properties of the fractional Caputo-type Hyper Bessel derivative). According to this
modification, for a bounded domain D C R"” (n > 1) with suitably smooth boundary oD,
we study the following initial-value boundary problem
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c(t791) u(t, x) — Au(t,x) = J(u(t,x)), in [0,T] x D,
u(t, x) = 0 on [0,T] x dD, )
u(0,x) = up(x) in D,
where H is the source function that satisfies the following exponential growth

[J(u) = J(v)] < Lo<|u|‘76”2 + \v|’7evz> lu—v|, u,veR, g>1,Ly>0
](u) =0, u=20.

®)

In recent decades, many models of PDEs have been proposed as an alternative to
classical models in many situations. For example, based on the law of the classical heat
equation, the heat can be transfered with infinite speed. However in real modeling, the
speed of the heat flow can be finite because of disruption of the response of the material.
Many authors have proved that it is reasonable to investigate heat model with memory
term and the most common way is replacing the classical derivative by the fractional one
(see [3] for more details). This alternative leads us to fractional partial differential equations
which have been proven to be applicable to many fields of applied science such as physics,
hydrology, engineering, finance, see e.g., [4-8] and references given there. One of the most
common famous counterparts of the first Equation in (2) is the time-fractional parabolic
equation given by

fu(t,x) — Au(t,x) = J(u(t,x)), in [0,T] x D, 4)

where D} is defined in the sense of Riemann-Liouville or Caputo. Derived from many
practical application problems, many similar versions of (4) were produced by replacing D}
with other types of non-integer derivatives. For sake of clarity, we refer the reader to [9-29]
and references therein, for engaging studies about (4), other models and relative problems.

The main object of this work, Problem (2), is studied with the fractional Caputo-type
Hyper Bessel derivative instead of Riemann-Liouville or Caputo operators. It turns out that,
compared with results in [30-32], there are many differences in approach and method for
dealing with the well-posedness of mild solutions. In fact, in the mild formula of solutions
to Problem (2), the singular integral is given by fot (t — 7)*"1dt while in (9), the integral
term is more complicated. In view of this variation, it seems that (9) causes more trouble for
us in deriving desired results. We note that, until the time we carry out this work, there are
not many studies about the initial-value boundary problems similar to (2). However, there
are still high-quality papers about mild solutions of parabolic equations with regularized
Hyper-Bessel operators. Among them, we would like to make an overview of beautiful
works which are our great motivation to carry out this paper. In [33], Tuan et al. investigated
an initial data recovering problem associated with the first Equation of (2). They have
showed the mild solution uniquely exists. However, this solution is not stable. Therefore,
they applied a Tikhonov method to construct a approxiamting solution which converges to
the unstable one. Au et al. [34] studied a fractional parabolic equation with ¢(#79)". In
this work, they provided results about the local existence, uniqueness ans regularity for
mild solutions for three cases: linear source, global Lipschitz source and semi-linear source.
Moreover, for the case of locally Lipschitz source term, they showed that the solution exists
globally or blows up in finite time. Furthermore, another fascinating point of our work is
the presence of the source function | which satisfies the exponential growth. It is obvious for
us whether it is a classical or fractional model, linear version is often easier to handle than
nonlinear one, in term of existence and uniqueness of solutions. One of the most famous
and most frequently surveyed nonlinear source term is the polynomial given by u7*! or
|u|7u (g > 1). It should be noticed that parabolic equations with these polynomial source
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have been studied almost completely, to our awareness. Indeed, we desire to mention
great works [14,15,23,24] as proof of the great interest among mathematicians around the
world on this subject. However, as derived by many authors [35-38] that approximation to
infinity behavior of q is more appriciate in some specific cases. In these cases, they proposed
nonlinearities of exponential type as alternatives. Some typical examples for | are e’ —1
and (¢’ —1—1u?)u.

In order to help the reader has a more complete view of our work, we clearly explain
the difficulties in studying Problem (2) and shortly sketch our methods for dealing with
these troubles.

*  The first drawback is the integral term of the form fot (17 —17)*~1d1%, where ¢ = 1 — 0.
Because of the complicated definition of ¢ (+79;)", we use Fourier series of functions in
L?(D) as our basis for defining mild solutions to Problem (2). Furthermore, besides
the singularity of the kernel in the integral symbol, the upper limit does not possesses
the same power as the integrating variable. Hence, we can not easily apply the Beta
function to derive wished results. In our proof, we recall the bounded property of
Mittag-Leffler functions and basic inequalities to handle the singular kernel and obtain
sharp upper bound for mild solutions.

®  The second and also the most difficult problem for us as mentioned above, the fast
growth of the nonlinearity J. In order to overcome this issue, previous work [23,24]
made smallness assumption on the initial data function. It seems to be a efficient
method. In this study, instead of following this method, we apply powerful embed-
dings to get L™-bounds for the exponential term. Then, by making the relationships
between Hilbert scale spaces and well-known Sobolev spaces, we can apply the Picard
ilteration to derive the local existence and uniqueness of mild solutions to Problem (2).

The rest of this study is outlined as follows. Section 2 provides basic settings about
function spaces, useful lemma and mild formula. The main result is stated and proved in
Section 3. Section 4 is the summary of our work and proposes potential developing results
of this study in the future.

2. Preliminaries

Throughout this paper, the symbols N, B(0, K) respectively stand for the set of nonzero
natural numbers and an open ball with center at zero and radius K > 0. We begin this
section by recalling the Lebesgue space

[2(D) := {u DR ‘ / |u(x) Pdx < oo}.
D
Also, for a Banach space (X, ||||x), we define

C(O, T; D) = {u :[0,T] — X ‘ u is continuous on [0, T }

Next, for a bounded domain D with smooth boundary 0D, the Laplace operator
(a uniform elliptic symmetry operator) subject to Dirichlet conditions possesses a set of
eigenvalues {x;};>1 which satisfies

0<Kk <K<+ <Kj 00,

and a corresponding eigenvectors {¢;};>1 which is also an orthonormal basis of L*(D)
such that

—A(P] = ](P], x €D, ] >1,
, ©)
([)]':0, XGaD,]Zl.
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Based on these settings, we define Hilbert scale spaces by which we provide main
results more efficiently. For # > 0, we define the Hilbert scale space H" (D) by

H'7(D) := {u c L2(D) ‘ ny(u,ﬁj)%Z < oo}.

=1

The space H" (D) is equipped with the following norm

2
||u||H’7(’D) = L;K}?(”,ﬁj)%z] , ueHI(D).

Throughout this paper, we use the convention that X < Y, where X, Y are Banach
spaces, implies X C Y and the identity operator from X into Y is continuous (it is equivalent
that a constant Cy > 0 exists such that || - ||y < Col| - [|x)-

We now provide the representation of mild solutions of Problem (2). First, the defini-
tion of Mittag-Leffler functions are given. For any « € (0,1), two-parameters Mittag-Leffler
functions E, 1 and E, 2, are defined as follows

w!
E q1(w) := —, weC
and
w/
Epon(w) := —F, weC.
i, IX( ) ];r(a]_’_a)

We also provide the following lemmas for upper bounds of Mittag-Leffler functions
and solution formula of a fractional ordinary differential equation which is a counterpart
of (2).

Lemma 1 ([39], Theorem 1.6). Let (a1, a2) € (0,1) x Rand ¢ € (75+; 7). Then, there exists a
positive constant C; > 0 such that

Ealfﬂlz(w)’ <

for any w € C which satisfies ¢ < |arg(w)| < 7.

Lemma 2 ([1], Theorem 2.4). The solution of the following non-homogeneous fractional differential
equation

c(t70) u(t) +qyu(t) = f(t), t>0,
u(0) = uo,

is given by the integral equality

M(t) = Elx,l (_’Yﬁilxt&a)uo + /Ot (tg~7Ea,2a [_M] f(t)d(TU),
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In view of (5), we take the inner product (-, -);2 to the first Equation of (2) with respect
to 9; (j > 1) to obtain the following ordinary differential equation

((£700) u(t), ;) ;2 +xj(u(t), 05) 2 = (J(u(t)),8;),2, t>0, (6)

associated to the initial condition

(1(0), ) 12 = (10, ;) - )

According to Lemma 2, the solution of (6) and (7) is given as follows
(u(t), 1.9]-) 2= Ey1 (—Kjfov'iafﬁa> (Llo, 19]‘)[}

A | (0 O\ _
+ /ot 0672)504,2“ [Kj(tff“T)] (J(u(1)), 9j) 2d(T7), ®)

here we denote & = 1 — ¢. Suppose that u € L?(D), from (8), u can be defined via the
following Fourier series

u(t,x) = 3 (u(t), 8) 128;(x)

j=1
= 2 Etx,l (—Kjﬁflxtaa) (1,[0, ﬁj)Lzﬂj(X) )
j=1
ot tﬁ' AV | K(ta' o TE-)(X i
N [] (H0(1)),8) 28, () (2.

3. Existence and Uniqueness

Before providing main results of the paper, we first introduce two different ways to
estimate the source function J.

Lemma 3. Let n € {1,2,3} and s € (n/2;2). A positve constant L exists such that for any u,
and uy in H3 (D), the following estimate holds

AMju2 Alu3
< L(e HU]HHV(D)”ulHZI’?(D) Te Huz\lm(D)Huznfhn(D))Hul — w2l -

[7u1) = I (2)

L2(D)

Proof. Using Holder’s inequality and the triangle inequality, for any u;, uo € we obtain

1) = 1(2)

< Lot

9pM13 _
o oy 2l ) Yl = sl

< Lo (M= fuy |1, ) + M= ||, Yl = w24 (10)
Then, by applying the following embeddings
L*(D) — LF(D), for p>1
and
H!(D) — C(D), for g <n<2,

we can derive
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M|y Au
< CoLo (e qu”H/(D)Hul”?_w(D) +e 43l g () HMZH?-IW(D)) |1 — MZHHW(D)

|1u1) = J(u2)

L2(D)
The proof is completed. O

Theorem 1. Let « € (0,1),0 € (—oo,1),n € {1,2,3} and y € (n/2;2). Suppose that
ug € H(D) and positive real constants K and T exist such that

K =2C4 ||uo|lgn(p)

and

1K CiL 71*229 o(a—0a)
10Ky AK grg+1
4 [U"“"“(u@zx)e ] (1)

Then, Problem (2) possesses a unique mild solution u € C([0, T|; H"(D)).

Proof. Our main aim is to apply the Banach principle argument. To this end, we define the
sequence of approximating solutions {uy } e as follows

x):=Y Eu1 (71(]'5’7“1’5“) (1o, 9;)20(x),

21

7,[00(1 1:(17 — o)
up(t,x) == uy(t, x) + Z/ 2 Eum [_J(~)

j=1

We prove that {uy } o is a Cauchy sequence in B(0,K) € C([0, T]; H7(D)). Our proof
includes two main parts
Part 1: We prove that {uy }xcn is a subset of B(0, K). For a clear presentation, we devide the
proof into 2 steps.
Step 1: By Parseval’s identity, for ug € H(D), we have

Z Eu1 (ij?r‘“t%‘) (ug, 19]-)L219j(x)

=1

<G

1
2
2 (o, 8 ]

j>1

H/ (D)
< Cilluollmn(p)

This result implies that

lu1ll (om0 (D)) < Calluollan () (12)

Step 2: Suppose that wy € B(0, K) for k > 1, we show that wy 1 € B(0,K). To this end, we
first observe that

[wes1 (8) = w1 (8) || g o)

t ta' 0 1 (tff_.(ﬁ)a B
S /0 # ) Eaze [ ~7o¢ (I(u(r))/ﬂj)Lzﬁj(x) d(t%). (13)
j=1 HI(D)
Similar to Step 1, we apply Parseval’s formula to derive
2

Z sz 20

j>1

[_“;”] (J(u(r)), 8)) 29;(x)

H/(D)
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5 a2
K'(ta o TU’)(X )
= ZK]W Egoa []a,él (](”(T))/ﬂj)Lr
=1
Then, a repeated application of Lemma 1 implies
K (17 — 17)® 2 c?
sz,Zoc - ~x < — = — 12
(14 ;0 (t7 — 17)%]

For 6 € (1/2,1), we can derive from basic inequalities that

~ ~ 2
K],(t(?' _ TU’)(X - C%
P = K]2937291x(t5 _ 7(7)2904 :

sz,sz [_

Then, it follows that

- ~ 2
Z Euc,th l_Kj(t&“T)‘| (](u(T))/ﬁj)Lzﬂj(x)
j=1 H'(D)
C2 5 5\ 20— 720 \2
S 5—29a(t ) ZK]‘ (J(u(7)), ) -

Based on this result, (13) is equivalent to the following estimate

Cl n—20 t

w1 () =11l ) < s [ (7 =) (o))

i d(r). (14)

L2(D)

In view of Lemma 3, we can find that

|7 (wi(0))

Mlwg (7)1 g g+1
L2(D) S Le O ()] H'(D)

Allwille om0 (0 q+1
< Le (OTHON [l | & 10, 780 (D)

< L e)LK Kq +1 .
for every T € [0, T], provided that wy, € B(0, K). This result together with (14) ensure

|‘wk+1(t) — U (t) HH’?(D)

G PRIt s 13 (.0 | AKgg+1
<1 i [ 6 =yt | M, (15)
0

ga—6a "1

Since § < 1, we can easily obtain

_ T (a—0a)

t
o _ L o\a—0a—1 Ty —
/O (7 — %) d(r) = —.

combining the above equality and (15) enables us to derive the following estimate

n—20
Ci L, * AK gg+170 (a—0
||ZUk+1 - ulHC([O,T];H'/(D)) X &0&790{(0‘ — 90{)6 K1 TU(IX )
3K
<R 16
! 6

As aresult of (12) and (16), we use the triangle inequality to find that

s 1lleommn ) < llwalleqorymn oy + ki1 — willeo a0y
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<K,

provided that u; € B(0, K).

As a consequence of Step 1 and Step 2, we can apply a conductive argument to
conclude that {uy };>1 is a subset of B(0, K). We end Part 1 and move on to the next part.
Part 2: We show that {u };>1 is a Cauchy sequence in B(0, K). First, for k > 2, w e suppose
that ux_1,u; € B(0,R). Then, by Parseval’s identity we have

it (t) = k(1) || o oy

t (t’(? o Tﬁ)a—l "
g/o o P

j>1 o

sz,Zuc [M] ‘ (](”k(T) - ](”kfl(T))rﬁj)iz d(Tﬁ)'

Then, we can now proceed analogously to arguments in Step 1, there holds

otk 1 (8) =10k (8) || 00 o)

C n=20 pt _ -
<= [ = (1) - Jweea (1)

d(t%). (17)

L*(D)

Repeated application of Lemma 3 yields

|7 ue8)) = T2 ()

A 2
sy < L EO k(0 g () — i1 () o

2
+ LMl 4y, (1) e () 114k (8) = vtge—1.(8) [ n () -

It follows from the assumption wy, wy_1 € B(0, K) that

|7 ue8)) = T2 ()

() S 2LeM K| |uy — w1 |l c(jo,rmn(py),  forany t € [0, T). (18)

Combining (17) and (18), we can assert that
1-20
2C1LK 2 L ~ ~
11 () = 10 (8) | g ) < WEAKW [/0 (t7 = 7)) ([ ug — w1 [l (o100 (D))
126
2C1LK1 2

AK o (v—06a
< 27 MKggro(a—ba)
g0 (o — Oa) ¢ |

lux — ug_1llepo,r a7 (D))

for any t € [0, T]. Consequently, we have

7—20

2(:1141{17T AK F(a—6
[tk1 = il e o,y (py) < 50 (a—6a)" KIT7O0) |y — ]| (.10 (D)) -

1
[ ”kHC([o,T];Hv(D)) S Q””k =tk lle(o,rm0 (D)) -

Hence, by some basic arguments, one can conclude that {u };>1 is a Cauchy sequence
in B(0, K).

Having disposed of these two parts, we can now use the completeness of C([0, T]; H (D))
to deduce that {u},>1 possesses a unique limit u € B(0, K) which is the unique mild
solution of Problem (2). The theorem is thus proved. O

Comment 1. In this paper, since we focus only on the mild solution of Problem (2) which is
represented by (9), the solution is showed to be in C([0, T|; H'(D)). Then, Lemma 3 implies that
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J(u) € C([0, T); L>(D)). More results about the regularity of the solution will be investigated in
the future.

4. Numerical Example

The aim of this section is considering an example to show the asymptotic behavior of
the mild solutions in the non-homogeneous source function. Firstly, we choose the operator
—A on the domain D = (0, ) with the homogeneous Dirichlet boundary condition,
then the eigenvectors and eigenvalues of —A are given by ¢;(x) = +/2/7sin(jx) and
jz, (j=1,2,3,...), respectively.

We consider the problem to find a function u: [0,1] — L2(0, 7r) satisfying

c(t79p) u(t, x) — Au(t,x) = J(u(t,x)), in [0,1] x [0, 7t],
u(t, x) = 0 on [0,1] x {0, 7}, (19)
u(0, x) = up(x) in [0,7],

By using the following finite difference method and partitions of spatial and temporal
variables U; x Uy

1
Ut = {tn = (7’1 - 1)@, forn = 1,2,...,Nt+1},

Oy := {xm =(m— 1)ML+1’ form=1,2,..., My +1}.
X

Additionally, thanks to the code in Python software m1£(a, b, z) to calculate the Mittag-
Leffler function E, g(z) as follows

Eup (z) = mlf(a,b,z).

Next, using the Simpson rule of the approximation of numerical integration, we have

tigr —ti (k+1)/2-1 (k+1)/2 "
L [f(m) +2 ), fle)+4 ), flzx1) +f(zk+1)1 ~ [ f)d
k=1 k=1 i

In this example, we apply the truncation Fourier series by parameters F;, the mild
solution of Problem (19) is giving by a matrix form by fixing the temporal variable ¢

Fj
U(ty, Xpm) = \/ng Uj(tn) sin(jxm)

sin(xy)
sin(2xy,)

= \/Z{ Ul(tn) Uz(tn) us(tn) Up/.(tn) } X sin(3xm) , (20)
sin('lfjxm)
where
Uj(tn) = Exn (*Kj?f_“tza) /On ug (%) 9 (x)dx

th (40 _ +0\a—1 .tﬁ_‘?“ T ~
+/0 =) [_’Ml/o J(ta, )8 (x)d* d(T9).  (21)

o% ¥
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Then, a matrix form of the solution (20) can be presented in as follows

[ u(ty, xq) u(ty, xa) u(ty, xpm,) u(ty, Xp1,+1)
u(ty, x1) u(ty, x7) u(ty, xp,) u(ty, Xp1,4+1)
u(ts, xq) u(ts, x7) u(ts, xpm,) u(t3, Xp,+1)
u(tn, x1)  u(tn, x2) u(tn, xm,)  u(tnNg, XMy +1)
_u(tNt+1/x1) M(tNt+1, x2) u(tNt-l-]/xMx) u(tNt+1/xMx+1)- (Nt+1)><(MX+1)

For (t,x) € [0,1] x [0, 7], we choose ¢ = & = 0.5, F; = 10, N} = M, = 100 and the
giving functions as follows
13
1
) t 4+

The graphs of the solution u in some cases of & € {0.1,0.5, 0.7, 0.9} are mentioned,
which shown in Figures 1-4. For detail, case 1: t = 0.2 is presented in Figure 1; case 2:
t = 0.4 is presented in Figure 2; case 3: t = 0.6 is presented in Figure 3. And this final case
with t = 0.8 is shown in Figure 4.

Ni=

1

2

-
2T (3)

J(t,x) = 16(t* + 1) sin(4x) — l( 1 sin(4x), (t,x) € [0,1] x [0, 1] (22)

up(x) = sin(4x),x € [0, rt]. (23)

30 A t —— ufora=0.1
:* -x- ufora=0.5
25 1 :* —:= ufora=0.7
1 \- -%- ufora=0.9
1
0714
ox
2 154 1
o !
s |
© 109471
0 .
2 R
= 5 4 :(
[
0 e P
-5 N
_10- ""\uf
0.0 0.5 1.0 1.5 2.0 2.5 3.0
x€[0,m]

Figure 1. The solution u at t = 0.2.
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20 A ﬁ — ufora=0.1
¥ —»- ufora=0.5
: )(‘ —= ufora=0.7
L% —-%- ufora=0.9
1 x
1
1
1
o 10—
c 1
o 1
=] 1
2 1 /o
@ 51 Ee N
9] i/ AN
c i g
= ]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x€[0,m]

Figure 2. The solution u at t = 0.4.

{05* —— ufora=0.1
154 1 'I;_ =»- ufora=0.5
: * —.= ufora=0.7
: -%- ufora=0.9
i
10—, *
1 *
w0 1 *
5 | %
= ]
=] *x
4
2 57 0,7~
0 1
[} I
£ 1
O.
_5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x€[0,m]

Figure 3. The solution u at t = 0.6.

10.0 - —— ufora=0.1
K =»=- ufora=0.5
ik —-= ufora=07
7.5 1 il -»- ufora=0.9
1
5011
2 L
5 1N
5 254
3 i
(9]
£ 0.0
—2.5 1
—5.0 A
0.0 0.5 1.0 1.5 2.0 2.5 3.0
x€[0,m]

Figure 4. The solution u at t = 0.8.
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5. Conclusions

In this study, we apply the Banach principle argument to derive the well-posedness
of an initial-value boundary problem associated with fractional parabolic equation with
regularized Hyper-Bessel operator and exponential nonlinearity. Thanks to properties
of Mittag-Leffler functions, powerful Sobolev embeddings and the usefulness of Hilbert
scale spaces, we have proved the local existence and uniqueness of a mild solution. In the
future, we aim to improve our result to global one and consider more regularity results for
solutions. It seems to be very difficult, but also very engaging. In addition, the case o > 1
will also be studied in upcomming works.
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