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concept will not be assumed to not exist. From our wide observation, we find that the changing rate in
every population case is notably negligible, That’s why we are preferring to calculate them fractionally
using FFDE. Using Lofti’s fuzzy concept we are picturing the models after that we are estimating their
non-integer values using three distinct methodologies LADM-4, DTM-4 for arbitrary fractional-order
αi, and RKM-4. At αi = 1, comparison of the estimations will be done. In addition to the simulation,
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1. Introduction

The life we are leading today in a civilized society is created in such a way that the living space of
each and every species is occupied by our human race. Being concentrated on this well-sophisticated
life or at least a better life, people are working all the time without rest to fulfill the needs of the family
like bringing education to children, after that, their employment, etc., This is the normal family life
of a middle-class people who are especially from India. Due to the commitment all the time for the
family well being, there is a lack of care for their own personal health. This is one of the reasons
behind losing good health. The cultivation lands now became corporate land. So good health is not
easy to expect by means of properly farmed organic foods. Though medically many new innovative
inventions are progressing every day there is also a vacuum in the answer when there is a question
about non-eradicated diseases. Many new diseases are slowly occupying us and we are all victims to
any kind of such transferring diseases. Even not having symptoms every one of us is a victim and a
host of such ailments. We must prepare ourselves to be strong to fight against daily emerging new
diseases. Till yesterday, the whole world was busy with the hot topic called COVID-19. But today the
trend has changed to Omicron. Omicron is nothing but the new variant of the coronavirus.

In the literature of biomathematics modeling, population dynamics and the spread of epidemics are
the most prominent topics since they have a wide historical background. In this paper, we study an
epidemic model which is the pioneer of all studies about the transmission of ailments. The old models
in epidemiology science are bound with the assumptions that new cases in the count of birth, death is
not all allowed. And one more interesting concept in the epidemic case study is that they will not take
death as a parameter subject to change as susceptible or infected. Recently many new mathematicians
started to break that rule. We people are a step ahead in making death a parameter. We are hereby
considering two cases of death. i.e., one due to the infection and the other as a natural death.

The model we are framing in this innovative manuscript is new, say SIRD-susceptible-Infected-
recovered-death-population epidemic model. Few people may observe that they are not physically
well and after that, they will go to the hospital and diagnose themselves to prevent any infections by
taking the precautions and prescriptions with proper medical advice. But many people will not be
aware of the symptoms they are having. Those people are always in the mindset that the symptoms
they are having will be because of climate change or may cause a fever and will recover soon. But
medically every time is valuable. Every hour will be treated as an hour of the diamond moment.
Think, about what would happen if the infections were not observed or diagnosed on time. Definitely,
that disease may have a chance to lead to a severe stage of infections which might put the patients’
life to death. Simply we can say a time delay in the study of or diagnosis of infections may make the
infections sustain severely. In order to research them mathematically, we are using the concept of time
delay while implementing the rate of infection population change. Instead of the time-shift property of
Laplace transform we are using a simple approach called linear operation technique in both (LADM)
and in (DTM). So we can hereby declare that the model we are about to construct here is of non-integer
order with infectious population study of delay due to time. As there will always arise randomness and
fluctuations in modeling natural ailment dynamics we are converting our model into the fuzzy model.

The manuscript was solely prepared with dedication by the authors but it was not created all of the
sudden. There are numerous fore-paper studies that have been carried out before proceeding with our
analysis. They are summarized below so that the readers may get fruitful knowledge while passing
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through them. They are Lofti Zadeh’s theory of Fuzzy sets [1]. In 2000, the Buckley-Feuring proposal
for FDE [2] created a great impact in the early 2000s. Abbasbandy’s modified ADM in 2005 [3].
Allen’s, mathematical biology [4]. Makinde [6], SIR-model for invariant vaccination procedure by
ADM technique. Ongun’s LADM for HIV infection of [7]. Arafa et al.’s fractional-order infant
disease model of invariant vaccination procedure [8]. Atangana-Baleanu’s novel fractional derivatives
with nonlocal and non-singular kernel [9]. In [10], Aliyu provided an HIV-I cure model under ABC
derivative. Farman presented the SEIR-measles model for the fractional-order derivatives using the
technique known as LADM [13]. Authors in [14, 15] solved influenza models. Authors like [17, 18]
presented a stochastic epidemic ODE model with perturbations. Authors like Prasantha Bharathi et al.,
frequently solved many types of FDEs [5, 12, 16]. Recently, Authors like P. Singh et al. contributed
their innovative ideas about the dynamics of epidemic spread in [21, 22].

The paper highlights if death is used also as a variable, what can be the model? How to analyze
such a model?. In this manuscript, the retarded delay is introduced and studied extensively with the
necessary analysis in the upcoming sections.

Other than the introductory section, the paper was arranged as follows. Under the Sections 2–7,
SIRD-with delay-model creation, the fore-studies, qualitative analysis, analytical solutions, numerical
estimations, and the respective graphical illustrations are presented. Finally, in Section 8, the
manuscript was concluded in detail.

2. SIRD delay epidemic model-formulation

We shall construct the fuzzy epidemic compartmental model under ABC fractional derivative
ABC∆α

0,t. Usually, S(t), I(t), R(t) denote Susceptible, Infected and Recovered hosts respectively and
D(t) is given to the Death population where t here is taken in days (see Figure 1). The main assumption
behind the model formulations is that there arises a new strange disease among the society. Due to this,
there arises ‘S(t), I(t), R(t) and D(t)’ here the death is not only because of the severity of infections but
also due to some other health-related issues like heart attack, etc. Both are separately defined with the
aid of separate parameters. Also, no additional birth or death exceeding the past count. The models
that we are framing here are presented to bring the changes of approach to the classical Kermack-
Mckendrick models [19, 20]. Mathematics definitions for both death and recovery are the same under
which there is no chance of infection ratio can be observed. All these assumptions and strategies
are put together to form the following model. Throughout the entire manuscript D is given for death
population and ∆ is given for d/dt.

The important thing we want to share to the readers is that the notations S(t), I(t), R(t) and D(t) are
representing the number of susceptible, infected, recovered and death cases varying in time (in days)
and they are dimensionless. S(t), I(t), R(t) and D(t) are initial populations in numbers at time t = 0.
The rates β, δ, ψ, γ are representing the rates also. So our equations seem to be dimensionless. Also one
can see when D(t) = 0, our entire study will match with the properties of SIR model [19, 20] as in SIR
model [19, 20] assumes rates but dimensionless, i.e., S(t), I(t) and R(t) are representing the numbers.
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∆S (t) = (−βS I − γS )
∆I(t) = (βS I(t − τ) − (δ + γ)I(t))
∆R(t) = (2δ − ψ)I(t) − γR(t))
∆D(t) = (ψ − δ)I(t) − γD(t)

(2.1)

SIRD with the initial function defined as S (t0) = m1, I(t0) = m2, R(t0) = m3 and D(t0) = m4 for
all −τ ≤ t0 ≤ 0. Such that the initial functions are always constant as they are representing the
population (numbers) at the time of study. All the symbols and parameters used in the above Eq (2.1)
are completely described at the end of Section 3.

Figure 1. Model formulation.

3. Fore-studies

The operators with non-integer order seem in such a way that the many mathematical-physical-
chemical and biological theories can be turned into a simplified model. Different types of fractional
operators are available to easily analyze those theories. singular kernels are notably inconvenient while
considering Riemann-Liouville and Caputo-fractional operators since the solutions are not fine and
smooth. To get rid of this, Atangana-Baleanu(AB) introduced a very novel advanced operator which
consists of Mittag-Leffler kernel which is [9] non-local as well as non-singular. The merit of using this
operator is that it can be very useful in modeling the biological dynamical systems since AB-derivative
eliminates the difficulty to model any before said problems with singularity. Various types of problems
on physical phenomena have been constructed and studied with proper analyses by using the required
operator (ABC). The below section lists out of the set of necessary results in the FFDE.

Definition 3.1. [5] The fuzzy non-integral single retarded DDE can be described in ABC way as
ABC∆α

0,tỹ(t) = f̃ (t, ỹ(t), ỹ(t − τ)), t ≥ t0 ≥ 0
ỹ(t) = φ̃(t), −τ ≤ t ≤ 0
ỹ(t0) = ỹ0 ∈ ˜φ(t)

where f̃ : [0,∞) × R × R → En and φ̃ ∈ R is a continuous fuzzy mapping and the initial condition
y0 ∈ φ then y0(s) = y(s) = φ(s), −τ ≤ s ≤ 0. Also y0 is fuzzy valued with r-level intervals, [y0]r =

[yr
0
, yr

0], 0 ≤ r ≤ 1.

Definition 3.2. [9] The Mitag-Leffler function can be defined as the result of the following fractional
DE ∆α = ay , 0 < α < 1 where generalized Mittag-Leffler function Eα(−tα) =

∑∞
k=0

(−t)αk

Γ(αk+1) is considered
as non local function.
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Definition 3.3. [9] The fuzzy ABC derivative of f over [t0, tn] is

ABC∆α
t0,tn f̃ (t) =

F(α)
(1 − α)

∫ t

0
f̃ ′(µ)Eα[−α

(t − µ)α

1 − α
]dµ,

where F(α) is a normalized function which obviously satisfying F(0) = F(1) = 1 and F(α) will satisfy
the properties in ABC in a same way as that in Caputo and Fabrizio case [11].

Definition 3.4. [9] We can make fuzzy ABC derivative to undergo Laplace transform implying,

L{ABC∆α
0,t f̃ (t)}(s) =

F(α)
1 − α

sαL{ f̃ (t)}(s) − sα−1

sα +
α

1 − α

where 0 < α ≤ 1.

Definition 3.5. [9] The AB integral of the function f̃ (t) having order α > 0 is defined as

ABJα0,t f̃ (t) = 1 − αF(α) f̃ (t) +
α

F(α)Γ(α)

∫ t

0
f (µ)(t − µ)α−1dµ.

Also when α→ 1 then the classical integral is obtained.

The DE referring (2.1) can be overwritten as the fractional DE which is given as
ABC∆

α1
0,tS (t) = (−βS (t)I(t) − γS (t)),

ABC∆
α2
0,tI(t) = (βS (t)I(t − τ) − (δ + γ)I(t)),

ABC∆
α3
0,tR(t) = (2δ − ψ)I(t) − γR(t)),

ABC∆
α4
0,tD(t) = (ψ − δ)I(t) − γD(t),

(3.1)

which in turn implies fuzzy fractional DE (FFDE) by the concepts that are given in the fore-studies.
The primary functions are the same as that of (2.1).

ABC∆
α1
0,tS̃ (t) = (−βS̃ (t)Ĩ(t) − γS̃ (t)),

ABC∆
α2
0,t Ĩ(t) = (βS̃ (t)Ĩ(t − τ) − (δ + γ)Ĩ(t)),

ABC∆
α3
0,tR̃(t) = (2δ − ψ)Ĩ(t) − γR̃(t)),

ABC∆
α4
0,tD̃(t) = (ψ − δ)Ĩ(t) − γD̃(t),

(3.2)

where f̃ (t) = (0.75 + 0.25r, 1.125 − 0.125r) f (t) is the fuzzy function with r ∈ [0, 1].
The primary conditions are satisfied and also implies that the total population is initially constant

with size N. i.e., S (t0) + I(t0) + R(t0) + D(t0) = N.
Here we assume the following initial populations.

S (t0) = S 0 = m1 = 50, t = t0,

I(t0) = I0 = m2 = 60, −τ ≤ t ≤ t0,

R(t0) = R0 = m3 = 40, t = t0

D(t0) = D0 = m4 = 50, t = t0.

The parameters their descriptions and their respective assumed rates from the (2.1)–(3.2) are shown
here under.
β→ rate of susceptible becoming infectious=0.00012;
δ→ the rate of infectious becoming recovered=0.06;
ψ→ rate of infectious becoming death due to severity of infections=0.04;
γ → rate of infectious becoming death due to age or any other health issues=0.02.
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4. Steady states and stability analysis

This section is devoted to analyzing the stability of the system. We are finding the eigenvalues of
the steady states to study the stability. Take (3.2), since the term D(t) is not involved in ABC∆

α1
0,tS̃ (t),

ABC∆
α1
0,t Ĩ(t), ABC∆

α1
0,tR̃(t), ABC∆

α1
0,tD̃(t) considered for analyzing the stability. Also, ABC∆

α1
0,tR̃(t) is not

considered because its population is not known since the total population is not known. It is now
obvious to consider ABC∆

α1
0,tS̃ (t) and ABC∆

α1
0,t Ĩ(t) for which the steady states and the stability analysis can

be done.

ABC∆
α1
0,tS̃ (t) = (−βS̃ (t)Ĩ(t) − γS̃ (t)),

ABC∆
α2
0,t Ĩ(t) = (βS̃ (t)Ĩ(t − τ) − (δ + γ)Ĩ(t)).

(4.1)

Take
lim
t→∞

[S (t)] = lim
t→∞

[S (t − τ)] = S ∗

and
lim
t→∞

[I(t)] = lim
t→∞

[I(t − τ)] = S ∗ .

Now set ABC∆
α1
0,t Ĩ(t) = 0 to find disease free steady state E1 along with basic reproduction number

of the delayed I(t) and put ABC∆
α1
0,tS̃ (t) = 0 to find disease depending steady state E2. In previous

existing models, when R0 = 1 or RDelay
0 = 1, E1 = E2. In this model, We obtain the steady states as

E1 = ( δ+γ
β
, 0) and E2 = (0, −γ

β
). These states states infer that the growth of susceptible rate cannot turn

out be infective whereas the decrease of infection can nullify the susceptible rate. If the inverse of
these existing conditions prevail, these steady states remain to be steady always. In order to claim this,
we shall prove the next theorem.

Theorem 4.1. The steady states remain to be steady always when the inverse of the product of steady-
state matrices exists.

Proof. First let us confirm from the list of parameters given above that β , γ , δ , ψ Let us consider E1

and E2 in the algebraic form as E1(S , I) = ( δ+γ
β

S ) and E2(S , I) = (−γ
β

I). Now assume, the determinant
of the product of the steady state matrices to be zero so that the inverse of the product of steady state
matrices does not exist.

|E1E2| =

∣∣∣∣∣∣ ( δ+γ
β

) 0
0 −γ

β

∣∣∣∣∣∣ = 0. (4.2)

It was found from the above determinant, that |E1E2| = 0 only when δ = γ. But this is a contradiction to
our parametric values. so the determinant of the product of steady-state matrices exists and obviously,
the inverse of the product of steady-state matrices exists. This implies that these steady states always
remain to be steady. �

4.1. Basic reproduction number

The basic reproduction number is the calculation of the minimum susceptible rate when there is no
change in the rate of infection. Though the model is the system of delay differential equations, the basic
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reproduction number will be the same as that of the system of ordinary differential equations. Because
for −τ ≤ t0 ≤ 0, we have I(0) = I(−τ). At t=0 the observations will be made on the rate at which the
infectious cases progress and the estimation of this number will be found. When ABC∆

α2
0,t Ĩ(t0) = 0,

βS̃ (t0)Ĩ(t0) − (δ + γ)Ĩ(t0)) = 0, βS 0I0 − (δ + γ)I0 = 0, I0[βS 0 − (δ + γ)] = 0,
βS 0 = δ + γ, S 0 =

δ+γ

β
,

R0 = Rdelay
0 = S 0

β

δ+γ
is the Basic Reproduction number , Where γ+δ

β
= S c.

When S 0 < S c, the epidemic will come to an end but if S 0 > S c, the disease may propagate again and
again until it comes to an end. i.e., there is an epidemic.

4.2. Characteristic equations

Let us find the characteristic equations of the reduced system (4.1). The Jacobian matrix of the
system is given by J = [A1 + A2.e−λτ]. Where,

A1 =

[
−βI ∗ −γ −βS ∗
βI∗ −(δ + γ)

]
, (4.3)

A2 =

[
0 0
0 βS ∗

]
. (4.4)

Then the Jacobian matrix J is given by

J =

[
−βI ∗ −γ −βS ∗
βI∗ −(δ + γ) + βS ∗ e−λτ

]
. (4.5)

4.3. Jacobian matrix at disease free steady state

Now Substitute E1 at J, We get JE1 as

JE1 =

[
−γ −(δ + γ)
0 −(δ + γ)(1 − e−λτ)

]
. (4.6)

The characteristic equation at the steady state E1 is CE1 = |JE1 − λI| is given by

CE1 =

∣∣∣∣∣∣ −(γ + δ) −(δ + γ)
0 −(δ + γ)(1 − e−λτ) − λ

∣∣∣∣∣∣ = 0. (4.7)

i.e., CE1 = (−λ − γ)(λδ + λγ − λδe−λτ − λγe−λτ)
We can conclude that one of the eigenvalue, λ1(CE1) = −γ. If other eigenvalues also have negative
real parts, then we can confirm that there is no Hopf bifurcation for E1.
Consider,

−δ − γ + δe−λτ + γe−λτ − λ = 0,

λ = −δ − γ + δe−λτ + γe−λτ,
= −(δ + γ) + e−λτ(λ + γ)

λ = −(δ + γ)[1 − e−λτ],
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i.e., λ2(CE1) may lead to the infinite number of eigenvalues. Now take, λ
δ+γ

= e−λτ − 1. Now we have
to establish that (e−λτ − 1) lies in the left half of the complex plane. So that we can prove that E1 is
asymptotically stable. Now assume that λ = a + ib with a as zero or a positive real number and b as a
real number. Then the magnitude of e−λτ is

|e−λτ| = |e−aτ−ibτ| = |e−aτe−ibτ|

= e−aτ|e−ibτ|

= e−aτ|Cosbτ − iS inbτ|
= e−aτ

√
(Cos2bτ + S in2bτ)

= e−aτ√(1)
|e−λτ| = e−aτ.

Since a is a zero or positive real number, and τ > 0 the following cases will arrive.

• When a is zero, |e−λτ| is independent of τ will produce |e−λτ| = 1.
• When a is positive, and since τ is always positive, |e−λτ| < 1.

Hence |e−λτ| = e−aτ ≤ 1. Then definitely, (e−λτ − 1) is the complex number that lies in the left half of
the complex plane. i.e., (a+ib)

δ+γ
= e−aτ − 1. The right-hand side of the equation is already proved to lie in

the left half of the complex plane irrespective of a is zero or positive real number. Suppose if a is the
positive real number. i.e., if a > 0 then the left-hand side of the equation will be the complex number
in the right half of the complex plane. This contradicts the right-hand side. So a cannot be the positive
real number. So λ2(CE1) = (δ + γ)(e−λτ − 1) leading to infinite eigenvalues are all negative which will
never cross from left to right half of the complex plane. Then there is not a Hopf bifurcation. The
disease-free steady state E1 is asymptotically stable regardless of time delay τ.

4.4. Jacobian matrix at disease depending steady state

Now Substitute E2 at J, We get JE2 as

JE2 =

[
0 0
−γ −(δ + γ)

]
= 0. (4.8)

The characteristic equation at the steady state E2 is CE2 = |JE2 − λI| is given by

CE2 =

∣∣∣∣∣∣ −λ 0
−γ −(λ + δ + γ)

∣∣∣∣∣∣ = 0. (4.9)

CE2 = λ2 + λδ + λγ = 0, here also, one of the eigenvalues λ1(CE2) is negative as λ1(CE2) = −(δ + γ).
Since there is no e−λτ term λ2(CE2) will not lead to the infinite eigenvalue. The other eigenvalue
λ2(CE2) is given by λ2(CE2) = 0. So the eigenvalues of disease depending on steady-state E2 is
negative semi-definite. This is called a stable line of equilibrium. In order to prove that the steady-state
is stable, even if one of the eigenvalues is zero, we have to prove the following theorem.

Theorem 4.2. The steady state is stable but not asymptotically stable when ∆ > 0, Det(E2) = 0 and
tr(E2) < 0.
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Proof. From (4.8), It was found that tr(E2) = −(δ+γ) < 0, Det(E2) = 0 and ∆ ≡ [tr(E2)]2−4Det(E2) ≡
[−(δ+γ)]2 ≡ (δ+γ)2 > 0. Hence the steady state E2 is stable but not asymptotically stable. Since one of
the eigenvalues is zero and the other is negative the solutions on the eigenspace are time independent, so
obviously independent of time delay. The steady state E2 is thus having an attractive line of equilibria.
Hence the system is thus stable at each steady state independent of time delay. �

5. Analytical solution-SIRD-delay model

5.1. Application of LADM technique

The analytical estimations can be addressed through the application of LADM of order 4 as that
of [13]. Though the system is delay-dependent in I we are not using the time shift property of the
Laplace transform. Instead of that, we are treating the delay term I(t − τ) by using the concept of
linear operations. We provide the entire study by taking τ = 1. Because the initial function is unvaried
constant for the period of delayed time from −τ to 0. This method is very direct. i.e., We can take
L[I(t − τ)] with I(t0) = c2 for −τ ≤ t0 ≤ 0. as L[I(t) + I(−τ)] which becomes L[I(t)] + L[I(−τ)] which
in turn gives L[I(t)] + L[I(t0)]. i.e., L[I(t)] + L[I0]. Suppose the initial functions are the functions
of t then this direct linear operation method may not get worked out. Then we must go for the time-
shifting property of Laplace transform or else we have to linearize the system and then we have to go
for Laplace transform. All the cases can be solved by following procedures.

S (k + 1) = L−1(−β/sα1 × L(Ak) − γ/S α1 × L(S K)),
I(k + 1) = L−1(β/sα2 × L(Ak + (S k+1 × I0)) − (δ + γ)/sα2 × L(Ik)),
R(k + 1) = L−1((2δ − ψ)/sα3 × L(Ik) − (δ)/sα3 × L(Rk)),
D(k + 1) = L−1((ψ − δ)/sα4 × L(Ik) − (γ)/sα4 × L(Dk)).

(5.1)

Where (Ak) is an Adomian polynomial defined by Ak = 1
k!

dk

dλk (
∑k

l=0(λl.S lλ
l.Il)|λ=0, i.e.,

A0 = S 0I0,
A1 = S 0I1 + S 1I0,
A2 = S 0I2 + S 1I1 + S 2I0 and so on.
S (t) =

∑∞
k=0(S (k)),

I(t) =
∑∞

k=0(I(k)),
R(t) =

∑∞
k=0(R(k)),

D(t) =
∑∞

k=0(D(k)).
As it involves, For the model (3.2), the LADM-4 solutions for (α1, α2, α3, and α4)=1 are obtained by
neglecting the terms t5 and above.

S̃ (t) = (50 − 1.36t + 0.031816t2 − 0.000838977t3 + 0.0000213707t4 + 2.02011 × 10−8t5

+2.60432 × 10−12t6 + 2.1755 × 10−17t7),
Ĩ(t) = (60 − 4.44t + 0.154488t2 − 0.00341645t3 + 0.000049643t4 + 9.18547 × 10−8t5

+3.59767 × 10−11t6 + 2.94704 × 10−15t7 + 1.95795 × 10−20t8),
R̃(t) = (40 + 4.t − 0.2176t2 + 0.00557035t3 − 0.0000961808t4 − 9.74151 × 10−8t5

−1.52092 × 10−11t6 − 2.90067 × 10−16t7),
D̃(t) = (50 − 2.2t + 0.0664t2 − 0.00147259t3 + 0.0000244452t4 + 2.43538 × 10−8t5

+3.80229 × 10−12t6 + 7.25168 × 10−17t7),

(5.2)
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where 0 ≤ r ≤ 1. Note that the powers of t do not mean the order of the system. Since we are using
(LADM of order 4) we had computed the system up to S 4, I4, R4 and D4. Their expansion were given
in (5.2).

5.2. Application of DTM

The alternate method called DTM-4 is also taken in reference to [13]. The DTM was manifested
with the aid of Taylor’s expansion for the series. The complete DTM-4 solutions series is about t = 0.
For I(t−τ), The same idea of linear operation as applied in (LADM-4) is applied here which was given
in detail below. The differential transformation of the function f (x) when k/α ∈ Z+ can be defined as
Dt( f (x)) = 1/(k/α)![ dk/α f (x)

dxk/α ]x=0. Also If f (x) = g(x)h(x), F(k) =
∑

n=0 kG(k)H(k − n). Now for (α1, α2,
α3, and α4)=1, the system of system of Eq (3.2) is defined as

S̃ (k + 1) = 1
k+1 (−β

∑k
n=0 S̃ (n)Ĩ(k − n) − γS̃ (k)),

Ĩ(k + 1) = 1
k+1 (β

∑k
n=0 S̃ (n)Ĩ(k − n) + S (k + 1)I(t0) − (δ + γ)Ĩ(k)),

R̃(k + 1) = 1
k+1 (2δ − ψ)Ĩ(k) − γR̃(k)),

D̃(k + 1) = 1
k+1 (ψ − δ)Ĩ(k) − γD̃(k),

(5.3)

When the initial time is considered as zero, i.e., t0 = 0. The inverse DT of S (k), I(k), R(k) and D(k) are
obtained as S (t) =

∑∞
k=0 S (k)tk, I(t) =

∑∞
k=0 I(k)tk, R(t) =

∑∞
k=0 R(k)tk and D(t) =

∑∞
k=0 D(k)tk. For the

model (3.2) the DTM-4 solutions are given by

S (t) = (50 − 1.36t + 0.0318454t2 − 0.000850522t3 + 0.0000219972t4),
I(t) = (60 − 4.44979t + 0.159861t2 − 0.00362678t3 + 0.0000548306t4),
R(t) = (40 + 4.t − 0.217992t2 + 0.00571624t3 − 0.000101117t4),
D(t) = (50 − 2.2t + 0.0664979t2 − 0.00150906t3 + 0.0000256792t4),

(5.4)

where 0 ≤ r ≤ 1. Here also we had computed the system up to S 4, I4, R4 and D4 and had gotten
the above expansion. But the highest power of t here is 4 because of expansion of (5.3). In general,

˜S (t), I(t),R(t),D(t) = (0.75 + 0.25r, 1.125 − 0.125r)(S (t), I(t),R(t),D(t)).

6. Numerical solution of SIRD-Delay model

6.1. Fourth order Runge-Kutta method

In this section the RKM-4 for (α1, α2, α3, and α4)=1 is applied to get the desired solution.
Estimating S IRD with delay at h = 0.1 is considered to get the better result over 0 ≤ r ≤ 1.
Evaluation:

S̃ (t + 1) = (S̃ (t) + (1/6(K1 + 2K2 + 2K3 + K4))),
Ĩ(t + 1) = (Ĩ(t) + (1/6(L1 + 2L2 + 2L3 + L4))),
R̃(t + 1) = (R̃(t) + (1/6(M1 + 2M2 + 2M3 + M4))),
D̃(t + 1) = (D̃(t) + (1/6(N1 + 2N2 + 2N3 + N4))).

(6.1)

To estimate (6.1), consider the following.
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Lm = Lm−1 for m = 1 and I(t) = I(t − 1) for t = 0.

K̃(m)1 = h(−β(S̃ (t))(Ĩ(t)) − γ(S̃ (t)))
L̃(m)1 = h(β(S̃ (t))(Ĩ(t − 1)) − (δ + γ)(Ĩ(t)))
M̃(m)1 = h((2δ − ψ)(Ĩ(t)) − (γ)R̃(t))
Ñ(m)1 = h((ψ − δ)(Ĩ(t)) − (γ)D̃(t))
K̃(m)2 = h(−β(S̃ (t) + (K̃(m)1/2))(Ĩ(t) + ( ˜L(m)1/2))

−(γ(S̃ (t) + (K̃(m)1/2))))
L̃(m)2 = h(β(S̃ (t) + (K̃(m)1/2))(I(t − 1)

+(L̃(m − 1)1/2)) − ((δ + γ)(Ĩ(t) + (L̃(m)1/2))))
M̃(m)2 = h((2δ − ψ)(Ĩ(t) + (L̃(m − 1)1/2))

−((γ)(R̃(t) + (M̃(m)1/2))))
Ñ(m)2 = h((ψ − δ)(Ĩ(t) + (L̃(m)1/2))−

((γ)(D̃(t) + (Ñ(m)1/2))))
K̃(m)3 = h(−β(S̃ (t) + (K̃(m)2/2))(Ĩ(t) + (L̃(m)2/2))

−(γ(S̃ (t) + (K̃(m)2/2))))
L̃(m)3 = h(β × (S̃ (t) + (K(m)2/2))(Ĩ(t − 1)

+(L̃(m − 1)2/2)) − ((δ + γ)(Ĩ(t) + (L̃(m)2/2))))
M̃(m)3 = h((2δ − ψ)(Ĩ(t) + (L(m)2/2))

−((γ)(R̃(t) + (M̃(m)2/2))))
Ñ(m)3 = h((ψ − δ)(Ĩ(t) + (L̃(m)2/2))−

((γ)(D̃(t) + (Ñ(m)2/2))))
K̃(m)4 = h(−β(S̃ (t) + (K̃(m)3))(Ĩ(t) + (L̃(m)3))

−(γ(S̃ (t) + K̃(m)3)))
L̃(m)4 = h(β(S̃ (t) + (K̃(m)3))(Ĩ(t − 1)

+(L̃(m − 1)3)) − ((δ + γ)(Ĩ(t) + L̃(m)3))))
M̃(m)4 = h((2δ − ψ)(Ĩ(t) + (L̃(m)3))

−(γ)((R̃(t) + M̃(m)3)))
Ñ(m)4 = h((ψ − δ)(Ĩ(t) + (L̃(m)3))−

(γ)((D̃(t) + Ñ(m)3))).

(6.2)

For p ∈ [1, 4] and r ∈ [0, 4],
K̃p = K̃p(t; r) = [K p(t; r),K p(t; r)],
L̃p = K̃p(t; r) = [Lp(t; r), Lp(t; r)],
M̃p = K̃p(t; r) = [Mp(t; r),Mp(t; r)],
Ñp = K̃p(t; r) = [N p(t; r),N p(t; r)].
For t ∈ [0, n], n = 1, 2, 3, ...,
and for q = t, q = t + 1, t = 0, 1, 2, 3, ...,
S̃ (q) = S̃ (q)(t; r) = [S q(t; r), S q(t; r)],
Ĩ(q) = Ĩ(q)(t; r) = [Iq(t; r), Iq(t; r)],
R̃(q) = R̃(q)(t; r) = [Rq(t; r),Rq(t; r)],
D̃(q) = D̃(q)(t; r) = [Dq(t; r),Dq(t; r)].
Where [ f (t; r), f (t; r)] = [0.75 + 0.25r, 1.125 − 0.125r] f (t).
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7. Graphical representations

The associateship among S IRD-delay at αi = 1, i = 1, 2, 3, 4 for t ∈ [0, 1000] for the fuzzy valued
model (3.2) is given in figure.

For the various values of t, α1, α2, α3, α4 and r ∈ [0, 1] the following tables are given. In Tables 1–4
the susceptible, infected, recovered and dead population solutions are calculated using two various
methods, say, LADM-4, DTM-4 and after that by RKM-4, all these methods are compared. Figure 2
is plotted by taking S (t), I(t), R(t) and D(t) for αi = 1, i = 1, 2, 3, 4, t ∈ [0, 300] and r = 1. Figure 3
is plotted by taking S (t), I(t), R(t) and D(t) for αi = 1, i = 1, 2, 3, 4, t ∈ [0, 3] and r = 1. In Tables 5
and 6, susceptible population values for α ∈ [0, 1] and t ∈ [0, 1] are given and the respective plot
is given in Figure 4. In Tables 7 and 8, infected population values for α ∈ [0, 1] and t ∈ [0, 1] are
given and the respective plot is given in Figure 5. In Tables 9 and 10, recovered population values
for α ∈ [0, 1] and t ∈ [0, 1] are given and the respective plot is given in Figure 6. In Tables 11
and 12, dead population values for α ∈ [0, 1] and t ∈ [0, 1] are given and their respective plot is
given in Figure 7. Figure 8 is given for S (t), I(t), R(t), D(t) for t ∈ [0, 1],α ∈ [0, 1] and r = 1. After
solving (3.1) for α ∈ [0, 1] the values are calculated for t ∈ [0, 1] and r ∈ [0, 1] in (3.2). As a sample,
fixing t = 1, αi = 1, i = 1, 2, 3, 4 and considering r ∈ [0, 1] fuzzy valued solutions of susceptible,
infected, recovered and dead populations are given in Table 13. Similarly we found the remaining
values in t ∈ [0, 1] with αi, i = 1, 2, 3, 4 for r ∈ [0, 1] and other plots are obtained. Figures 9–12 are
given for S (t), I(t), R(t), D(t) for t ∈ [0, 1], α ∈ [0, 1], and r ∈ [0, 1] which are the fuzzy valued plots.

Table 1. The susceptible cases.
t LADM-4 DTM-4 RKM-4
0 50 50 50

0.1 49.8643173 49.8643176 49.8643173
0.2 49.7292659 49.7292670 49.7289045
0.3 49.5948409 49.594843 49.5941225
0.4 49.4610374 49.4610413 49.4599662
0.5 49.3278504 49.327856 49.3264308
0.6 49.1952753 49.1952834 49.1935116
0.7 49.0633072 49.0633177 49.0612030
0.8 48.9319414 48.9319545 48.9295007
0.9 48.8011733 48.8011891 48.7983997
1.0 48.6709984 48.6710168 48.6678956

Table 2. The infected cases.
t LADM-4 DTM-4 RKM-4
0 60 60 60
0.1 59.5575414 59.5566157 59.5575902
0.2 59.1181522 59.1164071 59.1187057
0.3 58.6818120 58.6793524 58.6825032
0.4 58.2485007 58.2454302 58.2503295
0.5 57.8181980 57.8146193 57.8207953
0.6 57.3908841 57.3868984 57.3943356
0.7 56.9665392 56.9622466 56.9709296
0.8 56.5451434 56.5406429 56.5505565
0.9 56.1266773 56.1220666 55.1331958
1 55.71112128 55.70649 55.7188268
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Table 3. The recovered cases.
t LADM DTM RKM-4
0 40 40 40
0.1 40.3978295 40.3978257 40.3978296
0.2 40.7913404 40.791325 40.7913470
0.3 41.1805656 41.1805342 41.1805831
0.4 41.5655380 41.5654845 41.5655715
0.5 41.9462902 41.9462102 41.9474980
0.6 42.3228547 42.3227446 42.3240883
0.7 42.6952635 42.6951204 42.6965300
0.8 43.0635485 43.0633706 43.0648559
0.9 43.4277416 43.4275275 43.4290983
1 43.7878740 43.7876234 43.7892893

Table 4. The death cases.
t LADM-4 DTM-4 RKM-4
0 50 50 50
0.1 49.7806625 49.7806634 49.7806624
0.2 49.5626442 49.5626478 49.5626425
0.3 49.3459364 49.3459442 49.3459320
0.4 49.1305303 49.1305437 49.1305220
0.5 48.9164174 48.9164374 48.9161155
0.6 48.7035890 48.7036166 48.7032806
0.7 48.4920367 48.4920725 48.4917201
0.8 48.2817520 48.2817965 48.2814252
0.9 48.0727265 48.0727800 48.0723873
1 47.8649518 47.8650145 47.8645980

Table 5. The susceptible cases.
α\ t 0 0.1 0.2 0.3 0.4 0.5

0 48.6997 48.6997 48.6997 48.6997 48.6997 48.6997
0.1 50 48.9059 48.8304 48.784 48.7499 48.7229
0.2 50 49.0928 48.9624 48.8778 48.8139 48.7619
0.3 50 49.2578 49.0911 48.9771 48.888 48.8138
0.4 50 49.4004 49.2131 49.0782 48.9691 48.8759
0.5 50 49.521 49.3261 49.178 49.0541 48.9455
0.6 50 49.6213 49.4287 49.2742 9.1404 49.0202
0.7 50 49.7034 49.5202 49.365 49.2258 49.0976
0.8 50 49.7697 49.6004 49.4491 49.3086 49.1757
0.9 50 49.8226 49.6699 49.5258 49.3873 49.2529
1 50 49.8643 49.7293 49.5948 49.461 49.3279

Table 6. The susceptible cases.
α\ t 0.6 0.7 0.8 0.9 1

0 48.6997 48.6997 48.6997 48.6997 48.6997
0.1 48.7004 48.6811 48.6641 48.649 48.6353
0.2 48.7178 48.6793 48.6451 48.6142 48.586
0.3 48.7496 48.6928 48.6416 48.5948 48.5516
0.4 48.7938 48.7199 48.6523 48.5899 48.5317
0.5 48.848 48.7587 48.676 48.5987 48.5258
0.6 48.91 48.8074 48.7111 48.6199 48.5331
0.7 48.9776 48.8641 48.7559 48.6522 48.5524
0.8 49.0488 48.9268 48.8088 48.6942 48.5828
0.9 49.1219 48.9937 48.868 48.7444 48.6228
1 49.1953 49.0633 48.9319 48.8012 48.671
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Table 7. The infected cases.
α\ t 0 0.1 0.2 0.3 0.4 0.5

0 55.8492 55.8492 55.8492 55.8492 55.8492 55.8492
0.1 60 56.494 56.2569 56.1114 56.0049 55.9205
0.2 60 57.0818 56.6695 56.4033 56.2024 56.0394
0.3 60 57.6047 57.0741 56.7133 56.4321 56.1985
0.4 60 58.0592 57.4601 57.0307 56.6846 56.3901
0.5 60 58.4461 57.8199 57.3461 56.9511 56.6065
0.6 60 58.7693 58.1481 57.6517 57.2234 56.8402
0.7 60 59.0349 58.442 57.9417 57.4946 57.0841
0.8 60 59.2499 58.7008 58.2116 57.7588 57.332
0.9 60 59.4217 58.9256 58.4588 58.0112 57.5782
1 60 59.5575 59.1182 58.6818 58.2485 57.8182

Table 8. The infected cases.
α\ t 0.6 0.7 0.8 0.9 1

0 55.8492 55.8492 55.8492 55.8492 55.8492
0.1 55.8502 55.79 55.7371 55.69 55.6474
0.2 55.9014 55.7812 55.6744 55.5781 55.4903
0.3 55.997 55.8189 55.6586 55.5124 55.3779
0.4 56.1312 55.8987 55.6867 55.4912 55.3094
0.5 56.2975 56.0157 55.7552 55.5122 55.2838
0.6 56.4897 56.1646 55.86 55.5724 55.2992
0.7 56.7011 56.3398 55.9964 55.6682 55.3531
0.8 56.9255 56.5355 56.1595 55.7956 55.4422
0.9 57.1572 56.7462 56.3441 55.9499 55.5629
1 57.3909 56.9665 56.5451 56.1267 55.7111

Table 9. The recovered cases.
α\ t 0 0.1 0.2 0.3 0.4 0.5

0 43.5958 43.5958 43.5958 43.5958 43.5958 43.5958
0.1 40 43.0583 43.2575 43.3794 43.4682 43.5386
0.2 40 42.5625 42.9134 43.1384 43.3074 43.444
0.3 40 42.1157 42.5725 42.8806 43.1192 43.3165
0.4 40 41.7226 42.2435 42.6138 42.9101 43.1609
0.5 40 41.3846 41.9337 42.3456 42.6867 42.9825
0.6 40 41.0999 41.6482 42.083 42.4556 42.7872
0.7 40 40.8645 41.3906 41.8315 42.223 42.5806
0.8 40 40.6731 41.1622 41.5955 41.9943 42.3683
0.9 40 40.5195 40.9628 41.3779 41.774 42.1554
1.0 40 40.3978 40.7913 41.1806 41.5655 41.9463
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Table 10. The recovered cases.
α\ t 0.6 0.7 0.8 0.9 1

0 43.5958 43.5958 43.5958 43.5958 43.5958
0.1 43.597 43.647 43.6908 43.7299 43.7651
0.2 43.5594 43.6596 43.7483 43.8282 43.9009
0.3 43.486 43.6353 43.7691 43.8908 44.0025
0.4 43.3803 43.5764 43.7545 43.918 44.0697
0.5 43.2463 43.4858 43.7061 43.9107 44.1023
0.6 43.0887 43.3669 43.6264 43.8703 44.1009
0.7 42.9125 43.2239 43.5185 43.7987 44.0665
0.8 42.7228 43.0612 43.386 43.6988 44.0012
0.9 42.5247 42.8834 43.2329 43.5739 43.9073
1.0 42.3229 42.6953 43.0635 43.4277 43.7879

Table 11. The dead cases.
α\ t 0 0.1 0.2 0.3 0.4 0.5

0 47.9246 47.9246 47.9246 47.9246 47.9246 47.9246
0.1 50 48.2497 48.1304 48.0571 48.0034 47.9608
0.2 50 48.5454 48.3384 48.2046 48.1035 48.0214
0.3 50 48.8076 48.54 48.361 48.2197 48.1023
0.4 50 49.035 48.7357 48.5207 48.3473 48.1994
0.5 50 49.2281 48.9158 48.6791 48.4815 48.3088
0.6 50 49.389 49.0798 48.8322 48.6183 48.4266
0.7 50 49.5211 49.2263 48.9771 48.7542 48.5492
0.8 50 49.628 49.3552 49.1118 48.8863 48.6734
0.9 50 49.7133 49.467 49.235 49.0123 48.7966
1 50 49.7807 49.5626 49.3459 49.1305 48.9164

Table 12. The dead cases.
α\ t 0.6 0.7 0.8 0.9 1

0 47.9246 47.9246 47.9246 47.9246 47.9246
0.1 47.9254 47.8949 47.8683 47.8445 47.823
0.2 47.9518 47.8912 47.8373 47.7887 47.7444
0.3 48.0008 47.9111 47.8303 47.7566 47.6887
0.4 48.0693 47.9523 47.8456 47.7471 47.6555
0.5 48.1538 48.0123 47.8813 47.759 47.644
0.6 48.251 48.088 47.9352 47.7907 47.6533
0.7 48.3576 48.1768 48.0047 47.8401 47.6818
0.8 48.4705 48.2756 48.0874 47.9051 47.7279
0.9 48.5867 48.3815 48.1806 47.9834 47.7897
1 48.7036 48.492 48.2818 48.0727 47.865
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Table 13. Fuzzy fractional epidemic model SIRD-delay.
S I R D

r mini maxi mini maxi mini maxi mini maxi
0 36.5247 54.7871 41.8869 62.8303 32.6969 49.0453 35.9434 53.9151

0.1 37.6924 54.1068 43.1268 61.9078 33.918 48.6887 37.0628 53.2031
0.2 38.8688 53.4446 44.3923 61.0394 35.1207 48.2909 38.1955 52.5188
0.3 40.0551 52.7999 45.6867 60.2234 36.3021 47.8527 39.3431 51.8614
0.4 41.252 52.1716 47.013 59.4576 37.4592 47.3749 40.5071 51.2296
0.5 42.4601 51.5587 48.3734 58.7391 38.5895 46.8587 41.6885 50.6218
0.6 43.6798 50.9597 49.7693 58.0642 39.6908 46.3059 42.8879 50.0359
0.7 44.911 50.3732 51.2016 57.4288 40.7616 45.719 44.1057 49.4699
0.8 46.1536 49.7973 52.6701 56.8283 41.8011 45.1012 45.3415 48.9211
0.9 47.4072 49.2305 54.1739 56.2575 42.8096 44.4561 46.5949 48.3871
1.0 48.671 48.671 55.7111 55.7111 43.7879 43.7879 47.865 47.865
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Figure 2. Fuzzy-fractional model for
t ∈ [0, 300].
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Figure 3. Fuzzy-fractional model for
t ∈ [0, 3].
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Figure 4. Fractional S (t).
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Figure 5. Fractional I(t).
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Figure 6. Fractional R(t).
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Figure 7. Fractional D(t).
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Figure 8. Fractional SIRD for t ∈ [0, 1].

Figure 9. Fuzzy Fractional S (t). Figure 10. Fuzzy fractional I(t).
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Figure 11. Fuzzy fractional R(t). Figure 12. Fuzzy fractional D(t).

From Tables 1–4, we can confirm the solutions are correct at least to one decimal place of accuracy
by comparison of LADM-4, DTM-4, and RKM-4 methods.

Implications of Figures 2, 3 and 7

(1) The model we have shown here is not the cumulative case study. It is the daily change in the SIRD
cases due to the epidemic’s spread.

(2) If it is cumulative the graph of death will be fixed at a particular count and will not change,
especially decreased with time.

(3) If it is cumulative, the curve of D will not decrease since rebirth is physically impossible and it will
increase or otherwise it is stable at a particular count if there is no new death.

(4) The model we considered cannot be taken as closed since there is a change in death.

(5) The model does not imply the death of people who died naturally due to age, accident, disaster,
etc., it is only implying the death due to the epidemic spread. So decrease of curve D implies only
that when time increases the daily new death count decreases.

(6) The curve of S ,I,D decreases but R increases for some t, and after that it also gets reduced. The
curve I is not hiking and continuously reducing because the model we considered is a delay model
having I(t− τ). At initial time I(t) is the same as the I(t− τ). When there is a decrease in daily new
susceptible, it not only means the existing susceptible went to the compartment I, being susceptible
the people might be gone out of S due to recovering from the symptoms which is also the reason
for the decrease of I, since S is decreasing and by which I is also decreasing, initially there is a
hike in the curve of R. After a certain time, R is also decreased since there is a decrease in I.

(7) In addition, the curves of D are more dominated by ψ than γ.

(8) All the curves decrease as time increases because it is a daily case study and not a cumulative case
study. After the time t ≥ 300 S , I,R,D become zero means at time t ≥ 300thday, there is no new
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susceptible, new infected, new recovered and new dead since we are studying only daily case study
and not cumulative study.

(9) Since the solutions are derived using the LADM technique they are not cumulative. Because in
cumulative only the increase of time will increase at least one of the compartment cases mostly, R.
But here we are addressing only a daily case study in which an increase of time need not imply an
increase of at least a compartment case.

(10) Due to the above implications, the reason for the decrease of D curves as shown in Figure 6 is also
justified.

8. Conclusions

The system of the single retarded delay fuzzy fractional epidemic model under ABC derivative was
presented. To study its stability the system was reduced to two steady states such as disease-free and
disease dependent since if the steady states are stable then obviously the complete system is stable.
The basic reproduction number was found and stability analysis is done for both the steady states. We
proved that the steady states always remain to be steady, by a theorem. For a negative semi-definite
eigenvalue, we proved the theorem to claim that the system is stable. From our study steady-state 1 is
asymptotically stable and steady-state 2 is stable and both are not affected by the delay. so no Hopf
bifurcation will occur. For αi ∈ [0, 1], i = 1, 2, 3, 4, Fuzzy valued S (t), I(t), R(t) and D(t) at t ∈ [0, 1],
r ∈ [0, 1] are shown in the tables and plots. Traditionally two numerical solutions will be compared
with one analytical solution but we differently compared two analytical solutions with that of one
numerical solution. Because the analytical solutions seem to coincide by only one decimal place of
accuracy. In order to confirm the accuracy of the solution, we considered RKM-4 which is very direct.
All these three methods were compared at αi = 1. The solutions by LADM, DTM and RKM are equally
well-matched in accuracy up to one decimal place. But RKM-4 is considered as a quick as well as a
direct solution in case of the delayed epidemic model. We are solving the delay term by means of linear
operation instead of the time-shift property of Laplace transform in both LADM and in DTM. So one
can get a doubt about the correctness of the solutions. That’s why we are comparing LADM and DTM
solutions with that of RKM-4 solutions which is very direct involving neither a transformation nor a
linearization to confirm the correctness of the solutions. Also, we have to keep in mind that to solve
the fuzzy ordinary epidemic model with a single retarded delay one can use RKM-4, and to solve the
fuzzy fractional-order epidemic model with a single retarded delay one can use LADM-4 as well as
DTM-4. The limitation of the model is the value of the delay term that could not be extended beyond
the value used in the initial condition. In the future the authors would like to do the research on this
retard delay epidemic model to predict the daily new cases.
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