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ON INTERPOLATIVE BOYD-WONG AND MATKOWSKI TYPE

CONTRACTIONS
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Abstract. By using an interpolation approach, we recognize Boyd-Wong and Matkowski type

contractions and we prove the related fixed point theorems in the class of metric spaces. The

obtained results are supported by some examples. We also give the partial metric case according

to our results.
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1. Introduction and preliminaries

Fixed point theory is one of the common cornerstones of three fields: nonlinear functional

analysis, topology and applied mathematics, see e.g. [9, 13, 16, 19, 20, 21, 26, 27]. The in-

terpolative Kannan contraction has been initiated in [17], where a unique fixed point result

has been proved. This idea was extended and generalized in [1]-[15], [20]. Very recently, the

authors in [18] gave a counter-example showing that the fixed point may be not unique. One of

generalizations of the Banach Contraction Principle [9] is due to Hardy-Rogers [16] (see [13]).

Theorem 1.1. Let (X, d) be a complete metric space. Let T : X → X be a given mapping such

that

d (Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) + δ[
1

2
(d (x, Ty) + d (y, Tx))],

for all x, y ∈ X, where α, β, γ, δ are non-negative reals such that α+ β+ γ + δ < 1. Then T has

a unique fixed point in X.

The following known lemma is useful in the sequel.

Lemma 1.1. [11] Let (X, d) be a complete metric space and {sn} be a sequence in X such

that lim
n→+∞

d(sn, sn+1) = 0. If {sn} is not a Cauchy sequence, then there exist ε > 0 and

subsequences {m(k)} and {n(k)} in N with n(k) > m(k) > k such that d(sn(k), sm(k)) ≥ ε and

d(sn(k)−1, sm(k)) < ε, so that the following holds:

(i) limk→+∞ d(sn(k)−1, sm(k)−1) = ε;

(ii) limk→+∞ d(sn(k), sm(k)) = ε;
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(iii) limk→+∞ d(sn(k), sm(k)−1) = ε;

(iv) limk→+∞ d(sm(k), sn(k)−1) = ε.

In this paper, we initiate the concept of interpolative Boyd-Wong and Matkovski type con-

tractions (see [14]). We also provide some examples illustrating the obtained results. We also

extend our results to partial metric spaces.

2. Main results

2.1. Interpolative Boyd–Wong type contractions. We start this section by introducing

the notion of interpolative Boyd-Wong type contractions. First, let Ψ be the set of functions

ψ : [0,+∞) → [0,+∞) such that [10]

(ψ1) ψ(0) = 0;

(ψ2) ψ(t) < t for each t > 0;

(ψ3) ψ is upper semi-continuous from the right.

Definition 2.1. Let (X, d) be a metric space. We say that the self-mapping T : X → X is

an interpolative Boyd-Wong type contraction, if there exist α, β, γ ∈ (0, 1) with α + β + γ < 1

and a nondecreasing function ψ ∈ Ψ such that

d (Tx, Ty) ≤ ψ
(
[d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]γ ·

[
1

2
(d (x, Ty) + d (y, Tx))

]1−α−β−γ )
, (1)

for all x, y ∈ X\Fix(T ).

Theorem 2.1. Let (X, d) be a complete metric space and T be an interpolative Boyd-Wong type

contraction. Then T has a fixed point in X.

Proof. Starting from x0 ∈ X, consider {xn} given as xn = Tn(x0) for each positive integer n. If

there exists n0 such that xn0 = xn0+1, then xn0 is a fixed point of T . The proof is completed.

From now, assume that xn ̸= xn+1 for all n ≥ 0. By substituting the values x = xn and y = xn−1

in (12), we find that

d (xn+1, xn) = d (Txn, Txn−1) ≤ ψ([d (xn, xn−1)]
β [d (xn, Txn)]

α · [d (xn−1, Txn−1)]
γ)

·
[
1
2(d (xn, xn) + d (xn−1, xn+1))

]1−α−β−γ
)

≤ ψ([d (xn, xn−1)]
β · [d (xn, xn+1)]

α · [d (xn−1, xn)]
γ

·
[
1
2(d (xn−1, xn) + d (xn, xn+1))

]1−α−β−γ
).

(2)

Suppose that d (xn−1, xn) < d (xn, xn+1) for some n ≥ 1. Thus,

1

2
(d (xn−1, xn) + d (xn, xn+1)) ≤ d (xn, xn+1) .

Consequently, the inequality (2) yields that

0 < d (xn, xn+1) ≤ ψ([d (xn−1, xn)]
β+γ ·[d(xn, xn+1)]

1−β−γ) ≤ [d (xn−1, xn)]
β+γ ·[d(xn, xn+1)]

1−β−γ ,

(3)

so, [d(xn, xn+1)]
β+γ ≤ [d (xn−1, xn)]

β+γ , which is a contradiction. Thus, we have d (xn, xn+1) ≤
d (xn−1, xn) for all n ≥ 1. Hence, {d (xn−1, xn)} is a non-increasing sequence with positive terms.

Set ℓ =: lim
n→+∞

d (xn−1, xn). We have

1

2
(d (xn−1, xn) + d (xn, xn+1)) ≤ d (xn−1, xn) , for all n ≥ 1.
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By a simple elimination, the inequality (2) implies that

d (xn, xn+1) ≤ ψ(d (xn−1, xn)). (4)

Since ψ is upper semi-continuous from the right, we have

ℓ = lim
n→+∞

d (xn, xn+1) ≤ lim sup
n→+∞

ψ(d (xn−1, xn)) ≤ ψ(ℓ) < ℓ,

which is a contradiction, so we get that

ℓ = lim
n→+∞

d (xn, xn+1) = 0. (5)

In what follows, we shall prove that {xn} is a Cauchy sequence.

We argue by contradiction, that is, {xn} is not a Cauchy sequence. This means that there

exists ε > 0 for which we can find subsequences of integers (mk) and (mk) with nk > mk > k

such that

d(xmk
, xnk

) ≥ ε. (6)

Further, corresponding to mk, we can choose nk in such a way that it is the smallest integer

with nk > mk and satisfying (6). Then

d(xmk
, xnk−1) < ε. (7)

By substituting the values x = xnk−1 and y = xmk−1 in (12), we find that

d (xnk
, xmk

) = d (Txnk−1, Txmk−1)

≤ ψ([d (xnk−1, xmk−1)]
β [d (xnk−1, Txnk−1)]

α · [d (xmk−1, Txmk−1)]
γ)

·
[
1
2(d (xnk−1, Txmk−1) + d (xmk−1, Txnk−1))

]1−α−β−γ
)

= ψ([d (xnk−1, xmk−1)]
β [d (xnk−1, xnk

)]α · [d (xmk−1, xmk
)]γ)

·
[
1
2(d (xnk−1, xmk

) + d (xmk−1, xnk
))
]1−α−β−γ

).

(8)

Using the upper semi-continuity of ψ, (5) and Lemma 1.1, we obtain that

ε ≤ ψ(0) = 0,

which is a contradiction. Thus, {xn} is a Cauchy sequence in the complete metric space (X, d),

so there exists u ∈ X such that lim
n→+∞

d(xn, u) = 0. Suppose that x ̸= Tx. Since xn ̸= Txn for

each n ≥ 0, by letting x = xn and y = u in (12), we have

d (xn+1, Tu) = d (Txn, Tu) ≤ ψ([d (xn, u)]
β · [d (xn, Txn)]α · [d (u, Tu)]γ

·
[
1

2
(d (xn, Tu) + d (u, xn+1))

]1−α−β−γ

).
(9)

Letting n→ +∞ in the inequality (9) and using the upper semi-continuity of ψ, we find out

d(u, Tu) ≤ ψ(0) = 0,

which is a contradiction. Thus, Tu = u.

�

Proceeding as the proof of Theorem 2.1, we state the following result.

Corollary 2.1. Let (X, d) be a complete metric space and T : X → X be a self-mapping.

Suppose there exist α, β ∈ (0, 1) with α+ β < 1 and a nondecreasing function ψ ∈ Ψ such that

d (Tx, Ty) ≤ ϕ
(
[d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]1−α−β

)
, (10)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.
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Taking ψ(t) = λt (where λ ∈ [0, 1)) in Theorem 2.1, we have

Corollary 2.2. Let (X, d) be a complete metric space and T : X → X be a self-mapping.

Suppose there exist α, β, γ ∈ (0, 1) with α+ β + γ < 1 and λ ∈ [0, 1) such that

d (Tx, Ty) ≤ λ [d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]γ ·
[
1

2
(d (x, Ty) + d (y, Tx))

]1−α−β−γ

, (11)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.

2.2. Interpolative Matkowski type contractions. Let Φ be the set of functions ϕ : [0,+∞) →
[0,+∞) such that

(ϕ1) ϕ is nondecreasing,

(ϕ2) limn→+∞ ϕn(t) = 0 for each t > 0.

In order to state our next theorem we shall need the following well-known and easy, but useful,

observation (by Matkowski [22, 23]).

Lemma 2.1. [6, 19] Let ϕ ∈ Φ. Then ϕ(t) < t for all t > 0 and ϕ(0) = 0.

Definition 2.1. Let (X, d) be a metric space. We say that the self-mapping T : X → X is

an interpolative Matkowski type contraction, if there exist α, β, γ ∈ (0, 1) with α + β + γ < 1

and ϕ ∈ Φ such that

d (Tx, Ty) ≤ ϕ
(
[d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]γ ·

[
1

2
(d (x, Ty) + d (y, Tx))

]1−α−β−γ )
, (12)

for all x, y ∈ X\Fix(T ).
On what follows we state and prove the main result of this section.

Theorem 2.2. Let (X, d) be a complete metric space and T be an interpolative Matkowski type

contraction. Then T has a fixed point in X.

Proof. Following the related lines in the proof of Theorem 2.1, without loss of generality, we

construct a sequence {xn = Tnx0} such that xn ̸= xn+1. From (4), we have

0 < d (xn, xn+1) ≤ ϕ(d (xn−1, xn)) ≤ ϕn(d (x0, x1)). (13)

Since ϕ ∈ Φ, we have lim
n→+∞

ϕn(d (x0, x1)) = 0. Hence, we find that

lim
n→+∞

d (xn, xn+1) = 0. (14)

Now, we shall show that {xn} is Cauchy. Let ε > 0. There exists n0 ∈ N such that for each

n ≥ n0,

ϕn(d (x0, x1)) < ε− ϕ(ε).

By (13), this implies that

0 < d (xn, xn+1) < ε− ϕ(ε). (15)

We claim that

0 < d (xn, xm) < ε, for all m ≥ n ≥ n0. (16)
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We prove (16) by induction. Since ε−ϕ(ε) < ε, by using (15), we conclude that (16) holds when

m = n+ 1. Now suppose that (16) holds for m = k. For m = k + 1, we have

d(xn, xk+1) ≤ d(xn, xn+1) + d(xn+1, xk+1)

≤ ε− ϕ(ε) + d(Txn, Txk)

≤ ε− ϕ(ε) + ϕ([d (xn, xk)]
β · [d (xn, Txn)]α · [d (xk, Txk)]γ

·
[
1

2
(d (xn, Txk) + d (xk, Txn))

]1−α−β−γ

)

= ε− ϕ(ε) + ϕ([d (xn, xk)]
β · [d (xn, xn+1)]

α · [d (xk, xk+1)]
γ

·
[
1

2
(d (xn, xk+1) + d (xk, xn+1))

]1−α−β−γ

).

Since k ≥ n ≥ n0, we have

[d (xn, xk)]
β · [d (xn, xn+1)]

α · [d (xk, xk+1)]
γ ·

[
1

2
(d (xn, xk+1) + d (xk, xn+1))

]1−α−β−γ

< ε.

Thus, we find

d(xn, xk+1) ≤ ε− ϕ(ε) + ϕ(ε) = ε,

so (16) holds for m = k + 1. By (16), the sequence {xn} is Cauchy, so there exists u ∈ X such

that lim
n→+∞

d(xn, u) = 0. Suppose that u ̸= Tu. Since xn ̸= Txn for each n ≥ 0, by (12), we have

d (xn+1, Tu) = d (Txn, Tu) ≤ ϕ([d (xn, u)]
β · [d (xn, Txn)]α · [d (u, Tu)]γ

·
[
1

2
(d (xn, Tu) + d (u, xn+1))

]1−α−β−γ

).
(17)

It is obvious that there exists N ∈ N such that for each n ≥ N ,

[d (xn, u)]
β · [d (xn, Txn)]α · [d (u, Tu)]γ ·

[
1

2
(d (xn, Tu) + d (u, xn+1))

]1−α−β−γ

< d(u, Tu).

Since ϕ is nondecreasing, by insertion of this last inequality in (17), we get that

d (xn+1, Tu) ≤ ϕ(d(u, Tu)), for all n ≥ N.

Letting n→ +∞, we obtain that

0 < d(u, Tu) ≤ ϕ(d(u, Tu)),

which is a contradiction. Thus, Tu = u.

�

Proceeding as the proof of Theorem 2.2, we state the following result.

Corollary 2.3. Let (X, d) be a complete metric space and T : X → X be a self-mapping.

Suppose there exist α, β ∈ (0, 1) with α+ β < 1 and ϕ ∈ Φ such that

d (Tx, Ty) ≤ ϕ
(
[d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]1−α−β

)
, (18)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.

Following [24] (see also [2, 3, 4, 5, 12, 25, 26] for more details on partial metric spaces), the

partial metric case of Theorem 2.1 is
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Theorem 2.3. Let (X, p) be a complete partial metric space and T : X → X be a self-mapping.

Suppose there exist α, β, γ ∈ (0, 1) with α+ β + γ < 1 and a nondecreasing function ψ ∈ Ψ such

that

p (Tx, Ty) ≤ ψ
(
[p (x, y)]β · [p (x, Tx)]α · [p (y, Ty)]γ ·

[
1

2
(p (x, Ty) + p (y, Tx))

]1−α−β−γ )
, (19)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.

Again, the partial metric case of Theorem 2.2 is

Theorem 2.4. Let (X, p) be a complete partial metric space and T : X → X be a self-mapping.

Suppose there exist α, β, γ ∈ (0, 1) with α+ β + γ < 1 and ϕ ∈ Φ such that

p (Tx, Ty) ≤ ϕ
(
[p (x, y)]β · [p (x, Tx)]α · [p (y, Ty)]γ ·

[
1

2
(p (x, Ty) + p (y, Tx))

]1−α−β−γ )
, (20)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.

Another consequence of Theorem 2.3 (or Theorem 2.4) is

Corollary 2.4. Let (X, p) be a complete partial metric space and T : X → X be a self-mapping.

Suppose there exist α, β, γ ∈ (0, 1) with α+ β + γ < 1 and λ ∈ [0, 1) such that

p (Tx, Ty) ≤ λ [p (x, y)]β · [p (x, Tx)]α · [p (y, Ty)]γ ·
[
1

2
(p (x, Ty) + p (y, Tx))

]1−α−β−γ

, (21)

for all x, y ∈ X\Fix(T ). Then T has a fixed point in X.

In the following examples, the fixed point exists, but the Hardy-Rogers result [16] is not

applicable.

Example 2.1. Let X = {x, y, z, w} be a set endowed with a metric d such that

d(x, x) = d(y, y) = d(z, z) = d(w,w) = 0,

d(y, x) = d(x, y) = 3,

d(z, x) = d(x, z) = 4,

d(y, z) = d(z, y) = 3
2

d(w, x) = d(x,w) = 5
2

d(w, y) = d(y, w) = 2

d(w, z) = d(z, w) = 3
2 .

We define a self-mapping T on X by T :

(
x y z w

x w x y

)
. It is clear that T is not a Hardy-

Rogers contraction. Indeed, there is no λ ∈ [0, 14) where λ = min{α, β, γ} such that the following

inequality is fulfilled:

d(Tw, Tz) = d(y, x) = 3 ≤ λ(d(w, z) + d(Tw,w) + d(z, Tz) +
d(Tz,w) + d(Tw, z)

2
) =

41

4
λ.

On the other hand, for α = 1
32 = γ, β = 3

4 and ψ(t) = 9t
10 , the self-mapping T forms an

interpolative Boyd-Wong (resp. Matkowski) type contraction and x is the desired fixed point of

T .
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Example 2.2. Let X = {1, 2, 11, 21} be a set endowed with the classical metric d(x, y) = |x−y|,
that is,

d(x, y) 1 2 11 21

1 0 1 10 20

2 1 0 9 19

11 10 9 0 10

21 20 19 10 0

We define a self-mapping T on X by T :

(
1 2 11 21

1 2 1 2

)
. It is clear that T is not a Hardy-

Rogers contraction. Indeed, there is no λ ∈ [0, 14) such that the following inequality is fulfilled:

d(T1, T2) = d(1, 2) = 1 ≤ λ

[
d(1, 2) + d(T1, 1) + d(2, T2) +

d(T1, 2) + d(T2, 1)

2

]
= 2λ.

Choose α = β = γ = 1
4 . Consider ϕ : [0,∞) → [0,∞) defined by

ϕ(t) =

{
7
10 t, 0 ≤ t ≤ 1
t
4 , t > 1.

Mention that ϕ ∈ Φ. Let x, y ∈ X\Fix(T ), then

(x, y) ∈ {(11, 11), (21, 21), (11, 21), (21, 11)}.

Without loss of generality, let (x, y) = (11, 21). In this case, we have

d (Tx, Ty) = 1 ≤ ϕ(26600
1
4 ) =

ϕ
(
[d (x, y)]β · [d (x, Tx)]α · [d (y, Ty)]γ ·

[
1

2
(d (x, Ty) + d (y, Tx))

]1−α−β−γ )
.

That is, T is an interpolative Matkowski type contraction and {1, 2} is the set of fixed points of

T .

3. Conclusion

In this paper, we revisit two famous contractions, Boyd-Wong contraction and Matkowski

contraction, by using the idea of the interpolative contraction in the setting of complete metric

space. These proposed contraction can bring new framework to the metric fixed point theory.

Further, well-known applications of fixed point theory can be revisited and extended.
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