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A B S T R A C T   

We scrutinized the influence of nonlinear heat radiation on heat transmission evaluation of 
Carreau nanofluid and tangent hyperbolic nanofluid streams across a wedge with gyrotactic 
microorganisms by taking slip situations into consideration in this research article. The necessary 
nonlinear partial differential formulation is transmuted into non-linear ordinary differential 
equations by employing appropriate similarity variables, and these equations, including the 
boundary constraints are resolved in Matlab software utilizing Runge-Kutta fourth order via 
shooting tactic. A definite description of the framework is achieved by fluctuating the inputs of 
influential variables of the dependent functions and exhibited via graphs. The inhibiting flow 
velocity is portrayed by the intensifying inputs of buoyancy ratio, magnetic force, Rayleigh 
number, and eigenvalue. As a consequence of thermophoresis and Brownian motion of nano- 
particles, the temperature of the liquids initiates to ascend instantly. Because of differentiated 
viscous effects, the flow velocity for Carreau nanofluid is slower than that of tangent hyperbolic 
fluid and the temperature behavior is reversed. Further, the magnitude of skin friction factor for 
tangent hyperbolic nanofluid is almost half ofs that of Carreau nanofluid.  
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ue velocity of the far flow 
u∞ velocity of mainstream 
θw temperature ratio parameter 
Bo magnetic field strength 
C concentration of nanoparticles 
T temperature of nanoparticles 
N Micro-organisms distribution 
g gravity 
n power law index 
K* mean absorption co-efficient 
k thermal conductivity 
Cp specific heat at constant pressure 
DB Brownian diffusion coefficient 
DT thermophoresis diffusion coefficient 
Dm diffusivity of microrganisms 
T∞ ambient temperature 
C∞ ambient concentration of nanoparticles 
N∞ ambient micro-organisms distribution 
τ relaxation time of heat flux 
τw shear stress 
Qo heat source/sink coefficient 
m fitted rate parameter 
Ea activation energy 
b chemotaxis constant 
Wc speed of gyrotactic cell 
n1 rotation of micro-organisms 
qw wall heat flux 
M magnetic field parameter 
kf Thermal conductivity of basefluid 
t time 
Pr Prandtl number 
Nb Brownian motion parameter 
Nt thermophoresis parameter 
Q heat source 
E activation energy coefficient 
Lb bio-convection Lewis number 
Pe Peclet number 
C1 chemical reaction parameter 
Tw wall constant temperature 
Cw nanoparticles concentration at wall 
We Local Weissenberg number 
f dimensionless stream function 
S similarity concentration of nanoparticles 
Vo suction Parameter 
Cf Skin friction coefficient 
Shx Sherwood number 
Nux Nusselt number 
Rex Local Reynolds 

Greek Symbols 
α thermal diffusivity of base fluid 
μ viscosity of fluid 
ψ stream function 
β* Deborah number 
β concentration slip parameter 
ν kinematic viscosity 
λ velocity slip parameter 
σ electrical conductivity 
σ* Stefan-Boltzmann constant 
ρ Density 
ρp Nanoparticle Mass density 
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γ* average volume of microorganisms 
γw wedge angle 
γ Eigen value 
ω mixed convection parameter 
η similarity variable 
θ similarity temperature 
χ similarity density of micro-organisms 
ξ thermal slip parameter 
Γ material parameter 
δ temperature difference 
ΩB microorganisms concentration difference 

Subscripts 
p nanoparticles 
w on the sheet surface 
∞ condition for away cone surface 
f base fluid 
nf nanofluid  

1. Introduction 

The survey of non-Newtonian fluids has attracted considerable interest in the research field in current decades. The analysis of these 
fluids is encouraged by their significance in industry sectors like material processing, plastic thawing, pharma products, polymeric 
liquids, biochemical engineering, toxin and nuclear plants, mechanical applications, and the food industry. Some prestigious examples 
signify the blood, honey, perfumes, glue, diesel fuel, asphalts, cream, and so even more. Tangent hyperbolic fluid is viewed as a fluid 
with shear thinning/thickening and normal stress interaction. Numerous scholars often use tangent hyperbolic models with diverse 
flow features because of their fascinating rheological characteristics. Ramzan et al. [1] debated the fluid motion of a 3-D tangent 
hyperbolic nano-fluid flow. Khan et al. [2] identified a nominal impact of radiation and chemical reaction on tangent hyperbolic fluid 
flow. Khaled et al. [3] discussed the bio-convection flow of tangent hyperbolic nano-liquid. Kumar et al. [4] studied the flow of tangent 
hyperbolic fluid passing over a stretching sheet. Gharami et al. [5] discussed the time-dependent MHD flow of tangent hyperbolic 
nanofluid. Oyelakin et al. [6] utilized the spectral method to initiate a thermo-physical interpretation of the three-dimensional 
magneto-hydrodynamic flow of a tangent hyperbolic nanofluid. Ullah et al. [7] implemented the Lie group analysis with the shoot-
ing technique of MHD incompressible flow of tangent hyperbolic fluid. Karthik et al. [8] used nonlinear radiation, swimming microbes, 
and nanoparticles to study 3D bioconvective viscoelastic nanofluid movement across a heated Riga surface. Mariam et al. [9] used the 
Runge-Kutta scheme to investigate the effect of gyrotactic microorganisms on non-Newtonian liquid (Maxwell fluid) passing over an 
expanding cylindrical surface. Siddique et al. [10] investigated a conceptual framework for tangent hyperbolic liquid of nano-biofilm 
due to an elongating or contracting sheet, which includes a point of stagnation flow, and chemical reaction with activation energy, and 
gyrotactic microbe bioconvection. 

Several researchers have focused on non-Newtonian fluids in the recent past. The Carreau fluid model is a non-Newtonian fluid 
model that delivers a fundamental relationship between low shear rate (which behaves as Newtonian fluid) and higher shear rates (acts 
as power law fluid). Such fluids could be identified in toothpaste, molten polymers, animal blood, pulps, as well as other components. 
Many investigators analyzed the behavior of a Carreau fluid in respective morphologies. Khan et al. [11] perceived the heat and mass 
designation in non-axisymmetric Homann stagnation point flow occasioned by a linear squeezed sheet in the existence of a permeable 
material. Noreen et al. [12] noticed the influence of heat transfer of Carreau fluid flow on an inclined asymmetric. Khan et al. [13] 
observed the wall slip characteristics of Carreau fluid flow on the movable boundary layer. Nazir et al. [14] studied the effects of 
Cattaneo–Christov heat flux model of Carreau fluid and many other scholars [15–18]. 

Bio-convection is a captivating liquid notion occasioned by the gliding of microbes. Bio-convection is a strategy wherein slight 
density microorganisms dive at the edge of a fluid, inflicting unorganized configurations and destabilization. Since they dive in the 
upper portion, such gyro-tactic motile microorganisms, such as algae, are more probable to gather across an upper fluid layer that 
would be a root of a volatile upper part, ensuing in more saturated stratification. The motion of gyro-tactic microorganisms is 
infinitesimal (convection), whereas the bio-convection technique is on a much more massive scale. The density of the base fluid boosts 
due to bio-convection occasioned by the automotive rotation of microbes in a particular pattern in the base fluid that interacts spatially 
with predefined stimulants. Gyro-tactic microorganisms are utilized in nanoparticles to strengthen fluid blending since they are 
culpable for the bio-convection methodology. Such microbes are coarser than water and typically swim in a chaotic fashion. This 
notion has recently garnered considerable interest since it has a great deal of realistic implementations in biotechnology, bio- 
microsystems, and bio-sciences. Bio-convection is meaningful in the filtering of microbial oil as well as in meteorological phenom-
ena like hot springs conquered by motile micro-organisms referred to as thermopiles. Abdelmalek et al. [19] presented a theoretical 
model for Williamson nano-fluid bio-convection flow. Ullah and Jang [20] addressed the existence of nano-sized molecules with 
gyrotactic motile microbes. Habib et al. [21] probed the theoretical and mathematical characteristics of Maxwell micropolar 
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nanoparticles with diluted homogeneous nanoparticles and gyrotactic microbe diffusion. Abdal et al. [22] investigated the effects of 
activation energy and different transit variables on two-dimensional stagnation point movement of a nano-biofilm containing gyro-
tactic microbes across a porous straining/shrinking sheet. Abdal et al. [23] studied the effects of magnetohydrodynamic Williamson 
Sutterby nanoparticles caused by a rotating cone with bioconvection and anisotropic slip. Habib et al. [24] examined the dynamics of 
electric current factors, heat radiation, activation energy, mass and heat transformation of a magnetic flowing fluid containing 
nanomaterials and motile microbes over a porous extending sheet. Abdal et al. [25] investigated the role of multi-slips and bio-
convection in the transpiration of micropolar nanomaterials through porous material over an extending sheet in PST and PHF envi-
ronments. The few aspects of bio-convection flow have perceived by some authors [26,27]. 

In a huge series of nuclear and thermal-hydraulic mechanisms, heat transport incorporating fluid flow is mandated. A diversity of 
fluids and operational parameters are being inspected in order to optimize the heat transportation procedures. Solar power merchants, 
nuclear reactor cooling, living thing transpiration, oil and gas engineering, enriched oil recovery, agricultural production, and bio- 
mechanics are indeed a few of the substantial implementations. Numerous evaluations on the commuting of heat and mass in New-
tonian and non-Newtonian fluids are being implemented over the last couple of years. Consequently, a few current surveys are debated 
here. Koyama et al. [28] debated how to enhance the thermal reliability of a hydrate-based heat engine. Wang et al. [29] initiated an 
innovative strategy for aligning multiple heat sources. Couvreur et al. [30] developed a scheme for employing residual heat from 
burning fuel. Jury et al. [31] revealed the transformation mechanisms in a super-elastic nickel-titanium SMA wire that had been 
confined to a force-controlled incredibly tensile cycle. Wang et al. [32] examined the thermal allocation for transportation of 
Darcy-Forchheimer Maxwell Sutterby nanofluid flow with the presence of Cattaneo-Christov heat transformation and electromagnetic 
field. Abdal et al. [33] researched the heat transport for bioconvective movement of Maxwell nanoparticles over a stretching/shrinking 
sheet with Cattaneo-Christov flux using a fourth-order Runge-Kutta procedure with a shooting method. 

Radiation is a sort of energy transfer that has a vast scope of utilization notably in the solar industry. This type of heat transfer does 
not necessitate the use of a material medium. The consequence of thermal radiation has piqued the appreciation of several scholars 
probably due to its innumerable implementations in polymer manufacturing techniques. Besides this, nano-liquids are perceived as 
one of the most efficacious refrigerant liquids in industries such as transportation, microelectronics, optical, and manufactured goods. 
Raisi et al. [34] reviewed the evaluation of circular and ellipsoidal vanes in a square chamber subject to radiation implications under 
heat transfer of nanoparticles. Ali et al. [35] examined Newtonian nano-fluid flow embodied with thermal radiation and heat gen-
eration/absorption temperature oriented over a stretching cylinder which was numerically, tackled using the Runge–Kutta Fehlberg 
method with a shooting system. Tamilzharasan et al. [36] investigated the Williamson nanofluid using the double Cattaneo-Christov 
theory, radiation, dual stratification, and the effect of activation energy. Habib et al. [37] was credited with various characteristics of 
Sisko nanoparticles flow over-stretching cylinder and bioconvection of motile microbes in the presence of activation energy and 
non-Fourier thermal diffusion. Certain nominated articles highlighting the pertinence of thermal radiation are outlined as [38–40]. 

In the early 1930’s, Falkner and Skan scrutinized flow over a static wedge. Afterward that year, in 1937, Hartree [41] investigated 
the solution’s reliance on the wedge angle parameter. Flows over wedge moulded substrates are an impactful area of analysis since 
they are witnessed in a wide range of scientific and industrial prosecutions such as hydrodynamics, engine performance, 
magneto-hydrodynamics, geothermal systems. Kebede et al. [42] ascertained the influence of heat and mass transportation of time 
dependent tangent hyperbolic nanofluid. Hamid et al. [43] deliberated the time dependent stagnation-point flow effects of Williamson 
nano-fluid across a static/moving wedge. Siavashi and Iranmehr [44] evaluated two-phase mixture model of nanofluid. Sreedevi et al. 
[45] done a comparative study of hybrid nanofluid by using Galarkin method. 

A glance at the review of literature reveals that no comparative analysis is attempted for Buongiorno’s model nanofluid mass and 
heat transmission attributes of Carreau nanofluid and tangent hyperbolic nanofluid across a wedge with slip aspects. Jyothi et al. [46] 
assessed the effect of variable thermal conductivity on heat transition analysis of the Carreau nanofluid stream past a wedge by 
carrying slip conditions into consideration. However, in their exploration, they did not take into account the tangent hyperbolic 
nanofluid, porous medium, motile density of microorganisms, heat source and chemical reaction with activation energy. The purpose 
and novelty of current research are to evaluate the stream and heat transportation of Carreau and tangent hyperbolic nanofluids with 
gyrotactic microbes under slip conditions over a wedge to bridge the gap. The numerical simulation of transformed leading equations is 
acquired by incorporating the fourth-order R–K technique with the shooting strategy. The influences of encoded parameters on the 
velocity, temperature, nanoparticle concentration and motile density of micro-organism profiles for the two flow models are graph-
ically exhibited. Physically, this can be use in industry sectors like the material processing, plastic thawing, pharma products, poly-
meric liquids, biochemical engineering, toxin and nuclear plants, mechanical applications, and food industry. Also can be seen in 
blood, honey, perfumes, glue, diesel fuel, asphalts, cream, and so even more. Such fluids could be identified in tooth paste, molten 
polymers, animal blood, pulps, as well as other components. This can also applied in the implementations in biotechnology, 
bio-microsystems, and bio-sciences . 

2. Physical model and mathematical formulation 

We perceive a two-dimensional, steady MHD laminar boundary layer stream of Carreau fluid and tangent hyperbolic fluid of 
density ρnf over a wedge with stretching velocity uw and free stream velocity ue. The wedge angel is Ω = γπ. Our modification designates 
the fundamental equation of continuity, velocity equation, temperature equation, concentration equation and gyrotactic microor-
ganisms equation in Cartesian coordinate system with incorporation of activation energy, thermal radiation and a heat source. Choose 
the positive x − axis that is quantified across the wedge’s substrate, whereas the y − axis is orthogonal to the wedge’s substrate velocity 
component. In y-direction, magnetic field of intensity B0 is subjected. The configuration of physical situations is mapped in Fig. 1. 
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A Carreau liquid’s constitutive model or non-Newtonian viscosity is described by: 

τ = − pI + S + μ(γ̇)A1, μ = μ∞ + (μ0 − μ∞)
[
1 + (Γγ̇)2]n− 1

2 .

Here, p is the pressure, I denotes the identity tensor, A1 represents the first Rivlin-Erickson tensor, μ0 and μ∞ are the zero and un-
bounded shear rate viscosities, n indicates the power law index, C is a material time factor and G is specified as: 

γ̇ =

̅̅̅̅̅̅̅
1
2

Π
√

, Π = trace(A2
1),

here, P denotes the second invariant strain tensor. 
The power-law index depicts fluid movement and fluid is classified as shear thinning for 0 < n < 1, shear thickness for n > 1, 

Newtonian fluid for n = 1 and/or Γ = 0 and the power-law concept can be achieved for high values of Γ. The viscosity values at zero and 
unlimited shear rates were fixed to 1 and 0.001, respectively. As a consequence, the perceived viscosity mu for the Carreau fluid model 
can be written as: 

μ = μ0

[
β∗ + (1 − β∗)

[
1 + (Γγ̇)2]n− 1

2
]
,

where, β∗ =
μ∞
μ0 

denotes the non-dimensional ratio of infinity shear-rate viscosity to zero shear-rate viscosity, assumed to be lower than 
one. 

Tangent hyperbolic fluid has the following constitutive model: 

τ = [μ∞ + (μ0 + μ∞)tanh (Γγ̇)n
]γ̇,

wherein, τ is the excessive stress tensor, μ∞ represents the infinity shear rate viscosity, μ0 denotes the zero shear rate viscosity, Γ is the 
time varying material constant, n indicates the power law index, also termed as the flow pattern index, and γ̇ is stated as: 

γ̇ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2
∑

i

∑

j
γ̇ij γ̇ji

√

=

̅̅̅̅̅̅̅
1
2

Π
√

,

where, Π = 1
2 tr(gradV + (gradV)T

)
2. We examine Eq. (2.22) for the scenario when μ = 0 since it is unable to analyze the topic for 

infinite shear rate viscosity and because we are examining Tangent hyperbolic fluid that exhibits shear thinning impacts, so Γγ̇ < 1. 
Then Eq. (2.22) has the following form: 

τ = μ0[(Γγ̇)n
]γ̇ = μ0[(1 + Γγ̇ − 1)n

]γ̇
= μ0[1 + n(Γγ̇ − 1)]γ̇.

The energy efficiency equation asserts that the system’s entire energy is preserved. In the elimination of radiation and dispersion, 
mathematically we have 

ρcp
dT
dt

= − ∇ • q,

here, q is the thermal heat rate. According to Fourier’s law 

Fig. 1. Problem description.  
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q = − k∇T 

As a result, the energy equation is transformed into 

ρcp
dT
dt

= k∇2T 

Leading formulation for boundary layer incompressible flows are [46,47]: 

∂u
∂x

+
∂v
∂y

= 0, (1)  

u
∂u
∂x

+ v
∂u
∂y

= ue
due

dx
+ v

∂2u
∂y2

(

1 + Γ2
C

(
∂u
∂y

)2
)n− 1

2

+ v(n − 1)Γ2
C

∂2u
∂y2

(
∂u
∂y

)2
(2)  

(

1 + Γ2
C

(
∂u
∂y

)2
)n− 3

2

+ v(1 − ε) ∂2u
∂y2 +

̅̅̅
2

√
νΓT ε ∂u

∂y
∂2u
∂y2 −

σnf

ρnf

(
B2

0 −
v
k

)(
u − ue)

+

(
1
ρf

)
[(

1 − C∞)ρf β
∗(T − T∞) − (ρp − ρf )g(C − C∞) − (n − n∞)gγ∗(ρm − ρf )

]
,

u
∂T
∂x

+ v
∂T
∂y

=
k

ρcp

∂2T
∂y2 + τ

[

DB
∂C
∂y

∂T
∂y

+
DT

T∞

(
∂T
∂y

)2
]

−
1

ρCp

∂qr

∂y
+ Q0(T − T∞), (3)  

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞

∂2T
∂y2 − (Kr)2

(C − C∞)

(
T

T∞

)m

exp
(
− Ea

K1T

)

, (4)  

u
∂n
∂x

+ v
∂n
∂y

= −
bWc

(Cw − C∞)

∂
∂y

(

n
∂C
∂y

)

+ Dm
∂
∂y

∂n
∂y
. (5) 

along with the boundary conditions [46], 

u = L
∂u
∂y
, v = vw,w = 0, T = Tw + k1

∂T
∂y

, C = Cw + k2
∂C
∂y

, n = nw, as y = 0,

u → ue = bxm,T → T∞,C → C∞, n → n∞, as y → ∞.

⎫
⎪⎬

⎪⎭
(6) 

Consider the following similarity transformation in order to modify Eqs. (1)–(6) [? ]. 

ψ =

̅̅̅̅̅̅̅̅̅̅̅̅
2vb

m − 1

√

x
m+1

2 f (η), η =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
b(m + 1)

2v

√

xm− 1
2 y, θ(η) = T − T∞

Tw − T∞
,φ(η) = C − C∞

Cw − C∞
, χ(η) = n − n∞

nw − n∞
.

}

(7) 

The non-linear partial differential variables (2)–(5) are transformed into a system of corresponding ODE’s by utilization of 
expression (7). 

[
(
1 + We2f ′′2

)n− 3
2
(
1 + nWe2f ′′2

)
+ (1 − ε) + ε̅

̅̅
2

√ (2 − γ)WT f ′′
]

f ′′′ (8)  

+ff ′′ + γ(1 − f ′2) − M(f ′ − 1) + ω(θ − NrS − Rbχ) = 0,

θ′′ + Prf θ′ + PrNbθ′φ′

+ PrNtθ′2  

+
4

3R
[1 + θ(θw − 1)]3θ′′ +

4
R
[1 + θ(θw − 1)]2θ′2 + PrQθ = 0, (9)  

φ′′ + Lef φ′

+

(
Nt
Nb

)

θ′′ − C1φ(1 + δθ)mexp
(

− E
1 + δθ

)

= 0, (10)  

χ′′ + Lb(f χ ′

) − Pe[S′′(χ + ΩB) + χ′ S′

] = 0. (11) 

The transformed boundary conditions are: 

f (0) = V0, f ′

(0) = λf ′′(0), θ(0) = 1 + ξθ
′

(0), S(0) = 1 + βS′

(0), χ(0) = 1, at η = 0,
f ′

(∞) → 1, θ(∞) → 0, S(∞) → 0, χ(∞) → 0, as η → ∞.

}

(12) 

The dimensionless parameters are: Pr =
μcf
k , Nt =

ρcpDT (Tw − T∞)

vρcf T∞
, Nb =

ρcpDB(Cw − C∞)

vρcf
, θw = Tw

T∞
, Le = V

DB
, M =

σB2
o

2w1ρf
, R =

16T3
∞σ∗

3K∗kf
, γ = 2m

m+1, ω =
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2β∗g(1− C∞)(Tw − T∞)

b2(m+1)x2m− 1 , We =
(

b3Γ2
C(m+1)x3m− 1

2v

)1
2
, Q = 2Qo

b(m+1)xm− 1, E = Ea
k1T∞

, δ =
(Tw − T∞)

T∞
, WT = (

b3Γ2
T (m+1)x3m− 1

2v )
1/2

, βT = 2m
m+1, C1 =

2v(kr)
2

DBb(m+1)xm− 1. 

3. Physical quantities 

3.1. Surface drag force 

Skin Friction for Carreau Fluid: 
The skin friction coefficient is defined as 

Cfx =
τw

ρU2
e

/
2  

where, τw signify shear stress and is defined as 

τw = μ0
∂u
∂y

⎡

⎣

[

1 + Γ2
C

(
∂u
∂y

)2
]n− 1

2
⎤

⎦ at y = 0  

Thus 

Cfx(Rex)
− 1

2 =
2
̅̅̅̅̅̅̅̅̅̅̅
2 − β

√ f ′′(0)[1 + We2(f ′′(0))2
]

n− 1
2 

Skin Friction for Tangent Hyperbolic Fluid: 
The skin friction coefficient is defined as 

Cfx =
τw

ρU2
w  

where, τw signify shear stress and is defined as 

τw =

[(

1 − ε) ∂u
∂y

+ εΓT

(
∂u
∂y

)2

(2 − γ)

]

Thus 

Cfx(Rex)
− 1

2 = (1 − ε)f ′′(0) + ε
2
̅̅̅
2

√ We(f ′′(0))2
(2 − γ)

where, 

Rex =
xUe

v
is the local Reynolds number.

3.2. Heat transfer rate 

The local Nusselt Number is defined as: 

Nux =
xqw

k(Tw − T∞)
.

where, qw symbolize surface heat flux and defined as: 

qw = − k
∂T
∂y

+ qr at y = 0.

Thus 

Nux(Rex)
− 1

2 = −
2
̅̅̅̅̅̅̅̅̅̅̅
2 − β

√ θ
′

(0)
[

1 +
4

3R
[1+(θw − 1)(θ(0))3

]

]

.

3.3. Sherwood Number 

The local Sherwood Number is interpreted as: 

Shx =
xJw

DB(Cw − C∞)
.

where, Jw represents surface mass flux and defined as: 
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Jw = − DB
∂C
∂y

at y = 0.

Thus 

Shx(Rex)
− 1

2 = −
2
̅̅̅̅̅̅̅̅̅̅̅
2 − β

√ φ
′

(0).

3.4. Density number of micro-organisms distribution 

The local density number of miro-organisms is defined as: 

Nnx =
xPw

Dm(n − n∞)
.

where, Pw characterize motile micro-organisms flux and defined as: 

Pw = − Dm
∂n
∂y

at y = 0. (13)  

Thus 

Nnx(Rex)
− 1

2 = −
2
̅̅̅̅̅̅̅̅̅̅̅
2 − β

√ χ ′

(0).

4. Solution procedure 

This segment encloses numerical outcomes from the non-dimensional nonlinearly accompanying ordinary differential equations 
8–11 with boundary conditions (12), that are integrated by utilizing RK-4 procedure. To achieve this analytical technique, the dif-
ferential equations 8–11 are reduced into first order differential equation system, as displayed below: 

q′

1 = q2  

q′

2 = q3  

q′

3 =
1

(1 + We2q2
3)

n− 3
2 (1 + We2q2

3) + (1 − ε) + ε̅̅
2

√ (2 − βT)WT f ′ ′

[
− q1q3 − γ(1 − q2

2) + M(q2 − 1) − ω(q4 − Nrq6 − Rbq8)
]

q′

4 = q5  

q′

5 =

⎛

⎜
⎝

− 1
1 + 4

3R(1 + q4(θw − 1))3

⎞

⎟
⎠

[

Prq1q5 + PrNbq5q7 + PrNtq2
5 +

4
R
(1 + q4(θw − 1))2

(θw − 1)q2
5 + PrQq4

]

q′

6 = q7  

q′

7 = − Leq1q7 −
Nt
Nb

dq5 + C1[1 + δq4]
mexp

[
− E

1 + δq4

]

q6  

q′

8 = q9  

q′

9 = − Lbq1q9 + Pe[(ΩB + q8)dq7 + q7q9]

along with the boundary conditions: 

q1 = V0, q2 = λq′

3(0), q4 = 1 + ξq5(0), h
′

4 = − 1, q6 = 1 + βq7(0), q8 = 1, at η = 0  

q2 → 0, q4 → 0, q6 → 0, q8 → 0 as η → ∞.

5. Results and discussion 

In this assessment, the heat and mass transmission attributes of Carreau fluid and tangent hyperbolic fluid across a stretchable 
wedge are numerically evaluated while taking into account the magnetic field, slip situations, and non-variable heat flux. The results 
are exhibited graphically and in a tabular manner. Graphs depict the physical significance of the modulation of velocity, temperature, 
concentrations of nanoparticles and motile microorganisms for sundry parameters such as megnatic parameter M, suction parameter 
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V0, mixed convection parameter ω, eigen value γ, Rayleigh number Rb, buoyancy ratio parameter Nr, thermal slip parameter ξ, Pr 
Prandtl number, Nb is Brownian motion parameter, Nt is thermophoresis parameter, radiation parameter Rd, heat source parameter Q, 
activation energy E, Chemical reaction parameter C1, concentration slip parameter β, Lewis number Lb, microorganism concentration 
parameter ΩB and Peclet number Pe. The range of distinct parameters while computing graphically is taken as 0.0 ≤ M ≤ 1.5, 0.1 ≤ V0 
≤ 1.0, 0.1 ≤ γ ≤ 0.7, 0.1 ≤ ω ≤ 0.5, 0.1 ≤ Nr ≤ 1.5, 0.1 ≤ Rb ≤ 1.5, 0.1 ≤ Nt ≤ 0.7, 0.1 ≤ Nb ≤ 0.7, 1.0 ≤ Pr ≤ 2.5, 0.1 ≤ Q ≤ 0.4, 2.0 ≤
Rd ≤ 3.5, 0.0 ≤ ξ ≤ 0.5, 0.1 ≤ θw ≤ 1.0, 3.0 ≤ Le ≤ 10.0, 0.1 ≤ E ≤ 0.4, 0.1 ≤ C1 ≤ 0.7, 0.01 ≤ β ≤ 0.07, 0.5, ≤ Lb ≤ 2.0, 0.1 ≤ Pe ≤ 0.25 
and 0.1 ≤ ΩB ≤ 1.5. 

To evaluate the accuracy of our computational framework, we contrast the present numerical values for − f′ ′(0) when V0 is taken in 
range [ − 1, 1] and other parameters are neglected to resemble with previous work of Ahmad and Khan [48], Ishak et al. [49], 
Postelnicu and Pop [50]. Table 1 reveals an acceptable accuracy between the current numerical results and the past studies. Table 2 
exhibits that for both Carreau and tangent hyperbolic fluids, the skin friction coefficient − f”(0) enhances notably with magnetic 
parameter M, suction parameter V0, Eigen value γ, mixed convection parameter ω, but it lessens with buoyancy ratio parameter Nr and 
Rayleigh number Rb. Table 3 illustrates that the local Nusselt number − θ′(0) slightly decreases when Q, Nb and Nt are engaged, but it 
improves when R, Pr and θw are improved. Table 4 reveals that the local Sherwood number − φ′(0) is explicitly enhanced directly with 
Le, Nt and C1, but it shows meager increment for E and Nb. Table 5 signifies that when K, Pr and θw are given large inputs, the local 
motile density number − χ′(0) enhances dramatically whereas, the motile microorganisms density number − χ′(0) declines as Q, Nb 
and Nt get larger values. 

To analyze the influences of distinct parameters on Tangent hyperbolic nanofluid, we fix ε = 0.3 and We = 0.0, while to probe the 
characteristics of Carreau fluid, we fix We = 2.0 and ε = 0.0. Fig. 2 depicts the implifications of magnetic parameter M and Suction 
parameter Vo on velocity distribution f′(η) of both Tangent hyperbolic fluid and Carreau fluid. It can be detect that the uplifting values 
of M declines the velocity profile of both fluids. The velocity distribution declines because of an upsurge in drag force induced by 
gradually expanding values of the magnetic parameter M. It shows that the mounted values of Vo boosts the velocity of both the fluids. 
Fig. 3 examined the consequences of eigen value γ and mixed convection parameter ω on the velocity distribution for Carreau 
nanofluid and Tangent hyperbolic fluid which exhibit that the enlarging values of γ cause an increment in velocity of the both the fluids 
whereas, growing values of ω heightens the velocity of Carreau fluid and Tangent hyperbolic fluid. Physically, boosting the mixed 
convection variable ω induces the buoyancy force to overcome the inertial force, resulting in a dominating rise for f′(η). Fig. 4 
investigated the effects of the buoyancy ratio parameter Nr and Rayleigh number Rb on the velocity profile. The velocity is spotted to 
decline as the amount of Nr is boosted. It is basically defined as the existence of buoyancy forces provoke a decrement in velocity. 
Greater rates of natural and forced convection mashed thermal conductivity lessen rates of running along a permeable material for a 
massive stream of Carreau and Tangent hyperbolic nanofluids. It is mentionable that velocity for tangent hyperbolic fluid is faster than 
that of Carreau fluid. Similar effect is seen for Rb. Fig. 5 features the consequence of the Brownian motion parameter Nb and ther-
mophoresis parameter Nt on a dimensionless temperature θ(η). When the values of Nb are intensified, it can be seen that the tem-
perature of both fluids rises. As of the rapid diffusion rate of nanoparticles, heat transmission can be compensated for inducing the 
temperature to elevate. Although, the stronger Nt values correspond to higher temperatures. The movement of nanomaterials from a 
chilled destination to an elderly one is recognised as thermophoresis, and this tactic would improve the thermal variations as well. 
Fig. 6 depicts the discrepancy in temperature profiles for multiple larger values of the Prandtl number Pr as well as heat source 
parameter Q and the perception disempowering aspects in the heat flux of both liquids across the wedge, as the values of Pr boost, the 
thermal diffusivity tends to reduce, lowering the temperature. The heat source parameter Q is directly proportionate to the temper-
ature field. As an outcome, the heat transfer in both Carreau and Tangent hyperbolic fluids tends to rise. Fig. 7 scrutinize the 
implifications of radiation parameter Rd, thermal slip parameter ξ and the temperature ratio parameter θw on the temperature dis-
tribution θ(η). It appears that enhancing Rd values elevate the temperature for both Carreau nanofluid and tangent hyperbolic fluid. 
This is due to the fact that introducing thermal radiation into the fluid increases the temperature and thickness of its boundary layer. 
The temperature variation of both fluids diminishes as the temperature slip parameter ξ boosts. This is due to the fact that as the values 
of ξ raise, so does the thickness of the thermal boundary layer. As the values of temperature ratio parameter θw upsurge, the tem-
perature profile lessens. It is noticed that temperature for Carreau nanofluid is at higher level than that for tangent hyperbolic fluids. 
Fig. 8 explores the impacts of the Lewis number Le and activation energy E on the particle concentration φ(η). The input values un-
covered that enhancing the values of Le constrains concentration intensity for both liquids seeing as the Lewis number restricts fluid 
flow, whereas expanding the values of E boosts the concentration of nanomaterials. This attitude is clarified by the notion that as such 
of the minimal temperature and elevated activation, the rate of reaction is hindered, which enhances the concentration of the solution. 
As the worth of the chemical reaction parameter C1 grows, the concentration boundary layer thickness shrinks, while the valuation of 
the concentration slip parameter β exceeds, the density of Carreau nanofluid and tangent hyperbolic fluid in the boundary surface 

Table 1 
The comparative outputs for V0.  

V0 Ahmad and Khan [48] Ishak et al. [49] Postelnicu and Pop [50] Present Results 

− 1.0 0.75650 0.7566 0.75657 0.7566 
− 0.5 0.96922 0.9692 0.96923 0.9692 
0.0 1.23258 1.2326 1.2359 1.2326 
0.5 1.54175 1.5418 1.5417 1.5417 
1.0 1.88931 1.8893 1.8893 1.8893  

I.S. Ud Din et al.                                                                                                                                                                                                       



Case Studies in Thermal Engineering 39 (2022) 102390

10

Table 2 
Results for − f′ ′(0).  

V0 M γ ω Nr Rb Carreau Nanofluid Tangent Hyperbolic Nanofluid 

0.1 0.5 0.5 0.1 1.0 1.0 0.7205 0.3574 
0.2      0.7402 0.3690 
0.3      0.7601 0.3807 
0.1 0.1     0.6517 0.3194  

0.5     0.7205 0.3574  
1.0     0.7945 0.3998  
0.5 0.1    0.5993 0.3564   

0.3    0.6638 0.3570   
0.5    0.7205 0.3574   
0.5 0.1   0.7205 0.3574    

0.2   0.7303 0.3631    
0.3   0.7397 0.3686    
0.1 0.1  0.7328 0.3645     

0.5  0.7274 0.3613     
1.0  0.7205 0.3574     
1.0 0.1 0.7500 0.3745      

0.5 0.7370 0.3669      
1.0 0.7205 0.3574  

Table 3 
Results for − θ′(0).  

R Pr θw Q Nb Nt ¡ θ′(0) 

2.0 1.0 1.1 0.5 0.1 0.1 0.6903 
2.5      0.9175 
3.0      1.1034 
2.0 1.0     0.6903  

2.0     0.8513  
3.0     0.9336  
1.0 0.4    0.3401   

0.7    0.3595   
1.1    0.6903   
1.1 0.1   1.4730    

0.3   1.1264    
0.5   0.6903    
0.5 0.1  0.6903     

0.2  0.6691     
0.3  0.6483     
0.1 0.1 0.6903      

0.2 0.6707      
0.3 0.6512  

Table 4 
Results for Sherwood number − φ′(0).  

Le Nb Nt E C1 ¡ φ′(0) 

3.0 0.1 0.1 1.0 0.5 5.3010 
4.0     6.1469 
5.0     6.9032 
3.0 0.1    5.3010  

0.2    5.2778  
0.3    5.2473  
0.1 0.01   5.2266   

0.05   5.2596   
0.1   5.3010   
0.1 0.3  6.5148    

0.7  5.7825    
1.0  5.3010    
1.0 0.1 4.3156     

0.3 4.8839     
0.5 5.3010  
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region declines as revealed in Fig. 9. The key reason is because as the chemical reaction parameter improves, the quantity of solute 
molecules enduring chemical reaction rises, causing a reduction in concentration field. As a result, a destructive chemical reaction 
significantly lowers the thickness of the solutal boundary layer. Fig. 10 depicts the implication of Brownian movement parameter Nb 
and thermophoresis parameter Nt on concentration delimitation layer texture. Surging values of Nb provoke the concentration patterns 
of the Carreau nanofluid and Tangent hyperbolic nanofluid to shrink in the flow region. The relationship between Brownian motion 
and Brownian dispersion factor, which is significant for minimising concentration field, is the origin of the reduction in concentration 
domain. Whereas, the mounting values of Nt trigger the thickness of the solutal fluid layers to accelerate. Thermophoresis behavior is 
frequently observed in several physical instances where heat transfer is more critical. Because of the greater heat close to the surface, 

Table 5 
Results for local density number − χ′(0) of motile micro-organism.  

Lb Pe ΩB ¡ χ ′(0) 

1.0 0.1 0.1 1.7125 
2.0   2.2134 
3.0   2.6210 
1.0 0.1  1.7125  

0.2  2.2260  
0.3  2.7441  
0.1 0.1 1.7125   

0.2 1.7576   
0.3 1.8026  
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Fig. 2. Fluctuation in f′(η) with M and V0.  
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Fig. 3. Fluctuation in f′(η) with γ and ω.  
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Fig. 4. Fluctuation in f′(η) with Nr and Rb.  
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the liquid molecules flow to the relatively cool edge owing to the heat gradient and the concentration pattern improves as an outcome. 
Fig. 11 explores the consequences of Lewis number Lb, Peclet number Pe and microorganism concentration difference parameter ΩB on 
motile density profile χ(η). The input values revealed that improving the values of Lb restricts motile density for both fluids because the 
Lewis number of bioconvection prevents fluids motion. Higher Pe values reduce the conductivity of microbes, and the deformation in 
the motile concentration of nanoparticles has been reviewed. The mountable values of ΩB reduces the concentration of motile microbes 
as ΩB is a significant parameter that infiltrates the motility of both Carreau and Tangent hyperbolic fluids. 

6. Conclusions 

The consequences of variational thermal radiation on the mass and heat transmission of Carreau and tangent hyperbolic nanofluid 

Tangent Hyperbolic Nanofluid =     = 0.3, We = 0.0 
  Carreau Nanofluid = We = 2.0,     = 0.0 

Nb = 0.1, 0.3, 0.5, 0.7 

(  
) 

(  
) 

Tangent Hyperbolic Nanofluid =     = 0.3, We = 0.0 
  Carreau Nanofluid = We = 2.0,     = 0.0 

Nt = 0.1, 0.3, 0.5, 0.7 

Fig. 5. Fluctuation in θ(η) with Nb and Nt.  
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Tangent Hyperbolic Nanofluid =     = 0.3, We = 0.0 
  Carreau Nanofluid = We = 2.0,     = 0.0 

Q = 0.1, 0.2, 0.3, 0.4 

(  
) 

(  
) 

Fig. 6. Fluctuation in θ(η) with Pr and Q.  
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(  
) 

(  
) 

(  
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Fig. 7. Fluctuation in θ(η) with Rd, ξ and θw.  
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flows is stimulated due to stretchable wedge. The specific features encompass bio-convection, magnetic fields and thermal energy. The 
following are noteworthy outputs of the endeavour.  

● Enhancing the inputs of Nr and Rb lessens f′(η), but it strengthens as M, Vo, γ and ω values upsurge.  
● Increased values of Nt, Nb, Q and Rd provoke an increment in heat distribution profile θ(η), so although risen values of A, ξ and θw 

lead to a reduction. 
● The φ(η) concentration behavior significantly reduces as the Le, C1, β and Nb parameter values boost, even as the E and Nt pa-

rameters appreciably enhance the concentration.  
● The motile density pattern of microbes χ(η) exhibits a notable reduction associated with high Lb, Pe and ΩB values.  
● The skin friction coefficient enhanced considerably with M, V0, γ and ω, but dropped with an emerging tendency in Nr and Rb for 

both Carreau and Tangent Hyperbolic liquids.  
● When the parameters Nb, Nt and Q are enhanced, the Nusselt number − θ′(0) drops considerably, so although it inflates for R, Pr and 

θw.  
● As the parameters Nb and E are expanded, the Sherwood number − φ′(0) shrinks, even though it grows for Le, Nt and C1.  
● The motile density number − χ′(0) deteriorates for Lb, Pe and ΩB. 

Future direction 

In future, this work can be extended for hybrid nanofluid by using finite element method or finite volume method. 
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