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Abstract
Dealing with nonsingular kernels is not an easy task due to their restrictions at origin. In this
short paper, we suggest an extension of the fractional operator involving the Mittag-Leffler ker-
nel which admits integrable singular kernel at the origin. New solutions of the related differential
equations were reported together with some perspectives from the modelling viewpoint.

Keywords : Fractional Calculus; Mittag-Leffler Kernel.

1. INTRODUCTION

Fractional calculus has a respectable history of 325
years but still has tremendous open problems at
both theoretical and applied viewpoints (see for
example Refs. 1–5 and the references therein). Frac-
tional calculus is an extension of meaning6 and in
our opinion, several types of fractional operators
can be suggested. During the last years, several clas-
sifications of fractional operators were proposed and
the reader can see for example, Ref. 7 and the ref-
erences therein. Since we have more experimental
results to verify the validity of the fractional models,
some researchers concluded that it is not possible to
use a single fractional operator, e.g. Caputo ones,
to describe all type of complex phenomena in sci-
ence and engineering.8 Among several point of views
regarding the meaning of fractional calculus,1–5 per-
haps the one expressed by Liouville in 1832 is valu-
able, namely, he created a fractional operator to be
used successfully for some applied complex prob-
lems from geometry and physics.9 Generalizing the
work from Ref. 8 and taking into account the fun-
damental work of Boltzmann10 the operator with
Mittag-Leffler kernel was suggested in Ref. 11. It
is well known that several kernels, singular or non-
singular, describe complex processes with memory
effect. However, for nonsingular kernels, we can have
some problems with the initialization. Like men-
tioned earlier in Ref. 12 for all types of equations of
the following form:∫ x

a
K(x, t)y(t)dt = f(x), a �= x �= b, (1)

where K(x, t) and f(x) are continuous, if K(a, a) �=
0 then f(a) = 0.12 This condition leads to some
unnatural restrictions within the related differential
equations involving nonsingular kernels. For more
details regarding this important unsolved yet issue,
the readers can see p. 3 of Ref. 12. Very recently,
Refs. 13 and 14 solved the above issue for the oper-
ator introduced in Ref. 8. Thus, taking into account

the above-mentioned problems of nonsingular oper-
ators, in this paper, we introduce a modification of
the operator with Mittag-Leffler kernel.

The main aim of this paper is to introduce a
modification of ABC fractional operator and to
prove that the related fractional differential equa-
tions based of this new operator can be easily ini-
tialized and new type of solutions can be reported.

2. MAIN RESULTS

2.1. The Role of the Space

The Caputo fractional derivative of order 0 < α <
1, is defined by Refs. 1–3

(
CDα

0 f
)
(t) =

1
Γ(1 − α)

∫ t

0
(s − t)−αf ′(s)ds,

t > 0.

It is known that if f ∈ C1[0, 1], then

lim
t→0+

(CDα
0 f)(t) = 0,

and thus the homogeneous fractional differential
equation (

CDα
0 f

)
(t) = λf(t),

possesses only the trivial solution on the space
C1[0, 1]. Also, the nonhomogeneous equation(

CDα
0 f

)
(t) = −λf(t) + h(t),

possesses a solution in C1[0, 1] provided that
−λf(0) + h(0) = 0. However, the space C1[0, 1]
is too restrictive for the Caputo derivative and a
more wider space is recommended. For instance, in
the space χ(f) = {f : f ′ ∈ L1[0, 1]}, the fractional
initial value problem(

CDα
0 f

)
(t) = −λf(t) + h(t), t ∈ (0, T ],

f(0) = f0,
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0 < α < 1, possesses the unique solution

f(t) = f0Eα,1(−λtα) +
∫ t

0
(t − s)α−1

×Eα,α(−λ(t − s)α)h(s)ds,

and the corresponding homogeneous equation pos-
sesses the nontrivial solution f(t) = f0Eα,1(−λtα).

The idea is: even if we consider a fractional
derivative with singular kernel, the homogeneous
equation might have only the zero solution in a
certain space, which indicates the role of the space
to be considered. The Atangana–Baleanu fractional
derivative of order 0 < α < 1 of Caputo sense is
defined by Ref. 11

(
ABCDα

0 f
)
(t) =

B(α)
1 − α

∫ t

0
Eα(−μα(t − s)α)

× f ′(s)ds, t ≥ 0, (2)

where μα = α
1−α , and B(α) is a normalization func-

tion with B(0) = B(1) = 1. The derivative is
defined for t ≥ 0, as the kernel k(t) = Eα(−μαtα)
is nonsingular. Because k(t) is nonsingular one can
easily show that(

ABCDα
0 f

)
(0) = 0.

Thus, the homogeneous fractional differential equa-
tion (

ABCDα
0 f

)
(t) = λf(t),

possesses only the trivial solution, and the nonho-
mogeneous equation(

ABCDα
0 f

)
(t) = −λf(t) + h(t),

possesses a solution provided that −λf(0)+ h(0) =
0, no matter is the space, see Ref. 15.

Using the standard integration by parts in (2)
and taking into account the derivative of the
Mittag-Leffler function, the ABC-derivative can be
written as, see Ref. 20,(

ABCDα
0 f

)
(t)

=
B(α)
1 − α

[
f(t) − Eα(−μαtα)f(0)

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)f(s)ds

]
.

(3)

The definitions in Eqs. (2) and (3) are equivalent
in a space like H1(0, T ). However, the space of the
function f in Eq. (3) can be extended to a more

wider space in which

lim
t→0+

(
ABCDα

0 f
)
(t) �= 0.

In that case, we avoid the extra conditions needed
to guarantee the existence of solutions to the asso-
ciated fractional differential equations.

Remark 1. We remark here that under certain
conditions, we can do integration by parts for the
fractional derivatives with singular kernels as well.
For instance if f ∈ C1[0, T ] and f(t0) = 0, t0 ∈
(0, T ] then integration by parts of the Caputo
derivative (Dα

0 f)(t0), 0 < α < 1, was performed
in Refs. 16–18.

2.2. The Modified ABC Fractional
Operator in L1(0, T )

The expression of the ABC fractional derivative is
presented below.

Definition 2. Let f ∈ L1(0, T ), the modified
Atangana–Baleanu derivative of order 0 < α < 1,
in Caputo sense is defined by(

MABCDα
0 f

)
(t)

=
B(α)
1 − α

[
f(t) − Eα(−μαtα)f(0)

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)f(s)ds

]
.

(4)

We remark here that the kernel in the MABC-
derivative k(t) = tα−1Eα,α(−μαtα) has integrable
singularity at the origin. By direct calculations, we
observed that the integral operator corresponding
to (2) is the same as the original ABC integral.11

On the same line of taught, the higher order MABC-
derivatives can be defined in the following manner.

Definition 3. Let f (n−1) ∈ L1(0, T ), the modified
Atangana–Baleanu derivative of order n − 1 < δ <
n, in Caputo sense is defined by(

MABCDδ
0f

)
(t)

=
B(α)
1 − α

[
f (n−1)(t) − Eα(−μαtα)f (n−1)(0)

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)

× f (n−1)(s)ds

]
, (5)

where δ = α + n − 1.
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Below we present first some illustrative examples.

Example 1. Let us consider the constant function
f(t) = C and 0 < α < 1. We have(

MABCDα
0 C

)
(t)

=
B(α)
1 − α

[
C − Eα(−μαtα)C

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)Cds

]
.

(6)

Since ∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)ds

= − 1
μα

(Eα(−μαtα) − 1),

then (
MABCDα

0 C
)
(t) = 0.

In the above example, we indicate that(
MABCDα

0 C
)
(t) = 0, a result which is expected as

f(t) = C ∈ H1(0, T ). In the following example, we
show that

(
MABCDα

0 f
)
(t) doesn’t vanish at t = 0.

Example 2. Consider

f(t) =

{
t−

1
2 , t �= 0,

A, t = 0.
(7)

A ∈ R. For α = 1
2 , and B(α) = 1, we have μα =

α
1−α = 1, and thus

(
MABCD

1
2
0 f

)
(t)

= 2
[
f(t) − AEα(−t

1
2 )

−
∫ t

0
(t − s)−

1
2 E 1

2
, 1
2
(−(t − s)

1
2 )s−

1
2 ds

]

= 2
[
f(t) − AEα(−t

1
2 ) −√

πE 1
2
(−t

1
2 )

]
= 2

[
f(t) − (A +

√
π)E 1

2
(−t

1
2 )

]
.

Since E 1
2
(0) = 1, we have

(
MABCD

1
2
0 f

)
(0) = 2

[
f(0) − (A +

√
π)E 1

2
(0)

]
= −2

√
π �= 0.

Figure 1 depicts the graph of f(t) and the MABC-
derivative of f(t) for A = 1.

Fig. 1 The graph of f(t) and the MABC-derivative of f(t)
in Example 2.

Remark 4. The above example indicates that the
fractional initial value problem

(
MABCD

1
2
0 u

)
(t) − 2u(t) = −2(A +

√
π)E 1

2
(−t

1
2 ),

u(0) = A,

possesses the solution f(t) given in Eq. (7), while
the corresponding initial value problem with the
original ABC-derivative

(ABCD
1
2
0 u)(t) − 2u(t) = −2(A +

√
π)E 1

2
(−t

1
2 ),

u(0) = A,

possesses no solution.

Example 3. Consider

f(t) =

⎧⎪⎨
⎪⎩

t
1
2 sin

(
1
t

)
, t �= 0,

0, t = 0.

Because f ∈ C[0, 1], then
(
MABCDα

0 f
)
(t) exists for

all 0 < α < 1, and t ∈ [0, 1], whereas (ABCDα
0 f)(t)

doesn’t exist.

It is known that for 0 < α < 1, the equation
(ABCDα

0 u)(t) = C, C ∈ R − {0}, possesses no
solution, which is not the case with the MABC-
derivative as indicated in the following example.

Example 4. For 0 < α < 1, the solution of(
MABCDα

0 u
)
(t) = C, C ∈ R, t > 0

2240129-4
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is given by

u(t) = C
1 − α

B(α)

⎧⎨
⎩

1 + μα
tα

Γ(1 + α)
, t > 0,

0, t = 0.

Proof. Since u(0) = 0, we have for t > 0,

L(
MABCDα

0 u; s
)

=
B(α)
1 − α

sα

sα + μα
L(u; s)

= C
sα

sα + μα

(
1
s

+
μα

s1+α

)

=
C

s
= L(C),

which completes the proof.

In the following, we show that the homoge-
nous fractional initial value problem possesses a
nonzero solution. We will use the following known
formulas:

L(Eα(γtα)) =
sα−1

sα − γ
,

∣∣∣ γ

sα

∣∣∣ < 1, (8)

L(tα−1Eα,α(γtα)) =
1

sα − γ
,

∣∣∣ γ

sα

∣∣∣ < 1, (9)

L(
MABCDα

0 f ; s
)

= L(ABCDα
0 f ; s)

=
B(α)
1 − α

sαL(f ; s) − f(0)sα−1

sα + μα
,

∣∣∣μα

sα

∣∣∣ < 1.

(10)

Lemma 5. Consider the fractional initial value
problem(

MABCDα
0 u

)
(t) = λu(t), t > 0, u(0) = u0,

where 0 < α < 1.

(1) For λ = B(α)
1−α , the solution is given by

u(t) = u0

⎧⎪⎨
⎪⎩
− t−α

μαΓ(1 − α)
, t �= 0,

1, t = 0.

(2) For λ �= B(α)
1−α , the solution is given by

u(t) = u0

⎧⎪⎨
⎪⎩

Eα(μα
δα

1−δα
tα)

1 − δα
, t �= 0,

1, t = 0,

where δα = λ(1−α)
B(α) .

Proof.

(1) Given that∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)s−αds

= Γ(1 − α)Eα(−μαtα), (11)

we have for t > 0,(
MABCDα

0 u
)
(t)

=
B(α)
1 − α

(
u(t) − Eα(−μαtα)u0

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)

×
(
− u0

μαΓ(1 − α)
s−α

)
ds

)

=
B(α)
1 − α

(u(t) − Eα(−μαtα)u0

+ Eα(−μαtα)u0)

= λu(t),

which completes the proof.
(2) Using Eqs. (8) and (10) we have for t > 0,

L(
MABCDα

0 u; s
)

=
B(α)
1 − α

1
sα + μα

(
u0

1 − δα
sα

× sα−1

sα − μα
δα

1−δα

− u0s
α−1

)

=
B(α)
1 − α

u0
δα

1 − δα

sα−1

sα − μα
δα

1−δα

= λ
u0

1 − δα

sα−1

sα − μα
δα

1−δα

= λ
u0

1 − δα
L

(
Eα

(
μα

δα

1 − δα
tα

))
,

which completes the proof.

Lemma 6. Consider the linear fractional initial
value problem(
MABCDα

0 u
)
(t) + λu(t) = g(t), t > 0, u(0) = u0.

For 0 < α < 1, and λ �= −B(α)
1−α , the solution of the

above fractional initial value problem is given by

u(t) =

{
û, t �= 0,
u0, t = 0,

(12)
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where

û = u0
B(α)
rα

Eα

(
−λα

rα
tα

)
+

1 − α

rα
g(t) +

1 − α

rα

×
(

μα − λα

rα

)(
tα−1Eα,α

(
−λα

rα
tα

))
∗ g,

and rα = B(α) + λ(1 − α).

Proof. Using Eqs. (8) and (9) one can easily verify
that

L(û; s) =
u0B(α)sα−1 + (1 − α)(sα + μα)L(g; s)

rαsα + λα
.

(13)

Using Eq. (10) we have

L(
MABCDα

0 u + λu; s
)

=
B(α)
1 − α

sαL(û; s) − sα−1u0

sα + μα

+ λL(û; s). (14)

Direct calculations will lead to

L(
MABCDα

0 f + λu; s
)

=
1

(1 − α)(sα + μα)
((rαsα + λα)L(û; s)

−B(α)u0s
α−1). (15)

By substituting Eq.(13) in Eq. (15) we have

L(
MABCDα

0 f + λu; s
)

=
1

(1 − α)(sα + μα)
(u0B(α)sα−1 + (1 − α)

× (sα + μα)L(g; s) − u0B(α)sα−1)

= L(g; s),

which completes the proof.

Remark 7. If g ∈ C[0, T ], then

û(0) =
1
rα

(u0B(α) + (1 − α)g(0)).

If we add the extra condition

λu0 = g(0), (16)

then û(0) = u0, and the solution given in Eq. (12)
is continuous. This solution is the same solution
obtained for the associated initial value problem
with the ABC-derivative, and the condition in (16)
is the necessary condition to guarantee the existence
of a solution.

For the associated fractional integral operator,
we use the one obtained in Ref. 19.

Definition 8. For f ∈ L1(0,∞), n − 1 < δ < n,
n ∈ N, α = δ − n + 1, the modified Atangana–
Baleanu fractional integral operator is defined by

(MABIδ
0f)(t) =

1 − α

B(α)

((
RLIn−1

0 f
)
(t)

+ μα

(
RLIn+α−1

0 f
)
(t)

− f(0)
(

tn−1

Γ(n)
+ μα

tn+α−1

Γ(n + α)

))
,

=
1 − α

B(α)
(
RLIn−1

0 (f − f(0))
)
(t)

+ μα

(
RLIn+α−1

0 (f − f(0))
)
(t).

(17)

Lemma 9 (Ref. 19). For f (n) ∈ L1(0,∞), and
n − 1 < δ < n, n ∈ N, α = δ − n + 1, the following
holds true:

(MABIδ
0

MABCDδ
0f)(t) = f(t) −

n−1∑
k=0

f (k)(0)
tk

k!
,

(18)
(MABCDδ

0
MABIδ

0f)(t) = f(t) − f(0). (19)

2.3. Infinite Series Representation

We present an infinite series representation of
the MABC-derivative using the Riemann–Liouville
integrals. We have∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)f(s)ds

=
∫ t

0
(t − s)α−1

∞∑
k=0

(−μα)k(t − s)αk

Γ(αk + α)
f(s)ds

=
∞∑

k=0

(−μα)k

Γ(αk + α)

∫ t

0
(t − s)α(k+1)−1f(s)ds

=
∞∑

k=0

(−μα)k
(
RLI

α(k+1)
0 f

)
(t), (20)

and thus(
MABCDα

0 f
)
(t)

=
B(α)
1 − α

[
f(t) − Eα(−μα)f(0)

−μα

∫ t

0
(t − s)α−1Eα,α(−μα(t − s)α)f(s)ds

]

2240129-6
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=
B(α)
1 − α

[
f(t) − Eα(−μα)f(0)

−
∞∑

k=0

(−μα)k+1
(
RLI

α(k+1)
0 f

)
(t)

]
. (21)

The above-mentioned formulas are useful to
derive the Leibniz and chain rules for the modified
version of ABC operator.

3. CONCLUSION

We have introduced the MABC-fractional deriva-
tive which is an extension to the ABC-derivative
in a more wider space. The kernel of the MABC-
derivative has integrable singularity at the origin.
The modification of ABC leads us to some new
solutions of the corresponding fractional differen-
tial equations and the fundamental role of the space
can be clearly stated. Besides, the results obtained
in this present manuscript show once more the
importance of the Caputo like type derivatives. We
show that the solutions of several fractional equa-
tions with the MABC-derivative which are not solv-
able with the ABC-derivative. For instance, the
homogenous fractional differential equations with
the MABC-derivative admit a nonzero solution,
and certain linear fractional equations admit solu-
tions without imposing extra conditions. The inte-
gral operator associated to the MABC-derivative is
the same as the one corresponding to the ABC-
derivative. We also report an infinite series repre-
sentation of the MABC-derivative. From the mod-
elling viewpoint the new suggested modification will
bring some light for both problems with and with-
out singularity at origin. As a result, we will be able
to characterize better the dynamics of complex phe-
nomena by using MABC-derivative. In this way, the
range of applicability of these operators will be con-
siderably enlarged.
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