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This research paper is devoted to investigating two classes of boundary value problems for nonlinear Atangana-Baleanu-type
fractional differential equations with Atangana-Baleanu fractional integral conditions. The applied fractional derivatives work as
the nonlocal and nonsingular kernel. Upon using Krasnoselskii’s and Banach’s fixed point techniques, we establish the existence
and uniqueness of solutions for proposed problems. Moreover, the Ulam-Hyers stability theory is constructed by using nonlinear

analysis. Eventually, we provide two interesting examples to illustrate the effectiveness of our acquired results.

1. Introduction

Fractional calculus and its potential applications have be-
come a powerful tool to model many complex phenomena in
apparently wide-ranging fields of science and technology
[1-8]. To meet the needs of modeling many practical
problems in different fields of science and engineering, some
researchers have realized the necessity development of the
concept of fractional calculus by searching for new fractional
derivatives with different singular or nonsingular kernels.
From this perspective, new fractional operators have turned
into the best effective tool of numerous specialists and re-
searchers with their contribution to physical phenomena
and their performance in applying to real-world problems.
Until 2015, all fractional derivatives had only singular
kernels. Therefore, it is difficult to use these singularities to
simulate physical phenomena. In 2015, Caputo and Fabrizio
[9] studied a new kind of FD in the exponential kernel. Some
properties of this new type had been discussed by Losada and
Nieto in [10]. A new type and interesting FD with

Mittag-Leffler kernels has been investigated by Atangana
and Baleanu (A-B) in [11]. Abdeljawad in [12] extended the
kind investigated by A-B from order between zero and one
to higher arbitrary order and formulated their associated
integral operators. Also, he proved some properties such as
the existence and uniqueness theorems for two classes of
fractional derivative, Riemann type (ABR) and Caputo type
(ABC), for initial value problems in higher arbitrary order
and proved a Lyapunov-type inequality in the frame of
Mittag-LefHler kernels for the ABR fractional boundary value
problems of order 2 <a<3. Abdeljawad and Baleanu, in
[13, 14], deliberated the discrete versions of those new
operators. For some theoretical works on Atangana-Baleanu
FDEs, we refer the reader to a series of papers [15-17]. For
important applications and mathematical modeling of the
ABC fractional operator, see [18-21]. On the contrary, there
are some important numerical approaches regarding non-
singular kernels; for example, in [22], via a spectral collo-
cation method based on the shifted Legendre polynomials
with extending the unknown functions and their derivatives



using the shifted Legendre basis, Tuan et al. solved fractional
rheological models and Newell-Whitehead-Segel equations
with the nonlocal and nonsingular kernels. Nikan et al. in
[23] developed the solution of the two-dimensional time-
fractional evolution model using a finite difference scheme
derived from the radial basis function (RBF-FD) method.
Ganji et al. in [24] studied the multivariable-order differ-
ential equations (MVODEs) with the nonlocal and non-
singular kernels in the Atangana and Baleanu sense of
variable orders. They used the fifth-kind Chebyshev poly-
nomials as basic functions to obtain operational matrices
and used them with the collocation method to transfer the
original equations to a system of algebraic equations. Fir-
oozjaee et al. in [25] studied the Fokker-Planck equation
(FPE) with CF-FD being considered. They presented a
numerical approach that is based on the Ritz method with
known basis functions to transform this equation into an
optimization problem. Baleanu et al. in [26] showed that
four fractional integrodifferential inclusions have solutions.
Also, they showed that the dimension of the set of solutions
for the second fractional integrodifferential inclusion
problem is infinite-dimensional under some different con-
ditions. By using the fractional CF derivative, Aydogan et al.
[27] introduced two types of new high-order derivations
called CFD and DCF. Also, they studied the existence of
solutions for two such types of high-order fractional inte-
grodifferential equations. Guoa et al. in [28, 29] studied the
existence and HU stability of the FDEs with impulse and
fractional Brownian motion under nonlocal conditions
based on the semigroups of operators method and Ménch
fixed point method.

There are some researchers in various areas who in-
vestigated the existence and Ulam-Hyers (UH) stability of
solutions for fractional differential equations (FDEs) of some
problems with initial (or boundary, nonlocal) conditions;
more details can be found within research series [30-35].

Recently, Abdo et al. [36] considered ABC-type pan-
tograph FDEs with nonlocal conditions:

ABCDP 9(g) = f(0,9(0),9(y0)),0 € [a,T], p € (0,1],

9(a) = Y 904) % € (a,T).
k=1

(1)
In this regard, the ABC-type implicit FDEs
ACDL9(0) = £(0,9(0), " DES(0)), o€ [aT], (2)

with nonlinear integral conditions
T

9(a) -9 (a) = J g(s,9(s))ds, whenp e (0,1],

T
9(a) = 0,9(T) = j 9(s,9(s))ds, whenp e (1,2],

(3)

had been studied by Abdo et al. [37].
Motivated by the above argumentations, we intend to
investigate and develop the sufficient conditions for

Journal of Function Spaces

existence, uniqueness, and UH stability results of two new
classes for the ABR and ABC fractional differential problems
described as follows:

{ABRD;’;S(U) = (0,9(0)), o€ [abl,pe (23] @
9(a) = 0,9(b) = *B12.9((), (€ (a,b),
ABCDP 9(0) = f(0,9(0)), o€ [abl,pe (1,2], )
9(a) = 0,9(b) = *B12.9(0), (€ (ab),

where ABRD? | ABCDP  are the ABR and ABC fractional
derivatives of order p € (2,3] and p € (1, 2], respectively,
€ (0,1], ( € (a,b), and f: [a,b] xR — R is a contin-
uous function.

To the best of our understanding, this is the first work
that transacts with ABC and ABR fractional derivatives of a
high order, especially with AB integral conditions. Also, we
studied existence and uniqueness without using the semi-
group property. In consequence, our results will be a useful
contribution to the existing literature on these interesting
operators.

The paper is organized as follows. In Section 2, we
present some notations and some preliminary facts which
are used throughout the paper. In Section 3, we derive the
formula of an equivalent integral equation for ABR-type
FDEs (4). Section 4 discusses the existence and uniqueness
results for ABR-type FDEs (4) and ABC-type FDEs (5). In
Section 4, we discuss the stability results in the frame of UH.
Section 5 provides two examples to illustrate the validity of
our results. Concluding remarks about our results are in the
last section.

2. Preliminaries

Let ] = [a,b] c R and C(J,R) be the space of all contin-
uous functions 9: ] — R with the norm ||9|| = max
{I9(0)|: 0 € J}. Then, (C(J,R), [ - ) is a Banach space.

Definition 1 (see [11]). Let 0< p<1. Then, the left-sided
ABC and ABR fractional derivatives of order p for a function
9 are defined by

&

ABC ~p _ (p r
D;.9(0) 1=, aEp<p

P (a—e)P>9’(e)d0, o>a
p -1

[o3]
| o

ABR P 9(g) = D(P)
1-p

o

JEP< P (a—e)P>9'(9)d9, o>a,
oJa p-1

(6)

respectively, where B (p) is the normalization function such
that B(0) = B(1) =1 and E,is the Mittag-Leffler function
defined by

00 i

g
Ey(9)=), T(ip+1)

i=0

Re(p)>0,9 € C. (7)

The analogous AB fractional integral is given by
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AB1p _1-p p P
I.9(0) = B(o) ) 9(0) + B () DI L (o —5)"""9(s)ds.
(8)

Lemma 1 (see [13]). Let 0< p<1. If the ABC fractional
derivative exists, then we have

APTEABCDP 9(0) = 9(0) - 9(a). 9)

Definition 2 (see [12]). The relation between the ABR and
ABC fractional derivatives is given by

ABCDP 9(0) = AP*DP.9(0)

B(p) p
- 1_I)S(Q)EP<I)_1(O' - a)p>

(10)

Remark 1. By applying *®12.9(o) on both sides of the
equation defined in Definition 2 and using Lemma 1, we get

ABIPAPRDP 9(0) = 9(0). (11)

Lemma 2 (see [11]). Let 9> 0. Then, ABIZ, is bounded from
C(J,R) into C(J,R).

Definition 3 (see Definition 3.1 of [12]). Let n<p<n+1
and 9 be such that 9" € H!(a,b). Set B = p—n. Then,
0<f<1, and we define

(**°DP.9) (0) =(**°DL.9") (o),

ABR ABR 8 (12)
(***DE.9) (o) = (**"D%.9") (o).

The correspondent AB fractional integral is given by

(**12.9) (0) = (IL.*° 1%, 9) (o). (13)

Lemma 3 (see Proposition 3.1 of [12]). For 9(o) defined on |
and n< p<n+1, for some n € N, we have

(i) (APCDEAPIE.9) (0) = 9(0)

(iii) (“BIZ,APCDP 9)(0) = 9(0) - Y1 (99 (a)/i!) (o
a)

Lemma 4. Let n< p<n+ 1. Then, *®*DE, (¢ —a)" = 0, for
m=1,2,...,n-1

Proof. Let 9(0) = (0 —a)™. Then, by Definition 3, we have
ABCD§+9(0_) _ ABRD{?S(n) (o)

_ ABRDg [(O__a)m](n) (1

d (n)
= ABRD{; (—) (c—-a)".
do

Since m<n € N, we have (d/do)™ (¢ —a)" = 0. Con-
sequently, “BRD?, (¢ —a)™ = 0. 0O

Theorem 1 (see [38]). Assume that K is a closed subspace
from a Banach space X, and G is a contraction defined as
QK—K ie, [Qx)-QWI<Mlx-yll for some
0<M<1 and all x,y € K. Then, Q has a fixed point in K.

Theorem 2 (see [39]). Let X be a Banach space, and let a set
K ¢ X be nonempty, closed, convex, and bounded. If there are
two operators ®', ®* such that (i) ®'u+ ®*v € X, for all,
u,veX @' is compact and continuous, and (iii) ®* is a
contraction mapping, then there exists a function z € K such
that z = ®'z + O’z

Lemma 5 (see Lemma 5.1 of [12]). Let p € (2,3] and
h e C(J,R). Then, the solution of the following linear
problem,

{ABRD5+19(U):h(()'),s(a):cl)s(b):cz’ (15)
is given by
9(0) = ¢, + ¢, (0 —a) + **IL.h(0)

—c e (o-a)+ R h(0), 0<B=(p-2)<1,

(i)) (T2 MDY, 9) (0) = 9(0) - Y10 (90 (@)l) (o~ (o)
a) where
AB B _1-B B PSRN =1 _ 3-p p—-2 T \p-3
I“+h(0)_%(ﬁ)h(g)+§B(/§)F(/>’) ja (0—9) h(s)ds_7—2)h(0)+58(p—2)1"(p—2) L (6-9)"h(s)ds, (17)
ABp _ 2 ABJd _ 3= (7 _ p-2 N
k(@ = L2100 = g P | @-9neas+ ) | @9 neoas (18)
Lemma 6 (see Example 3.3 of [12]). Let p € (1,2] and {ABCD;S(O) =h(0),9(a) =¢;,9 (a) = c,, (19)
heC(J,R). Then, the solution of the following linear
problem, is given by



9(0) = ¢, + ¢, (0 —a) + “*I2. h(0), (20)
where

ABp _2-p (°
I.h(o) = Bo-1 G0 Ja h(s)ds
(21)

p- 1 ¢ RV
+ B(o_ 1 (o) (-DI(p) L (0 =) "h(s)ds.

3. Equivalent Integral Equation for Problem (4)

Lemma 7. Let pe (2,3],8¢ (0,1, A= (b-a)-481,
({—a)+0,and hy € C(J,R). A function 9 is a solution of the
following ABR problem,

{ ABRDP 9(0) = h, (0),
9(a) =0,9(b) = *B12,9(0), (€ (ab),

g€,

(22)

if and only if 9 satisfies the following fractional integral equation:

(0-a)

(o) = Y

[AB18 AR 1.1y (0) = P12y (B)] + AP 100 (o).

(23)

Proof. Assume that 9 is the solution to the first equation of
(22). Then, via Lemma 5, we have

9(0) = ¢, + ¢, (0 —a) + P12 b, (o). (24)

Now, by condition (9(a) = 0), we get ¢; = 0, and hence,
equation (24) reduces to

9(0) = ¢, (0 —a) + **IL.h, (0). (25)
Taking the operator 2812, on both sides of equation (25),

we have
A0 9(0) =L, (0 —a) + P P By (o). (26)

Now, replacing o by {, we get
AR 9(0) =PI, (= a) + P12 P12y (). (27)

By the second condition (9(b) = ABI%S(()) together
with equations (25) and (27), we get

¢ = % (A1 2212k, (0) = *° 121, ()], (28)

Substituting ¢, and c, in (24), we get (23).

Conversely, assume that 9 satisfies (23). Then, by ap-
plying the operator ABRD”. on both sides of (23) and using
Lemmas 3 and 4, we get

Journal of Function Spaces

(o-a)

o
ABRDP 9 (o) :ABRD;( - [*P10 22121y () = AP 181y (0)]

+ ABRDEAR I 1y (o)

=1, (o).
(29)

Next, taking ¢ — a in (23), we get 9(a) = 0. On the
contrary, applying A8I°. on both sides of (23), we get

ABPS (g
AP0 (o) = —a—— = 5\ ) (AP0 218 1y () = AP 10,y ()]
+ 2210 AP by (o).
(30)

Replacing o by (, we get

AB12+ (C - a)

AB ;6 _
I.9() = A

[*P10 APy () = 2212,y (0)]

+ 2B ABIE (0.
(31)
By the definition of A, we can rewrite (31) as

(b-a)-[(b-a)- 2212, ({ - )]

AB16+9 _
s (b-a)- 21, ({ - a)

(Y1218 1y () = 2210y (B)] + *P10 2P 1y ()

_ (b-a)
S (b-a)- M, ((-a)

[*P10. 218 1y () = AP 1y (B)] + AP 10,y (B)

- @ [*P10 2512 1y () = 2212 1y (0)] + AP 12,y (b)
=9(b).

(32)

Thus, the Atangana-Baleanu fractional integral condi-

tions are satisfied. O

As a result of Lemma 7, we get the following theorem.

Theorem 3. Let pe (2,3],6 € (0,1],A= (b-a)-"BI,
((-a)#0, and f: ] x R — R be a continuous function.
Then, ABR-type FDEs (4) are equivalent to the following
FIE:
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- ¢ d ¢ ~
30) =21, [ €= 9f 69+ [ @97 (s 90
dy (¢ 1 o ¢ o
T j (-9 L(S‘ S (1 9G0dnds + = s j (=" f(5,9(s))ds
(33)
b b
sty [ b= 9f (5. 9(s))ds - T [" 97 (s 9as
+elg J (0-9f (5, 9(ds + - (fj > J (0- )P £ (5, 9(s))ds,
where Proof. In view of Lemma 7, we have
_(1-8)B-p) _(0-a) [aB,5 AB,p _ ABp
D= BOB(p-2) 9(0) = —— ["1. 10 £ (€. 9(0) - V1L £ (6,9 (1))]
_(1-9(p-2) + P12, f (0,9(0)).
P B(OB(p-2) (35)
6(3-p) By using definitions of ABI& in the case § € (0, 1) defined
37y 0)B(p-2) in (8) and “PI”, in the case p € (2,3] defined in (18), we can

(34) rewrite equation (35) as follows:
__0(p-2)
L BO)B(p-2)

_ 3-p
ds_%(p—z)’

__p-2
ﬂﬁ_%(p_z).

_(o-a) [(1—6)

) =750

3-p ¢ p-2 ¢ -
{?B(p—Z) J @9 oeonas+ B (2 | @9 f(S,S(s))ds}

5 ¢ — s _ s
j({—s)‘“{ S J(s—n)f(mS(ﬂ))dm p-2 J(s—ﬂ)"‘lf(ﬂﬁ(ﬂ))dﬂ}ds

TBOIO) B(p-2) B(p-2T(p-2) Ja
3-p (*, ~ p-2 P
B(p-2) L (b=35)f(s,9(s))ds B(p- 2 (p-2) L (b—39)""f(s,9(s))ds]

3_P ¢ _ p_z 4 e
+%(p—2) L(a s)f(s,S(s))ds+%(p_z)r(P_z) L (0 -3 f(s5,9(s))ds

_(a—a)[(l—é) 3-p
A B B(p-2)

¢
j (¢ = 9)f (5, 9(s))ds

L(1-9) p-2
B(6) B(p-2r(p-2)

¢
j (€ = )P (5, 9(s))ds



3-p )
"B (p-2) BOIO)

p-2 0
TB(p-2I(p-2) BOTO)

3 -
- B(p- 2)

J (b= $)f (5, 9(s))ds -

%?;pz)J (0= )£ (5,9(s))ds +

(0 a)

- o, j (=9f (5 9(ds + =

I‘(6)

'Qfﬁ

b
-9 L (b-15)f(s,9(s))ds - p

+d5j (0= 5)f (5, 9(s))ds + (”Q{

For simplicity, we set

2 (<: @) d,(-a)f oy ((-a)"
L= T(p-1) T(5+1)

A, -a)P d(b-a) o (b-a)
ro+p-1 ' 2 " T(p-D

ds(b-a) dsb-a)
S T S
p-1

A -a) dy((-a)"
I'(p+1) I'(d+1)

P3 = ['977((_51)"'

o1y ((—a)’? o, (b-a)’
Torprn T Inl-a+—r7
oy, (b—a)

ps=dy(b—a)+ r(p+1)

_ ¢
29(0) = T~ o [ -

o
T
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j (€ -5 j2<s—n>f(n,9<n>)dnds
J (-9 IJ (s=n)f (n,9(n)dnds

p-2 j (b— )" £ (s,9(s))ds]

B(p-2T(p-2)

p-2 J (0 =) £ (s, 9(s))ds

B(p-2T(p-2)

1,

s)f (s, 9(s))ds +

d; (¢ o o ¢ o
s J ((_5)5 1Ja(5_q)f(ﬂ,9(q))dz1ds+m+71‘i_2) L ((—5)517 lf(s,S(s))ds

(36)
j (— )P (5, 9(s))ds
J (b= )P F(s,9(s))ds]
j (0 =) £ (s,9(s))ds.
O

4. Existence and Uniqueness of Solutions for
Problem (4)
In this section, we devote our intention to prove the exis-

tence and uniqueness of solutions for ABR-type FDEs (4).

Theorem 4. Suppose that f: ] xR — R is a continuous
function. Moreover, we assume that

If(e.u)~ flo.DI<Llu~al, L;>0uucR.  (38)

If

§Z°=Lf<P1(Z;\_a)+p2><l, (39)

then ABR-type FDEs (4) have a unique solution in J.

Proof. Consider the operator E: C(J,R) — C(J,R) de-
fined by

Ay (5
I'(p-2) J (€= f (s, 9(s))ds

4 s
—3j <c—s)‘“j (s = 1) f (1 9.())dnds
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‘9{4 ¢ S+p-1
+m L ((-s) £(s,9(s))ds
a - A . N
ﬂsja(b $)f (s, 9(s))ds T(p-2) J (b -9 f(5,9(s))ds] (40)

+ s r (0 —s)f(s,9(s))ds + r (o0 - s)P_lf(s,S(s))ds.

52{6
F(P_Z) a

(b-a)
Define a closed ball TT, as Z, = ( p1+ Pz) (42)

={9e¢C(J,R): I <ol
PeCUR):  I9I<g} (41) where ws = sup,¢;| f (0,0)|. Now, we show that EIl, c I1,.

with radius ¢ > (Z,/(1 - Z)), where For all § € IT, and o € ], we have

o ((7 a) dz ¢ p-1
I(E9) (o) < [, J (C=9)If (s,9(s)lds + Tp-2) L (C=9)""1f(s,9(s)lds

s (4o e [
eis | @9 | s mif o aeniands
d S+p-1
m J- (C-s) |f(5 9(s))|ds (43)

+52i5j (b-9)If (s, 9(5))|ds+ J- (b-s)” 1|f(s 9(s))|ds]

oA
I'(p-2)

j(o IS (5, 9(s)ds + (”Qf z)j (0 -9 ' f (5, 9(s))lds.
L —
By (38), we have oy < et “’/{) o (Lo + ey
1f (0.9(0))] b (b-a)
=1£(6,9(0)) - £ (6,0)| +|f (5, 0)] ) SLf( A P“”Z)“( A P1+P2>“’f
44
<L,19(0)] +1£ (0,0) gpr 7 <
<Lip+wy. (45)

Thus, HH c I1,. Next, we will show that E is a contraction
Hence, mapping. Let 9 Je C( J,R) and o € J. Then, we have
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E9)(0) - @90 < o, j (€= 9)If (9() — (s, 9(s)lds

oA,

Tip- Z)J =9 If (5,9(9) = £ (5,9(s)lds

A 5 ~
[ -9 [ s mirono0m - £ o Bonanas

'Q{ S+p—-1
F(5+p ) J (=9 f (5,9(5) = £ (5,9(s))lds
(46)
b —~
+ 9 J (b=9)If (5,9(s)) = f (s, 9(s))Ids
Ze J (b= )" f (5,9(5)) = £ (5,9(s))lds]
"Tp-2)
vty [ (0= 91F (8 - F(5 DS
Z J (=)' 1f(5,9(5) = f (5, 9(s))lds.
T2
From our assumptions, we obtain Lipy (b-a) R
~ - §(7+pr2)||9—9||
|f (5, 9(5)) = f (s, 9(sDI < Lg|9(s) = 9(s)] 47) A (48)
<Le9-9l. = Z]9-9|.
Hence, Due to Z <1, we conclude that E is a contraction op-
129 - :§|| < Lf (0 -a) [dl (¢ - a)2 N o, (( - a)? era'tclr.' Hence, Theorem 1 implies that E has a unique ﬁxeél
BEY-EBI| < A 5 T(p-1) point in J.
5tl S+p Theorem 5. Assume that the conditions in Theorem 4 are
5 (C~a) + ,(C~a) satisfied. Then, ABR-type FDEs (4) have at least one solution
r@+1) r@@+p-1) in C(J,R).
N ds(b-a) + Ag(b- a)P] 19= 9] Proof. Let us consider the operator E defined in Theorem 4.
2 I'(p-1) Now, we divide the operator E into two operators &, and &,
such that
ds(o—a) dg(o-a)f -
- (E9) (0) = (E9) (0) + (E,9) (0), 49
+Lf( SRyl LA ) (0) = (E,9) (0) + (E,9) (0) (49)
where

= ((7 a) dz ¢ p-1
(2,9)(0) = [, J (€= 9f (59 + J (= )P LF (5, 9(s))ds

*973

4 s
et | €97 | = mf o 9mands

)

mj (¢ = ™77 £ (5,9(s))ds
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b
—dsja(b—s)f(s, ('Q[ )j (b= )P 1 £ (5,9(s))ds],
(50)

(2,9)(0) = ofs J (0 =) (5, 9(s))ds + J (0 =) £ (s5,9(s))ds.

A
I'(p-2)

Let us consider a closed ball IT, defined in Theorem 4.In  Step 1. We show that &9 + 8,9¢ I1, for all 9,9¢ I1,. For
order to apply Theorem 2, we will divide the proof into the  operator Z,, we have

following steps. U
- (0’ a) ¢ A, ¢ o
|(8,9) (0)| < [/, J (C=9)If (s,9(s)ds] + Tp-2) J (C= )P f (5, 9(s))Ids
Ay (¢ [
e | €97 | s=mironaeiands
(51)
‘Q{ S+p-1
f@;;—gj (£~ 9™ £ (5,9(5))Ids
Ko/
J(b—QUT&SGDMS+ J(b—9P1UK&96DMﬂ
I'(p-2)
(b-a) (b-a)
By (44), we get Lyl = Pitp)o+ p1t Py @y 50
L b-
"awg(f¢+ﬁ)( D (52) - To+ T, <0
In the same manner, one can prove that Thus, ,9+ 9 ¢ II,.
|2.9] = (L ptwy )Pz- (53)  Step 2. E, isa contraction map. Due to the operator E being

» ) a contraction map, we conclude that Z, is contraction too.
Inequalities (52) and (53) give

NEIS + 52'9" < "519“ +||529“ Ete‘t? 3. 52. is continuous and compait. 'Since'f is continuous,
&, is continuous too. Also, by (53), &, is uniformly bounded
(L 9+ )(b —a) on II,. Now, we show that &, (Il,) is equicontinuous. For

< 1{ pr+(Lso+ws)p, this purpose, let 9 € T1, and a <o, <0, <b.

Then, by using (44), we have
|(529) (‘72) - (52’9) (‘71)|
<d, “ (0, = ) = (0, - $)If (5, 9(s))lds + J (0, = )Lf (5, 9(s))lds

Z [ =0 -9 s s 0las

F(P ” (55)
Ko/ el
"Tp-2 J (02 = 9)"1f (5, 9(5))lds

<(Lpop+ wf)<‘d5 (022_ o), F(fﬁ ) ((02-a)f = (o, - a)P))'
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Thus,
”(52‘9) (02) = (8,9) (‘71)“ — 0 asoy — 0. (56)

According to the above steps and Arzela-Ascoli theo-
rem, we understand that (E,IL,) is relatively compact.
Consequently, &, is completely continuous. Thus, by The-
orem 2, we infer that ABR-type FDEs (4) have at least one
solution in J.

5. Existence of a Unique Solution for
Problem (5)

In this section, we devote our intention to proving the
existence of a unique solution for ABC-type FDEs (5).

Lemma8. Letp € (1,2],8 € (0,11, A= (b—a) - *BI%, ({ -
a) #0, and h, € C(J,R). A function 9 is a solution of the
following ABC problem,

{“ng9w):hﬂaL
9(a) = 0,9(b) =**12.9(0), (< (ab),

o€ [a,b],

(57)

Journal of Function Spaces

if and only if 9 satisfies the following fractional integral
equation:

9(0) = % (AP0 218 1y () = AP 10,y ()]
(58)

+ 2212 1, (o),
where ABI(I; was defined in (21).

Proof. Assume that 9 is the solution to the first equation of
(57). Then, via Lemma 6 and by the same way in Lemma 7,
one can prove that the solution of equation (57) is given as
(58), where ABI‘;h2 (0) is defined in (21). O
Remark 2. 'The AB fractional integral ATZ, used in Lemma 7
was defined in (18), while the AB fractional integral ABT f;
used in Lemma 7 was defined in (21).

Theorem 6. Let pe (1,2],6 € (0,1],A= (b—-a)- AB12+
((—a)+0, and f:JxR—R— be a continuous
function. Then, in the light of Lemma 6, ABC-type FDEs (5)
are equivalent to the following FIE:

_(0-a) ¢ dy (° i
9(0) =2 [, J £ (s 9(Nds + 08 J (= )71 (s, 9(s))ds
dy (¢ 1 (F o ¢ o
g | @9 [ ronomands + o | @ 9r ! s 09nas
(59)
_ b _ '52{12 b A
o, J £(s9ds 3 j (b= )" (s, 9(s))ds]
’ 9712 ’ _p-1
+dy L f(s,9(s))ds + I(p) L (0 —3)"" " (s,9(s))ds,
where
p-1
L _1-9@-p) Y= g1y (60)
7TB0)B(p-1)
o, = w) Proof. In view of Lemma 8, we have
$TB0)B(p-1)
 se-p) 8(0) = T[S L £ 9(0) - 18 £ (6,9 )]
T BO)B(p-1) s
It ) .
_ d(p-1) o e (3o (61)
T BOB(p-1)
By using definitions of 1%, in the case § € (0, 1) defined
oA = 2-p in (8) and ABI§+ in the case p € (1,2] defined in (21), we can
U8B (p-1) rewrite equation (61) as follows:
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(0-a) [(1 -9
A B(6)

(o) =

2-p ¢ p-1 .
{53(?—1) Lf(s"(’(s))d”mj (-9 (sS(s))ds]»

_ %1 - [ _p-1 e
6)r(5)J (C-s) {%(p Lf(n,S(n))dm B(p 2)F(p)J (s—7) f(;79(;1))d;7}

[ F5,9(s)ds - P

_p-1 o
B(p- 2)r(p)J( )P (5,9(s))ds]

%(p—l

f(s,S(s))ds 4P~

1 -1
W J (0 S) (S \9(5))(15 (62)

%(P

_(0-a)
A

¢
; L f(s,9(s))ds + d)

Tp )J (¢ =P (s5,9(s))ds

‘979 ¢ 51 A
F(8) J () J f(n, 9(77))d11ds+r(6

)J (= )% (5, 9(s))ds

b !d b 5
-, j fls9(Nds -+ (;2) j (b - 5)""" (5,9(s))ds]
,
+~duj f(s, 9(5))d5+r( ) J (0 —s)P" 1 (s,9(s))ds.
O
Theorem 7. Suppose that f: ] x R — R is a continuous  then ABC-type FDEs (5) have a unique solution in J.
function and there exists a constant number Ly >0 such that
|f(oru) = flo il Lylu ~ul for any wi e J. If Proof. Define the operator : C(J,R) — C(J,R) by
Z°3—Lf<P3(b )+p4><1, (63)
g
90 =Dt || ps s r 22 [ -9 90
dy (¢ o1 (7
eros | @9 [ omands
'Q[l() S+p-1 64
+1"(8+p),|- ((-ys) (s,9(s))ds (64)
b é?flz p-1
~dty [ s 8- 1 [ =97 (s 905pas
woty [ 76901 [ -9 90
b-
Define a closed ball ©, as Z,= <( A a)p3 + p4)wf (66)
0, ={9eCU.R): [91<a}, (65)

Now, we will show that E@Q C @Q. For all 9 ¢ @)Q and
with radius ¢ = (Z,/(1 — Z;)), where o € ] and by (47), we have
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Lo+ (0—-a)
Lot e, (1w

b- b-
SLf<( Aa)p3+p4)@+<( Aa)P3+P4)wf (67)

=Z30+Z,<o0.

ISl <

Thus, F®, C ©,. Next, we need to prove that f is a
contraction map. Let 9,9 € C(J,R) and o € J. Then,

I(F9) (0) - (F9) (0)]

<(0—a)

¢ ~
<7t [ 1690 - £ (s D (o)lds

Ay ‘ YS! B ~
T J (=97 1f (59(5)) = f (5, 9(s))Ids

dy (¢ s R
+W§) J (-9 J Lf (7,9(m) = f (1, 9(n))|dnds

’Q{IO
"T@+p)

( -~
| =97 155900 - (5B hlas
b —~
-9y Ja | (s,9(s)) = f(s,9(s)|ds
_ ‘9[12 b A ! _ S
[ =916 8 - s DI

+9y, J: Lf (5,9(s)) = f(5,9(s))|ds

¥ f%f) j (0=97"1f(5,9() = £ (5, 9(s))lds.

(68)
From our assumption, we obtain
£ (5, 9(5)) = £ (s, 9(NI <L19(s) — S(s)|
. (69)
<Le[I9 -9l
Hence,
~ Lg(o-a) Ay (( - a)f
IF9 — Il ST (;((~-a) +m

Ay ((-a)" oy ((-a)’"?
I'd+1) r+p+1)

Journal of Function Spaces

o, (b-a)
L(p+1)

o, (o —a)? -
; Lf(du (0—a)+ ;2(;‘1 1“)’ )ns -9

Lps(b—a) -
s(fﬂ\wfm)nwsn

= Z519- 9.

—d, (b-a)+ 119 - 3

(70)

Due to Z5<1, we conclude that f is a contraction
operator. Hence, by Theorem 1, we conclude that f has a
unique fixed point in J. Consequently, ABC-type FDEs (5)
have a unique solution in J. O

6. Ulam—Hyers Stability

In this part, we will discuss two kinds of stability results for
ABR-type FDEs (4) and ABC-type FDEs (5), namely, UH
and GUH stabilities. Before that, for £ >0, we consider the
following inequality:

|*** D29 (0) - F5(0)| <e, g€l (71)

Definition 4. The problem ABR-type FDEs (4) is
Ulam-Hyers stable if there exists a real number C; > 0 such
that, for each £>0 and for each solution 9 € C(J,R) of
inequality (71), there exists a unique solution 9 € C(J,R) of
ABR-type FDEs (4) with

19(0) - 9(0)| < Cse. (72)
Also, ABR-type FDEs (4) have generalized Ulam-Hyers

stability if we can find ¢ 1 R, — R, with ¢/ (0) = 0 such
that

19(0) - 9(0)| < 9. (73)

Remark 3. Let 9 € C(J, R) be the solution of inequality (71)
if and only if we have a function & € C(J, R) which depends
on 9 such that

@) |h(o)|<eforall oe]

(ii) AB*DE.9(0) = f(0,9(0)) + h(0), 0 €

Lemma9. If9 € C(J,R) is a solution to inequality (71), then
9 satisfies the following inequality:
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R o R o o
lS(a)—‘I’g—.Qfs L(o—s)f(s,S(s))ds— o z)j (0 -7 (s, 8(s))ds
(74)
b_
Se(/¥+pz),
where
CEY o, -
¥ - [%J ~9f (5 9(s + )J (= )P £ (5,9(s))ds
oA { _ s —~ o +
r(§)J (C—s>5lL(s_n)f(n,sm))dnds+—r(5 4 2)J ((=9" f(5,9(9)ds (75)
b - 'Qy o
_ L(b—s)f(s,“)(s))ds— o 2)J (b— 9P £ (s,8(s))ds].
Proof. In view of Remark 3, we have Then, by Theorem 3, we get
ABRD;’E(U) = £(5,9(s)) + h(0),
9(a) = (76)
9(b) = ABI ().
- (0 —a) ¢ .
9(0) = A [ﬂlj (C=35)(f(s5,9(s5)) + h(s))ds
*52{2 ¢ p-1 Q3
+F(p—2) L (C=9)""(f(5,9(s)) + h(s))ds
v j @=9" [ (=m0 B0 + hOi)dnds
'Q{ S+p—-1
e 2)j (=9 (£ (5, 5(9) + h(s))ds .

h —~
-4 L(b— $)(f (5,9(s)) + h(s))ds

e52i6
"T(p-2)

J (b= )" (f (5,9(5)) + i (s))ds]

+d r(a —5)(f(5,9(s)) + h(s))ds
Ko/

F(p 2),[ (0 —s)P~ 1(f(s 9(s)) + h(s))ds,

which implies
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l@(a) ¥, j (=) f (5,3(s))ds -

(0 a)

< o, j (¢~ 9)Ih(9)lds +

oA,
I'(p-2)

Journal of Function Spaces

(”Q{ z)j (0 -7 f(s,8(s))ds

¢
j (¢ = " M (s)lds

A5 (¢ L (F
v | €97 | s mintpianas
5274 S+p-1
Y6 2)j (¢ = 9" (9)lds (78)
j (b - 9l (lds + (“” )j (b- 97 h(9)lds]
o o g
+ o, L(a—s)lh(s)lds+ T j (0= )" h(s)lds
Se(Pl (bA— a) +P2>-
O
Theorem 8. Suppose that (38) holds. If Then, by Theorem 3, we get
Lf(&fs (b—a)2 +$276(b—€l)p) <1, (79) :9(0) = ‘I’5+.52{5 JJ(G—S)f(S,g(S))dS
2 I'(p-1) a (81)
then ABR-type FDEs (4) are Ulam-Hyers stable. ) p1
en ABR-type i (4) are Ulam~Hyers stable STy j (0= f (5, 9(s))ds.
Proof. Lete>0and 9 € C(J,R) be a function which satisfies .
inequality (71), and let 9 € C(J,R) be a unique solution of v Elgce Séaﬁ - 9(? :LO and9 9(1(71) 47‘9 (b) ;BI& B,
the following problem: 9 = To andhence by Lemma Zan (47), we have
ABRDP §(g) = f(a,@(a)), o€ (ab),
pe(2,319a) =9(a) = (80)
9(b) = 9(b) = 1 9(4”)
19(0) - 9(0)|
~ o - o
<[3(0) - ¥ - o L(U—s)f(s,{?(s))ds— o 62)j (0 - 71 £ (s, 8(s))ds
+ 9 Jg(a—s)lf(s,g(s)) - f(s,9(s))lds (82)
%j (0= £ (s,9(s) = f (s, 9(s))lds
p, (b-a) ds(b-a) dsb-a) 3
Se( ! 0 +p2>+Lf< > > + l“é(p—l) )IIS—SII.
19-91<Cye, (83)

Thus,
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where
c. - ((p1 (b- a)z/A) + p2)
To1-L((os (- a)*12) + (A (b~ @) [T (p - 1))
(84)

Now, by choosing ¢((¢) = Ce such that ¢,(0) =0,
ABR-type FDEs (4) have generalized Ulam-Hyers
stability. O

Theorem 9. Suppose that (38) holds. If

,szilz(b—a)p )
rp+n ) 7

then ABC-type FDEs (5) are Ulam-Hpyers stable.

Lf<g¢11 (b-a)+ (85)

Proof. By the same technique of Theorem 8, one can prove
that

199 <Cje, (86)

where

c* = ((ps (b —a)/A) + py)
o 1=Ly(dyy (b-a)+(dy, (b - a)PIT(p+1)))

(87)

Now, by choosing ¢ (¢e) = Cje such that ¢,(0) =0,

ABC-type FDEs (5) have generalized Ulam-Hyers
stability. O
7. An Example

In this section, we justify the validity of Theorems 4, 5, and
7-9 through an example.

Example 1. For p € (2,3], we consider the following ABR
fractional problem:

2
ABR 47/2 . c 19 (o)
Do) = e (1 +|9<a)|>’ 7D,
1 9(0) =0, (88)
_aBqing(l
| 9(1) = A2 9(2>.
Here,
p=(7/2) € (2,3],a=0,b=1,6 = (1/2),{ = (1/2), and
£(0,9(0)) = (62/10e” ) (19(a)|/ (1 + [9(o)])). Let
o€ [0,1],u,u € R. Then,
f (@) = f (0] <5l (89)

Therefore, hypothesis (H;) holds with L; = 1/10. Also,
p1=1.23, p,=2, A=0.66, and Z=0.38 < 1. Then, all conditions
in Theorem 4 are satisfied, and hence, ABR-type FDEs (4)
have a unique solution. For every &= max{e,,¢,} >0 and
each 9 € C(J,R) satisfying the inequality

15

|***DL.3(0) - F5(0)| <, (90)
there exists a solution 9 € C(J,R) of ABR-type FDEs (4)
with

[9-9/]=<Cye, (91)

where
C. - ((pr (b= a)/A) +p,) -0
T -L((ots (b - @)12) + (g (0 — @)’ IT(p - 1))
(92)

Therefore, all conditions in Theorem 9 are satisfied, and
hence, ABR-type FDEs (4) are UH stable.

Example 2. For p € (1,2], we consider the following ABC
fractional problem:

ABCD329 () = o (M> oe(0,1)
o 10"\ 1 +19(0)| )’ e
(93)
B _ABs12of ]
9(0) = 0,9(1) = A 9(5).
Here,
p=(G2)e (L2ha=0b=108=(1/2),(=(1/2), and
£(0,9(0)) = (6210”1 (19()/ (1 +9(a)])). Let
o€ [0,1],u,u € R. Then,
o) = o] =2 (™
flow) = flom _106"*1<1+u_1+ﬁ> (04)

1 _
<—|u-1ul.
10

Therefore, hypothesis (H;) holds with L; = 1/10. Also,
p3=1.4, p,=2.5, A=0.66, and
1 /14
3 =—(—+2.5> ~0.47< 1. (95)
10\0.66
Then, all conditions in Theorem 7 are satisfied, and
hence, ABC-type FDEs (5) have a unique solution. For every
¢ = max{e;, &,} >0 and each 9 € C(J,R) satisfying

**°DL.5(0) - F5(0)| <o, (96)

there exists a solution 9 € C(J,R) of ABC-type FDEs (5)
with

[5-98|<C}e (97)
where
s _ ((ps (b—a)/A) +P4) > 0.
F T 1=Ly(dy (b-a)+ (o, (0 - @) IT(p +1)))
(98)

Therefore, all conditions in Theorem 9 are satisfied, and
hence, ABC-type FDEs (5) are UH stable.
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8. Conclusion Remarks

In recent interest, the theory of fractional operators in the
frame of Atangana and Baleanu is novel and significant;
thus, there are some researchers who studied and developed
some qualitative properties of solutions of FDEs involving
such operators. On the contrary, there are some important
numerical approaches regarding nonsingular kernels that
are explained in the introduction. For this purpose, the
sufficient conditions of the existence and uniqueness of
solutions for two classes of nonlinear Atangana-Baleanu
FDEs on the interval [a, b], subjected to integral conditions,
have been developed and investigated. Furthermore, the
stability results through mathematical analysis techniques
have been analyzed. Two examples are provided to justify
our results.

Observe that our approach used in this work is new
because we prove the existence, uniqueness, and UH stability
results without using the semigroup property and relies on a
minimum number of hypotheses. Our approach was based
on the reduction of the proposed problem into the fractional
integral equation and using some standard fixed point
theorems due to Banach type and Krasnoselskii type. Fur-
thermore, through mathematical analysis techniques, we
analyzed the stability results in the UH sense. An example
was provided to justify the main results. In fact, our out-
comes extended those in [36, 37]. The supposed problem
with given integroderivative boundary conditions can de-
scribe some mathematical models of real and physical
processes in which some parameters are frequently accli-
mated to appropriate circumstances. So, the value of these
parameters can change the impacts of fractional integrals
and derivatives. The main results are illustrated with a
numerical example. In future works, we study the new
numerical results regarding this operator with the higher
order.
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