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fractional order accompanied by the boundary and initial conditions. The ultimate goal of the
algorithm is to set up a system of equations whose number matches the unknowns. Computing
the unknowns enables us to approximate the solution of the objective function in the form of
polynomials.

Keywords : Fractional Optimal Control Problems; Optimal Control Problems; Polynomial Basis
Functions; Caputo Fractional Derivative.

1. INTRODUCTION

Fractional-order dynamics emerge in various
problems in engineering and science such as
biomathematics,1 bioengineering,2,3 viscoelastic-
ity,4,5 dynamics of interfaces between substrates
and nanoparticles.6 It is also shown that the materi-
als with hereditary and memory effects and dynami-
cal processes including heat conduction and gas dif-
fusion in fractal porous media can be modeled by
fractional-order models better than integer mod-
els.7 Although the optimal control theory is an
area in mathematics which has been under develop-
ment for years, the fractional optimal control prob-
lem (FOCP) theory is a very new area in mathe-
matics. An FOCP can be defined with respect to
different definitions of fractional derivatives. But
the most important types of fractional derivatives
are the Caputo and the Riemann–Liouville deriva-
tives.8,9 General necessary conditions of optimality
have been developed for FOCPs. For instance, in
Refs. 10 and 11 the authors have achieved the neces-
sary conditions of optimization for FOCPs with the
Riemann–Liouville derivative and also have solved
the problem numerically by solving the necessary
conditions. There also exist other numerical simula-
tions for FOCPs with Riemann–Liouville fractional
derivatives such as Oustaloup’s approximation into
a state-space realization form.12 In Ref. 13, the
necessary conditions of optimization are achieved
for FOCPs with the Caputo fractional derivative.
There exist numerical technique for such problems
such as in Refs. 13 and 14, where the author has
solved the problem by solving the necessary condi-
tions approximately.

In principle, it is difficult to find an analytical
solution of optimal control problems, to circumvent
this, researchers have suggested techniques that
are able to simulate the solutions. Generally, the
approaches adopted in the solution of optimal con-
trol problems are classified into two categories, indi-
rect and direct. In the former approach, the original
optimal control problem is transformed into a dif-
ferent state that can be easily solved. In the latter

approach, the solution of the optimal control prob-
lem is approximated using numerical techniques.

A deeper insight into the solution of the optimal
control problems for indirect methods is found in
Refs. 11, 15, 16 and for direct methods in Refs. 17–
24. Since we intend to approximate the solutions of
FOCPs in this research, it implies our methodol-
ogy falls under direct methods. Our research solely
focuses on the methods of solution of FOCPs, there-
fore we will not be engaged in the formulation of
optimal control problems, instead we will make use
of examples to demonstrate the suggested scheme.

We separate the rest of our work into different
sections, we start by detailing the methodology for
approximating the FOCPs, we then explore the con-
vergence of the technique in Sec. 3, we demonstrate
the use of the methodology in Sec. 4 and then we
finally give our conclusion in the last section.

2. SOLUTION OF FRACTIONAL
OPTIMAL CONTROL
PROBLEMS

We give a concise description of our methodology in
this section by explaining how to go about solving
a typical FOCP.

Let 0 < αi < ni and L, fi: [a,+∞[ × R
2n+1 → R

be differentiable functions and also fi is a linear and
invertible function for 1 ≤ i ≤ n.

Consider the following FOCPs:

Min ℵ(r1, . . . , rn, u1, . . . , un, T )

=
∫ T

a
L(t, r1, . . . , rn, u1, . . . , un)dt, (1)

subject to the dynamic system⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Dα1
t r1(t) = f1(t, r1, . . . , rn, u1, . . . , un),

Dα2
t r2(t) = f2(t, r1, . . . , rn, u1, . . . , un),

...

Dαn
t rn(t) = fn(t, r1, . . . , rn, u1, . . . , un),

0 ≤ t ≤ 1,

(2)
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where the boundary conditions are as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r1(0) = r10, r1(1) = r11,

r2(0) = r20, r2(1) = r21,

...
...

rn(0) = rn0, rn(1) = rn1,

(3)

where T , ri0 and ri1, i = 0, 2, . . . , n are fixed real
numbers,Dαj

t , j = 1, 2, . . . , n represents the Caputo
fractional derivative with respect to t.8,9

We consider the functions ri(t), i = 1, 2, . . . , n

ri(t) ∼= rik(t) =
k∑

j=0

aijt(t− 1)ψj(t) +wi(t). (4)

In the above equation, aij are unknown coefficients,
ψj(t) and wi(t) are basis polynomial functions.

The functions wi(t) are constructed in a manner
so as to satisfy the boundary conditions

wi(t) = ri0 + (ri1 − ri0)t.

Then we consider⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1(t) = f−1
1 (Dα

t r1(t)) − g−1
1 (t, r, u2, . . . , un),

u2(t) = f−1
2 (Dα

t r1(t)) − g−1
2 (t, r, u1, u3, . . . , un),

...

un(t) = f−1
n (Dα

t r1(t)) − g−1
n (t, r, u1, . . . , un−1),

(5)

where gi are linear functions and r = (r1, . . . , rn).
We substitute (4) and (5) in (1), and define

ℵ[a10, . . . , a1k, . . . , an0, . . . , ank]

=
∫ T

a
L(t, r1k, . . . , rnk)dt. (6)

We substitute ri(t) terms represented by Eq. (4) in
the above equation. Minimizing the function given
by Eq. (6) demands that we impose the necessary
condition as

∂ℵ
∂aij

= 0, j = 0, . . . , k, i = 1, . . . , n. (7)

The format of the above equation lends itself to
a system of equations with aij as unknowns. Our
final task is to solve for the unknowns and substi-
tute them in Eq. (4). In most cases, the system of
equations that results from Eq. (7) is so complex
that they require the assistance of computer alge-
braic systems such as Mathematica.

3. CONVERGENCE

Our major objective in this section is to show that
increasing the degree of the polynomial, that is, the
value of k in Eq. (4), is accompanied by an increase
in the accuracy of the method.

Definition 1. We define the Banach space as

Cn(K) = {r(t)|r(n)(t) ∈ C(K)},

‖r‖n =
n∑

i=0

‖r(i)‖∞
that K = [0, 1]

and

Hi(K) = {ri(t) ∈ Cn(K)|ri(0) = ri0, ri(1) = ri1}.

Lemma 2. Assume ri(t) ∈ Hi(K), under the norm
‖·‖n, there exists a polynomial {lij(t)}j∈N ⊂ Hi(K)
such that lij → ri.

The proof of Lemma 2 is found in Ref. 25.

Definition 3. We define Mik(K) and Mk(K) as

Mik(K) = Hi(K) ∩
〈
{ψj(t)}j=k

j=0

〉
,

Mk(K) =
n⋃

i=1

Mik,
(8)

where
〈
{ψj(t)}j=k

j=0

〉
is the Banach subspace of

Cn(K). In Eq. (8), Mik(K) is a metric subspace
of Hi(K).

Theorem 4. Assume ri ∈ Cn(K) and Dαir(t) ∈
C(K) then

∥∥∥∥∂αiri(t)
∂tαi

∥∥∥∥
∞

≤

∥∥∥r(ni)
i

∥∥∥
∞

Γ(ni − αi + 1)
. (9)

Proof. It is similar to given proof in Refs. 8
and 26.

Theorem 5 (Ref. 27). A map p that operates
from a metric space into another metric space is
regarded as uniformly continuous.

Lemma 6. On the Banach space ((Cn(K), . . . ,
Cn(K)), ‖ · ‖n), ℵ is assumed to be continuous.
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Proof. Presume r∗i ∈ Cn(K), s > 0 and

I = K ×
n∏

i=0

[−Li − s, Li + s]

×
n∏

i=0

[−Hi − s,Hi + s],

where

Li = ‖r∗i ‖∞, Hi = ‖Dαir∗i ‖∞.
If t ∈ K,

R∗ = (t, r∗1 , . . . , r
∗
n,Dα1r∗1, . . . ,Dαnr∗n) ∈ I.

Suppose μ > 0 and ‖ri − r∗i ‖ < μ, then in view of
Eq. (9),

‖Dαiri −Dαir∗i ‖∞ ≤ 1
Γ(ni − αi + 1)

‖ri − r∗i ‖∞

<
μ

Γ(ni − αi + 1)
.

We have the following result for μ that is small
enough:

R = (t, r1, . . . , rn,Dα1r1, . . . ,Dαnrn) ∈ I, t ∈ T.

If we consider

L[(r1(t), . . . , rn(t)] = L(t, r1, . . . , rn, u1, . . . , un),

L is a continuous mapping on the compact set I
and according to Theorem 5, L will be uniformly
continuous on set I. Accordingly, if μ > 0 is very
small then

|R−R∗| < μ ⇒ |L(R) − L(R∗)| < ξ,

and therefore we have

|ℵ[(r1(t), . . . , rn(t))] − ℵ[(r∗1(t), . . . , r
∗
n(t))]| < ξ,

as required.

Theorem 7. We assume the ωk ∈Mk(K) to be the
minimum value of ℵ, then we have

lim
k→∞

ωk = 0.

Proof. For arbitrary value ξ > 0, assume r∗i ∈
Mik(K) such that ℵ[(r∗1 , . . . , r∗n)] < ξ. According to
Lemma 6, we know that on space

((Cn(K), . . . , Cn(K)), ‖ · ‖n),

the functional ℵ is continuous. Thus,

|ℵ[(r1, . . . , rn)] − ℵ[(r∗1, . . . , r
∗
n)]| < ξ (10)

provided that ‖(r1, . . . , rn) − (r∗1, . . . , r
∗
n)‖. Accord-

ing to Lemma 2, there exists ηk ∈Mk(K), for large

enough values of k, we have ‖ηk − (r∗1 , . . . , r∗n)‖ < ξ.
Moreover, suppose rik are the elements of Mik(K)
such that ℵ[(r1, . . . , xn)] = ωk, then using (10) we
have

0 ≤ ℵ[(r1, . . . , rn)] ≤ ℵ[ηk] < 2ξ.

As ξ > 0 is arbitrary, we obtain

lim
karrow∞

ωk = lim
karrow∞

ℵ[(r1k, . . . , rnk)] = 0.

4. ILLUSTRATIVE EXAMPLES

In this section, we use the suggested technique to
solve two nonlinear FOCPs.

Example 8. Consider the nonlinear FOCP20

minℵ[r1, r2] =
∫ 1

0

[
(r1 − t

5
2 − t2 − 1)2

+ (r2 − t
9
2 )2 +

(
D

1
2 r2 − 315

√
πt4

3
√
π

)2

+

(
D

1
2 r1 − 8t

3
2

3
√
π
− 15πt2

16
√
π

)2
⎤
⎦dt

accompanied by the conditions

r1(0) = 1, r1(1) = 3, r2(0) = 0, r2(1) = 1.

The analytic solution of the above problem is

r1(t) = t
5
2 + t2 + 1,

r2(t) = t
9
2 .

We formulate the approximate solution in the form

r1k(t) =
k∑

i=0

a1i(t− 1)ti+1 + 1 + 2t, (11)

r2k(t) =
k∑

i=0

a2i(t− 1)ti+1 + t. (12)

We set up a system of equations that enables us to
solve for a1i and a2i as discussed in the previous
section. Thereafter, we choose the value of k to use
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in (11) and (12), for example if k = 6,

r16(t) = 0.211t7 + 0.457t6 + 0.217t5 − 1.602t4

+ 1.503t3 − 0.786t2 + 4.003t − 1.003,

r26(t) = 0.029t8 + 0.094t7 − 0.384t6 + 0.902t5

− 1.668t4 + 2.025t3 + 0.002t2.

Figures 1 and 2 display the absolute error between
the above system of equations and the analytic solu-
tion. The errors are insignificant, implying a good
approximate solution.

In Table 1, the minimum of the functional ℵ can
be seen for different values of k.

Fig. 1 Absolute error between approximate and exact solu-
tion for r1(t).

Fig. 2 Absolute error between approximate and exact solu-
tion for r2(t).

Table 1 Minimum of the Functional ℵ.

k = 2 k = 4 k = 6

ℵ 0.0000171 6.64259 × 10−8 2.44447 × 10−9

Example 9. We intend to approximate the solu-
tion of Ref. 20

minℵ[r1, r2] =
∫ 1

0

1
2

[
(r1 − t

3
2 − 1)2 + (r2 − t

5
2 )2

+
(
u(t) − 3

√
π

4
t+ t

5
2

)2
]
dt, (13)

subject to the dynamical system

D0.5
t r1(t) = r2(t) + u(t), (14)

D0.5
t r2(t) = r1(t) +

15
√
π

16
t2 − t

3
2 − 1, (15)

accompanied by the conditions

r1(0) = 1, r2(0) = 0.

The exact solution of this problem is

r1(t) = t
3
2 + 1,

r2(t) = t
5
2 ,

u(t) =
3
√
π

4
t− t

5
2 .

(16)

We approximate the solution of the problem in the
form of polynomials:

r1k(t) =
m∑

i=0

a1it
i+1 + 1, (17)

r2k(t) =
m∑

i=0

a2it
i+1. (18)

We employ the technique that we described in the
previous section to solve it for a1i and a2i, and
then substituting these obtained values in Eqs. (17)
and (18) yields

r16(t) = 1 + 0.132t + 2.135t2 − 3.687t3 + 4.946t4

− 3.551t5 + 1.024t6,

r26(t) = −0.016t + 0.291t2 + 1.752t3 − 3.887t4

+ 6.8002t5 − 5.866t6 + 1.028t7.

In Figs. 3 and 4, we compare the approximate solu-
tion with (16) through the use of the absolute error.
The magnitude of the errors is small, indicating a
good approximate solution. In Table 2, the mini-
mum of the functional ℵ can be seen for different
values of k.
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Fig. 3 Absolute error between approximate and exact solu-
tion for r1(t).

Fig. 4 Absolute error between approximate and exact solu-
tion for r2(t).

Table 2 Minimum of the Functional ℵ.

k k = 1 k = 3 k = 5

ℵ 0.000419 9.64694 × 10−6 1.00695 × 10−6

5. CONCLUSION

A numerical method that possesses the capabil-
ity of handling nonlinear optimal control problems
is profoundly explained. Two applications serve as
examples to support the theoretical aspects of the
methodology. To prove the accuracy of the numer-
ical technique, the obtained results are compared
with those from the known analytic solutions. The
computed errors prove that the suggested tech-
nique is both reliable and accurate. In terms of
implementation, this technique is not cumbersome
as it requires a few and easy steps to get to the
final answer. As with other numerical schemes, the
accuracy of the suggested approach improves with
increasing number of unknowns in the equations,
however, solving a few equations is generally ade-
quate to yield acceptable levels of accuracy. Finally,

it should be noted that this method, although given
for linear functions in conditions, has worked very
well, but more discussions of nonlinear functions
should be given.
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