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Abstract: This work aims to share some fractional integrals and derivatives containing three real parameters. The main
tool to introduce such operators is the corresponding Abel’s equation. Solvability conditions for the Abel’s equations are
shared. Semigroup properties for fractional integrals are introduced. Integration by parts rule is given. Moreover, mean

value theorems and related results are shared. At the end of the paper, some directions for some fractional operators are
given.
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1. Introduction

The integral containing a kernel of the form (z —¢)?~! with a <t <z <b, [a,b] C (—00,00) and 0 < 3 < 1,
was studied firstly by Abel while he was studying on tautochrone problem [3], [4]. Abel showed that the equation

x

N
i | gt =9 -

a

where a < z < b, T' is the Gamma function and 0 < 8 < 1, is solvable in L'(a,b) (LP denotes the Lebesgue
space) if and only if the integral

1 [ g(t)
r(l—/a)/(x—wﬁdt

a

is absolutely continuous on [a,b] and

fim [ 9G4 o,
r—at (.’I} — t)ﬂ
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Although Abel’s work only dealt with solving an integral equation containing a parameter § with 0 < § < 1

the left-hand side of (1.1) was used by Riemann [12] to introduce an expression for the fractional integral as

x

Pl f(x) == F(lﬁ) / @ f(tt))l_ﬁ dt, a<x<b, 0<p<1. (1.2)

a

As was shared in Abel’s papers such operators have many (real-world) applications. Among these applications
one of the areas is the mean value theorem. First mean value theorem related with the fractional integrals
BI,+f of a function f was shared by Riesz [13]. In [13], Riesz proved that for a function f belonging to
L(a,b + €),€> 0, such that #I,¢ f(x) is continuous on [a,b] and #I,+ f(a™) = 0 there exists a 7 € [a,b) such
that

Plov f(x) =P Iy f(2) =P I f(1), 0< B < 1. (1.3)

Eq. (1.3) gives rise to the following inequalities [14]

"I+ f(x)] < const.p(m)(lf%)q(aj)%, 0<y<B, (1.4)

where p and ¢ are nondecreasing functions such that

[f(@)| < pl@), [PLos f(2)] < g(@), 2 > a,

and

b

¢
/(x — )P f(t)dt| < eSSSUP¢¢lab] /(C — )P (t)dt|, x> b. (1.5)

a a

In 1953, Isaacs [8] proved that (1.5) holds if the lower bound is negative infinity, i.e.

b q
/(m — )P f(t)dt| < esssupcy, /(c — )P f(t)dt|, x> b. (1.6)

where 0 < 8 < 1, provided that left-hand integral converges, or upper bound is infinity, i.e.

oo

/(t —z)PLf(t)dt| < €SSSUP¢~.,, /(t — O (dt|, = < a, (1.7)
¢

a

where 0 < 8 < 1, provided that left-hand integral converges.
Choudhary and Kumar [5] introduced an abstract inequality related with (1.7) (or (1.6)) as

/G(t —x)f(t)dt| < esssup;s, /G(t - Q) f()dt|, = < a, (1.8)
a ¢
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provided that left-hand integral converges absolutely, where G(t), H(t) are decreasing and positive functions
for ¢t >0, G(t), H(t) and H'(t) are continuous such that

/G(m,t)H(t)dt - { é i (1.9)
0

Clearly for G(t) = t°~1/T(B) and H(t) =t=?/T(1 — ), (1.8) and (1.9) are contained in (1.7).

Erdélyi and Osler introduced a fractional integral by just changing the kernel (z — )5~! with (¢(z) —
©0(t))P~1¢'(t), where ¢ is an infinitely differentiable function and ¢’(x) > 0 on a given interval [a,b] [6], [7],
[11]. Samko et al. [14] shared some properties of this fractional integral for the monotone functions ¢ having
continuous derivatives. Moreover the readers may see the papers [1], [2], [10].

In this paper, we will consider the following fractional integral operators

a T — o _ a1B—1
,B,aIZJrf(x) — F(ﬁ) / [( p) — (t P) ] f(t)dt,

where a >0, 0 < <1, —00 < p < oo such that = # p and —co < a <z <b < 00, and

b
b )" — (6 - ))""
Bapd flx) = a /[( f(t)dt,
AT CEDIE
where a >0, 0 < <1, —00 < < oo such that x # 6§ and —co <a <z <b < 0.
At this stage we should note that these operators can be obtained from the kernel introduced by Erdélyi

and Osler without sharing any reason. But we will share a way to get these operators using Abel’s equations.
Beside this, fractional integrals a~? {#*1%, f} and a=# {#*I}_ f} have been introduced in [9] using iterated
n—fold integrals and conformable derivatives. However, as can be seen that the operators o~ # {ﬁ7aI ('f +}
and o= # {5"1]5,} can not be obtained from iterated integrals unless p = a and § = b. On the other side,
iterated integrals method is one of the methods to construct the corresponding fractional integral and derivative
operators. In this paper, we construct the corresponding fractional integral (and derivative) using only Abel’s
equation for 0 < 8 < 1 and this differs from Erdélyi and Oslers’ ideas. Moreover, we will share mean value
theorems for B“Iﬁf and 5’D‘Ig,f and some inequalities generalizing (1.3) and (1.5). Letting one of the bounds
of the fractional integrals infinity we will generalize the results given in (1.6) and (1.7).

In this paper we will use the notation LP((a,b);w) to denote the Lebesgue space consisting of all functions

f such that |w||f|” is integrable on (a,b). For w = 1 we will use the notation LP(a,b).

2. On Abel’s equation

In this section, firstly, we will introduce some results on solvability of Abel’s equations and then we will share

the related results.
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Theorem 2.1. Let o >0, 0< B <1 and —oo < p < oco. For (x — p)* '¢(z) € L*(a,b) the equation

o [lz=-p°—(t-pQ])"
I'(B) / (t—p)t—=

a

ft)dt = ¢ (x) (2.1)

has a solution f with (z — p)*~!f(z) € L*(a,b), where x € (a,b] C (—00,00) and x # p for p € (a,b], if and
only if

B P(x):=
(W) @) = Fr=

is absolutely continuous on [a,b] and > (n)?, (a™) = 0. In this case we have the following

F@) = (2 ) 5 ()l (o).

Proof With a direct calculation we get that

b b
S @), ot [b=p)* ==
a/ G-pie TR / g e
Therefore we obtain that
/bm GO/ P /b’[(b—p)"‘ - (x—p)“]l_ﬁ‘ e
S (r—p)ime S re=8)) (z —p)t=e

Hence (x — p)* '4(z) € L'(a,b) implies that (z — p)*~* {»* (qy)?, (x)} € L'(a,b). Now we shall multiply

both sides of (2.1) by [(z — p)® — (t — p)®] 7 (t— p)*~ !, = # p, and integrate them with respect to ¢ on [a, ],
x < b, to get

x x x

2 2 —p)*—(s=p)*]" o= 2—p)* —(t—p)*] P
F(ﬁ)/(sffé)l)f"‘/[([t(mi)p)a(,(tfl)lx]ﬂ (t_p) ldtdS:/[( p()t,p()tl—g) ] 'L/J(t)dt

a S a

Using the substitution

we obtain that

[ ft) - 1 [(z —p)* = (t - p)"‘]_ﬂ
[e o=t =ta=g/ w(t)ar

a a

From the assumption we get that 7 (ny)”, (z) is absolutely continuous on [a,b] and 7 (n¥)?, (a™) = 0.

Now suppose that @< (ny)?, (z) is absolutely continuous on [a,b] and #< (ny)?, (a*) = 0. This implies, in
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particular, that #* (ny)?, € L'(a,b) and

L o ot @)} = (o - 9 10

exist a.e. belonging to L'(a,b). Hence the equation

r?ﬂ) j [(xpij_p(;_ap)“]ﬁ‘li B (mp)?, (8)} dt = o(x) (2.2)
has a solution
% {P )l (2)} = r(11_ 5 (z p)lacijww(t)dt.
This implies that
(2.3)

P ) (@)} = o {5 () (@)}

Note that both sides of (2.3) are absolutely continuous on [a,b]. Hence 7 (ny)?, (z) —%<(np)?, (z) = ¢,

where ¢ is a constant. From the assumption and (2.2) we have #< (ny)?, (a™) = 0 % (np)?, (a*) = 0
O

Therefore ¢ = 0 and this completes the proof.

A similar result can also be introduced as follows.

Theorem 2.2. Let o >0, 0< <1 and —00 < § < co. For (§ —z)* 14p(x) € L'(a,b) the equation

b

« e (5§ — )Pl
I'(5) / “ )(515()61;) L oyt = ()

x

(2.4)

has a solution f with (§ —z)* 1 f(z) € L*(a,b), where x € [a,b) C (—o0,00) and x # 4§ for § € [a,b), if and

only if

) (5 — )P
el (@) = g | e b

is absolutely continuous on [a,b] and P (mﬁ)g, (b7) = 0. In this case we have the following

-z L e ().

fla) = =

Remark 2.3. To justify the results in Theorem 2.2 it is enough to use the substitution
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as in the proof of Theorem 2.1.

Theorem 2.1 and Theorem 2.2 introduce some criteria for solvability of (2.1) and (2.4). However, we may

share the following simple criteria.

Theorem 2.4. Let a >0, 0< <1 and —c0 < p < 0. If f is absolutely continuous on [a,b] then

B (nf)f, (x) is absolutely continuous and

O )= 85 | i e ]
where a < x < b and x # p.

Proof Observe firstly that

x

— o a — e} —-p
[(z—p)* = (a—p) " =a(l- 5)/ [(t Pzt - ;S)lap) " 25)
and
[ Tr— p)% — _ a1~ B l z t _ ) (g 1B
/ I p()t - p()’i =) / f'(s)dsdt = / / [ pzt - p()l_am 17 r(syas | d. 2

a a a a

Note that the left and right hand-sides of (2.6) represent the same integral. Since f is absolutely continuous

on [a,b] we have the following

x t
B (nf )l (2) = iy [ =2 ;,g:a ( (@) + ] £1(5) )

—1 )

- (2.7)
= f(a)% [(I - p)a - (a - p)a} 1"(2 ﬁ) f [(z— p)(y_(t p)e }B—l dt.

From (2.5) one may see that [(z — p)® — (a — p)°]**

is absolutely continuous in z and from (2.6) we may infer
that second term at right hand side in (2.7) is a primitive of an integrable function and hence it is absolutely

continuous. This completes the proof. O

Corollary 2.5. Let a >0, 0< <1 and —oco < p < oo. If ¥ is absolutely continuous on [a,b] then
(2.1) has a solution f with (x — p)*~1f(z) € L*(a,b), = # p, and

1 Y(a) Y'(t)

d
I -5) [(m—p)“—(a—p)a]B+a/[(x—p)“—(t—p)°‘]ﬂ t

fz) =

Proof From Theorem 2.4 we get that

o P 1 P(a)(z — p)*?
£ (P o)t ()} = [[( ke =) 5}

Ha—p) [
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Since (z —p)*~f(z) = d B (mp)?, (z)} we complete the proof. O

Now we may introduce the following results.

Theorem 2.6. Let a >0, 0< <1 and —o0 < 0 < 0. If f is absolutely continuous on [a,b] then

B (nf)g_ (x) is absolutely continuous and

b
B (Y0 () — ot f(b) B 40
(nf)p- (@) T(2—5) {[(5—3:)@—((5—1))@]’8_1 w/[((S—JJ)O‘—((S—t)a]B_ldt}’

where a < x <b and x # 4.

Corollary 2.7. Let >0, 0< 8 <1 and —oo < 0 < oo. If ¥ is absolutely continuous on [a,b] then
(2.4) has a solution f with (6 —x)* 1 f(z) € L'(a,b), x # 4, and

_ vl b
@)= 5= {[(5_96) / 8 _t)a]ﬂdt}‘

Lemma 2.8. Let >0, 0< <1, —co<p<oo and 1 <p< B~L. Then for ¢=p/(1 — p)
i) #oI?, f(x) € L9(a,b) for f(z) € LP((a,b); (x — p)P*"P), where p < a and p >b with a > 0,
i1) B’a15+f(x) € Li(a,b) for f(z) € LP((a,b); (x — p)P*~P), where p € [a,b] with 1 > a >0,

iii) (x—

z)} € LY(a,b) for f(z) € LP((a,b); (x — p)P*F), where p < a and p > b with
a>0, andp<7“< = ,@p’
) (z—p) T {#e1”, f(2)} € LYa,b) for f(z) € LP((a,b); (x—p)P*~P), where p € [a,b] with 1 > a >0,

andp<7’<1 -

Proof Let 1<p<pBland 1<r<q=p/(1—p8p). For r >pand »= (1/r—1/q)/2 and 1/p+1/p' =1
we get that

L) 5o, g

(@)

z L 1 1-
5= @ = p)r = ¢ =)o) | =

(J @=p =-pera) (]
|<x—p>a—<t—p>a”“dt) < |l(@ - o1 £ x

”|<scp>°‘<tp>c”’“>i (Jiw=pr == pep= )’

IN

O

o)==

10
=p) =

IN

U
&
N~
NI
|
3=

%
£(t)
—p)i==

(
(

[ —y ®—xp
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Note that for p < a and p > b with a > 0 or p € [a,b] with 1 > « > 0 the integral

f . - & t—p)o Y
[i@=p P g — / |1 ’ 16— ol dt

converges. Hence we have

') |Per? f(z)| < const.||(x—p)*~tf(x

(]

< const. H (x —p)*~f(z HLP

b _ rre—1 —a v
x (f dtfl( p|x g‘lpll Iz — p|* dm)
a

< const. ||(x = p)* " f(x (z —p)* ' f(x) ip

I[P

(@ — )7 — (t— )= dt)

H

—~
N
0]

=

Rl

f P

Tp)==

and

I'(p
D e, @),

10
Tp) =

ol

This implies that #*1”, is bounded from LP((a,b); (x — p)P*~?) into L9(a,b) for p < a and p > b with o >0
or p € [a,b] with 1 > o > 0. From (2.8) one may also have that

F—B)HLE— {Ba]§+f }H < const. || Yol f(x HL,)
(f 2l e f et M) < const. |(a - p* @)
x|[(@ = p)y i @)}
Therefore the proof is completed. o

Now we may introduce the following integration by parts formula.

Theorem 2.9. Let p < a and p > b with a >0, or p € [a,b] with 0 < a <1, and 0< f < 1. For
f e IP((ab); (z— pP?) N L2(a,b), g € LI((a,b); (z — p)°~0) N L9(a,b), 1/p+1/g < 1+ B we have the
following

b

b
/(xf(px))la {/3 O‘Iﬂ+g }dx =(— )aﬁ—l / (mg(;j))la {ﬁ’aflf,f(x)} dx.

Proof The proof follows from Lemma 2.8 and the definitions of the operators ﬁ)”‘]ﬁ and B’aIbp,. O

Following Theorem is about the semigroup properties of #*1?, and #*IJ_.

Theorem 2.10. Let a >0, 0 < 3,0 <1 and—o0 < p,§ < co. For (x — p)*~!f(z) € L'(a,b) we have

the following equations
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Gagh o 0edl fz) = PH0ep? f(x), v € (a,b], p#a,
Bagd o 0o f(z) = FH0ep f(z), x € [a,b), § # .

Proof Let (z — p)*~!f(x) € L*(a,b). Then with a direct calculation we get that

o s ¢ o e
Pery, (PeIf f(1) (@) = F(B)f [le p) (; 2)] f (=) —(sp)"] f(s)dsdt

Sploc

_ 2 f(s T a—p)™—(t— 51(,5 ) —(s— B—
_F(B(;F(G)‘[séla{( £)°—( )(]t p)[l = (s=p)°] dtds.

Using the substitution

w =
z—p)*—(s—p)*
we get that
R 0,0 — @ [(z=p)* —(s=p)*]°*°} — 0),
P (T F0) @) = gy | SR s = L f(a),

a

This completes the proof of the first assertion. The proof of the second assertion can be proved similarly and

this completes the proof. 0O

3. Fractional derivatives
In this section we will introduce suitable fractional derivatives related with Abel’s equations.

Firstly, for « > 0 and 0 < 8 < 1 we shall define the following operators

Fl(z— o) — (t — p)]~ B
ﬁ’aDZ+f($) — % )1—@%/ [( p()t - p()tlap) ] Ft)dt,

where x € (a,b] and —oo < p < oo such that p # = when p € (a,b], and

_ -t
r(1-p)

L) (5 )P

B.a 1o o
‘Db* f(x) N d.’l?

where x € [a,b) and —oo < § < co such that § # z when § € [a,b).
Using Theorem 2.4 and Theorem 2.6 we may introduce the following.

Theorem 3.1. Let « >0, 0 <8< 1 and —oo < p,d < oo. If f is absolutely continuous on [a,b] then
FaDP, f(z) and PDy_ f(x) ewist a.e. with the rules

ﬁ,aDp+ ) = o' f(a) F'®) dt o,
a f( ) r(1-p8) [((E _ p)a _ (a _ p)a]ﬁ +/ [({E - p)

where x # p when p € (a,b], and
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Bapd fip) = o f(b) _ b ')
Db—f( ) T (1—58) { [(5 - x)a - ((5 _ b)a}ﬁ ! [(5 — x)a — (5 - t)a]ﬁ dt}

where x # § when 0 € [a,b).
We will use the notations
bapl, flo) =" I, f(x), 2Dy f(x) =" I} f(=).

We denote by ﬁv“[& (L?(a,b)), « >0, 0 < 8 <1, —o0 < p < 00, the space of functions f such that
f= B’O‘IZJrf with fe LP(a,b), 1 <p < 0. ﬂ’afg, (LP(a,b)) can be defined similarly.

Theorem 3.2. Let >0, 0 < <1 and —oco < p < oco. Then

() If (x— p)*"'f(x) € L' (a,b) then #°D?\ 0 217, f(a) = f(x),

(ii) If (@ — p)°~ 1 f(w) €52 17, (LM (a,b)) then PI? 0 BaDP f(z) = f(a),

(iii) If (x—a)* 1 f(z) € L*(a,b) such that #*I% o #>D%, f(x) exists [a,b] and [(z — a)®]' "’ f(z) is

continuous at a then

Fert o FeDt f(@) = f@) ~ {le = )T f@) } (@) [~ )"
Proof For (z — p)® ! f(x) € L'(a,b) a direct calculation gives that

B’QDZ+ °© B’afg+f(93)

z z o a8 a—1
_ a _ Nl-a d f(s) (t=p)*=(s=p) (t—p)
= roran @ A E e | s,

Using the substitution

we obtain that

d xT
beDl o BTl fla) = (w—p)l_“dx/@f(,j))lcyds = f@)

and this proves (i). (ii) follows from (i). Let #°I% o AeD? f(z) = f(z) + x(z) [15]. Then by (i)

FaD x(z) =0 and hence x(z) = c%. Therefore

¢=—al(p) lim [(x—a)")"" {f(z) = I]. 0 DI f(x)}
= —al'(p) lim [(x —a)")""" f(2).

This proves (iii). Therefore we complete the proof. O

10
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Using Theorem 2.9 we may introduce another version of integration by parts as follows.

Theorem 3.3. For g € P°I”, (L9(a,b); (x — p)1=29) N7 I, (L%(a,b))and f € PI] (LP(a,b);
(z — p)P=P) NP I, (LP(a,b)) we have the following

z—p)-

b b
ﬂ BapP o) de = (—1)*8—1 g9(z) Bapr )\ da
/( {PeD? g(x)} de = (—1) a/(:c—p)l—a{ DY f(x)} da,

a

where 1/p+1/g <1+ B.
Now we may introduce the following extended semigroup property.

Theorem 3.4. Let a >0 and —oo0 < p < co. Then for each of the following conditions
(i) 0<O0<1, 0<B+0<1, (z—p*>f(x) € L(a,b),

(i)) —1<60<0, 0<B<1, (x—p) > f(x)e ~9I (L (a,b)),

(iti) —1<B<0, -1 <B+0<0, (x—p)*f(z)e ~O=FAI? (L (a,b)),

we have

H’QI,er °© Q’QI,erf(m) = (B+9)7a15+f(x)-

Proof The relation has been proved for 0 < 5 <1 and 0 < # < 1 in Theorem 2.10. Let 5 =0 and 0 < 0 < 1.
Then we have

vape o bage oy O [ 6 [ == s=p
fuw o L S )‘rw)/ <s—p>1—a/ =P — (= )] (£ — pya

a S

Letting v = (z — p)* — (t — p)® we get that

o Na (4 alf—1
0,04[5+ o 9,aI5+f(x) _ F?‘g) / [(:E pzt — p()tl_ap> ] f(t)dt — 9’a15+f($)~

a
For the case —1 < <6, 0<6<1, 0<pB+860 <1 wemay introduce the following
B’O‘Ig+ o 0’0‘15+f(x) = _ﬁ’O‘DZJr o _ﬁ’aI§+ o (0+5)’°‘]5+f(x).

These prove (i). Now let —1 < 6§ < 0, 0 < 8 < 1. Then for (z — p)®~tg(z) € L'(a,b) we may write f =
—0.e1 g(z) and

(6+9)’als+f($) = (B+6)7a15+ o _9’a15+9($)~

Since 0 < 840+ (—0) < 1 we get from (i) that

(“9)""1(’} o —9,a15+g(x) = B’angrg(x) = B’angr © _Q’QDZJrf(x)
= 'B’aIap+ °© 07aIap+f(x)

11
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and this proves (ii). Finally we shall let f(z) = (ZF=9:21? g(z), (z—p)*~'g(z) € L'(a,b), where —1 < <0
and —1 < 4+ 60 < 0. Then we get that

B7a15+ ° 970¢[£+f(w) = _ﬂ’aDZ+ °© —B7a15+g(x) =yg(x) = (5+0)7a15+f($)~

This completes the proof of (i#4) and Theorem 3.4. O

4. Mean value theorems
In this section we will firstly introduce mean value theorems and then we will share some inequalities on finite
intervals. Finally we will show that the inequality is true when the lower (upper) bound is negative (positive)

infinity.

4.1. Finite interval case

Firstly we shall introduce the following mean value theorem.

Theorem 4.1.1. Let o >0, 0 < <1 and —oo0 < p < a. If (z—p)*~'f(z) € L*(a,b) and »*1”, f(z)
is continuous on [a,b] such that #*I°, f(a™) =0 then for x > b there exists £ € [a,b) such that

b

xTr — a _ a)B-1 5 — @ — a)f-1
‘/K p@_gkf>} ﬂﬂﬁ_/ugfz_;;j>l F(b)dt.

a a

Proof For x >b, a <t <band —oco < p < a we shall consider the integral

F = p)* = (L= ) (b= p)* — (u— p)*] "
/ (PR T = — (a.1)

where a > 0, 0 < 8 < 1. The substitution

[(u—=p)* = (t = p)*][(b—p)* = (z — p)°]
[(b—=p)* = (t—p)][(u—p)*—(z—p)°]

S =

implies that (4.1) is equivalent to

1 [l =p) = (t=p)]]" il 42)
o @=p = =ppl] T@w=p G- po]sm(an)
On the other side we have the following
(=) —=p)” ]ﬁf” D A0,
=P) o [b=p)—(u— P)“] [(w—p)*—(u—p)°] (4.3)

b
_ @00 [ i) ol
= Forapa ) wat= f e ity dudt.

12
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Using (4.1) and (4.2) one may see that (4.3) can be written as follows

b b
[(@—p)*—(t—p)*]°~" _ [@=p)*—(—p)*)” (u—p)* {712, f(uw)}
/ (t=p)t== f(t)ydt = I'(1-8) / [(b—p)“—(u—p)“]ﬁ[(af—p)“—(u—p)“]du' (4.4)

One may see that the sign of

(b= p)* = (w=p)°"1 " [(@=p)* = (w=p)") " (u=p)*~", p<a, z>b

does not change for u € [a,b]. Therefore using mean value theorem for integrals we obtain from (4.4) that

b
L flempr oy
tydt = {#1° E(z), 4.5
I'(B) (t —p)l—« f@) {Fers. f(&)} E(x) (4.5)
where a < & < b and
b

_ [(m=p)*=(b—p)*]® sin(B7) (u—p)>~1

E(x) - T /[(b,p)a,(u,p)a]ﬁ[(Iip)ai(uip)a]d'U,. (4.6)

The substitution

or equivalently

in (4.6) gives that

(b=p)* —(a—p)*
in(67) @=p) o= (a=p)™ p
sin(Bm w
E(z) = — x> b p<a.
() am / wh (1 —w)B v p=a
0

Therefore 0 < aE(z) < 1 for all z > b and p < a. From the assumption »*I”, f(z) is continuous on [a,&],
&1 < b. Hence there exists a £ € [a,&;] such that

e o\ (p_ pyalf-l
B P12 1160} = g5 [ g

or equivalently

b 9
L [le=p—=p" 1 [UE=p)*—(t=p)"
r@) / O A G / e 0" o
and this completes the proof. O

13
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Remark 4.1.2. Theorem 4.1.1 is true when p < a if « is restricted only on (0,1].

Corollary 4.1.3. Let f be a function on [a,00) such that the conditions of Theorem 4.1.1 hold. Then
B (@) P (@) = PO S

provided that f is integrable beyond [a, b].

Using (4.7) we may introduce the following.

Corollary 4.1.4. Let the conditions of Theorem 4.1.1 hold. Then

[ =)~ (= )7 1)~ =)
/ (t—p)le ft)dt| < Efél[%ﬁ] / E=po f(t)de|.

a

Corollary 4.1.5. Let a >0, 0< 3 <1 and —cc < p <a. If (x—p)* Lf(x) € L'(a,b) then for x> b

b

£
[(@—p)> = (t—p))°" / (€ —p) = (t—p))"!
< .
/ == fdt) < €e8SSUP¢ciq ) == ft)de
Proof The proof follows from the property
b b
a/|E’(t)\dt _ —a/E’(t)dt — aE(a) < 1
and (4.5). O

Theorem 4.1.6. Let a >0, 0< 3 <1 and —oo < p < a. If for (x—p)*~'f(z) € L' (a,00) there exist
nondecreasing functions ¢ and ¥ such that for 0 <~ <1 the inequalities hold

(@)l < g(2), P07, f(2)] < ¥(2), @ > a, (4.8)

then for 0 < B <~ we have

|Po 1%, f(2)] < const. [p(2)] ") [p(a)]7

where the constant does not depend on x,3 and .

Proof For >0, 0<f<vy<1and —oo < p < a, we shall consider the following

L(B)I7, f(x) = I + I, (4.9)
where
¢ T — a _ a1B—1
ool pL_;;(@] fot
B ) et G
I = a{ (= )i F(t)dt,

14
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and
1y = N
(_ p+{(sc—p)“—[i5§§r} o>+ 2]
- 1
P(z) | o7
a, r<p+ {‘PEQ’H
Note that
¢
[(z—p)* = (t—p)°] " [(@—p)* — (t—p)°]"
I = t)dt
o f G o

a

For fixed z, the function [(z — p)® — (t — p)*]° ™7 increases in ¢ on [a,¢]. Using the mean value theorem for

integrals we get that

¢
@ =p)* = =p)" [la=p) = (t—p)°]""
. / (e Ft)dt, (4.10)

where a < u < (. Using Corollary 4.1.5, (4.8) and (4.10) we obtain that

L] ST [ = p)* = (¢ = )1 esssup,epn g |12, S (v)]
<T@ —p)" =~ P17 9 (C) (4.11)
<1 [28] 7 w@) =T [p@)] 7 )7

Moreover we get that

L N (p— py@]B—1 z—p)*—=(¢C=p)*]?
] <o f Emoten V™ | f)| dt < (o) le=aSlen
/ (4.12)

<22 [49]" < 3 o~ o)

From (4.9), (4.11) and (4.12) we obtain that

erze @) < (3505 + 1y ) el e

The constant 1/ [BT(8)] + I'(v)/I'(8) is dominated by a constant not depending on «, 3, and this completes
the proof. O

Taking B’O‘I5+f(x) =g(z), p—v =0 we obtain the following.

Theorem 4.1.7. Let a >0, 0 < <1 and —00 < p < a. If g€ 7*I°, [L'(a,00)], 0 <~ <1 and

there exist nondecreasing functions ¢ and 1 such that

|P2DP . g(z)| < pl(x), |g(@)] < P(x), @ > a,

then for 0 < 6 < v <1 we have
b2’ g(z)| < const. [q/,(x)}(pg) [SD(SE)]% .

15
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Corollary 4.1.8. Let a >0, 0<3<1 and —co < p<a. If g€ I, [L'(a,00)], 0 <~ <1, such
that g(x) and "D, g(x) are bounded on (a,c0) then
A
vy

1—¢
max ‘o’aDs+g(m)’ < const. max |g(m)\( ?) €SS5UP ¢ (q,00) |7’QDZ+g(x)| ,
z€(a,00) z€(a,00)

where 0 < 0 <~ < 1.

4.2. Infinite interval case

In this subsection we will consider the infinite interval case.
Firstly we shall introduce the equivalent form of Theorem 4.1.1, Corollary 4.1.3 and Corollary 4.1.4 as

follows.

Theorem 4.2.1. Let o >0, 0 < B <1 and b<§ < oo. If (§ —2)* ' f(z) € L'(a,b) and #I)_ f(z)
is continuous on [a,b] such that #“I2_f(b~) =0 then for x < a there exists £ € (a,b] such that

—t 11—« —t -«

b — ) — _ na)b-1 b Ao _ nalBb-1
a ¢

and

/ — )% — _ pnalpf-1 / —&)* — e
/[(5 )(5;51;) ] (0] < ma /[(6 §)* — (6 —1)°] o

a

If (6 —x)*"1f(z) € L'(a,b) then for x <a

b
— a _ « B_l g
/[(6 )(515)61;) I iyt < es55UDgeay / T F(6)dt|. (4.13)
3

a

In this subsection we will show that (4.13) is true when the upper bound is infinity.

Firstly we shall adopt the notation

. . aB-1
o) (0 —v)"] 1

B a [ 16— u)° .
T TBT(-p) w/ (6 —0)* — (6—2)° (65— e

where a =2n+1,n=0,1,2,..., 0< 8 <1, b<d <00, u<w and w is fixed.
0
Lemma 4.2.2. a—e(x,u)ZOfor al x>0>w>u .
x

16
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Proof For z > § > w > u we have

to get

15— w)® — (5 — )Pt o
rera — ge(z,u) =TB)Ira - p) — / [([ié - z)))a (9 ) L dv.

(4.15) implies that

since a — 1 is an even number. This completes the proof.

Lemma 4.2.3. 0 <e(z,u) <1 forall >0>w>u

Proof The proof follows from Lemma 4.2.2. Indeed it is enough to use the substitution

in the definition of e(z,u).

Lemma 4.2.4. For all x > § > w > u we have the following

[l6-0)"—@6-27" 2 e
/ Gz %e(v,u)dv =@ —2)" (6 —u) 6 —x)"".

w

Proof

5 w)l a
x{_[(éw) ~(G=a)Pe(wa) +af[5 SRR 16(7}’“)@}
(G —w“—w—mff*
Ox w (5—U)1_a

o B—1 H
af [(5—v)*—(6—2)*]" aﬁe(vudv—gfwa e(v,u)dv
2]
o

e(v,u)dv.

(4.14)

(4.15)

17
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Therefore we get that

I8 () e ) I S (k) el ) o T R
6”“'7{ (g —xv)l‘a 1{ (G- — (5 —0v)* G—t) !
=T(AT(L =B [1(6—w* = (@E =) a6 )" dt
) — 7:L'o¢ﬂ7 ) — 7wa5
—F(B)r(lﬁ)aax{[@ )"~ (0= 2)] ﬁ[(5 )" — (0 —w)?] }

This completes the proof. O
We shall adopt the notation

pagiiy gy O [LE=v =@
v, )W)x/ 0 ez ez e

where a =2n+1, n=0,1,2,..., and 0 < 8 < 1.
Theorem 4.2.5. If 2> 8§ >v>w and »*Vo(v,x) converges at infinity then
Fewiv,z) =o {5 - 2)" = (6= )" [(6 - )"}

as x — 0o, uniformly in v.

Proof For x> > v > w we have

a .« m[*(57t)a][371 (6—v)* — (6 —t)" B-1
—Bagd(y, 1) T(B) g{ (57%1—1& { _(5ﬂ_t)a } f(t)dt
_ o Je-v-0-a" T 0=
- T(8) {{ —(6—x)" ] { TG f(t)dt

FlFlEe=—a 0 [G-v)"=p-11""
+rf tf(é—s)”‘f(s)dslat{ P } dt}-

_1\ B
Since {[(5 —0)* = (6 =) [ (6 — )] 1} decreases as t increases we may infer that for any € > 0 there

exists a € = (e) > 0 such that the inequalities hold

o @—v)* = -z
|6 \I/ﬁ(v,x)‘<e{ —(6—3:/2“1 }

where x > ¢ = ¢(¢). This completes the proof. O

18



UGURLU/Turk J Math

Theorem 4.2.6. Let a =2n+1, n=0,1,2,..., 0< B <1, § >w >u and V0 (u,w) converge at

infinity. Then we have

|5’°‘\I/5(u,w)| < 885U,y <y<oo |ﬁ’a\1'5(v, v)|.

Proof Using Lemma 4.2.4 we obtain

z —u)% = o8-l
L(B)2W (u, w) :$1Lr{:oalf [ )(5;)61;) ] F(b)dt
B SN s Ly e B
=ofim [0 ) G o (v, u)dvdt
=« lim m—evuoo[((s_v)a_(é_t)a} - y
i JervuOo[((s_v)a_(5_75)0] ' v
—a fim [ 5oewu) [ G F(t)dvdt,

where from the assumption both inner integrals converge at infinity. However, at the lower limit the first integral

may nonexist in a null set. Then we get that

=0 {— [(6 — :U)C“]B_1 f (6 —2)" — (6 — v)a]ﬁ_1 gve(v,u)dv}
—o{= 16 =)V G- 2"~ - w)"} = o(-1).

[(6—0)* = (6 -0)"""

azlin;og %e(v,u) f 6" f(t)dtdv
=T(B) wh%r{.loj %e(v, u)PoW0 (v, v)dv.
Hence we get that
r(B) [P0 (u,w)| < F(ﬂ)f o, u) W 0, 0)| do
< F(ﬂ)esssupwgvgoo ’37“@5(v,v)|
and this completes the proof. O

5. Conclusion and remarks

In this paper we have introduced new fractional integrals 71 Z L BT g_ and new fractional derivatives ? ’O‘DZ “
B’O‘Dl‘f,. As we have discussed earlier that these operators do not come from iterated n—fold integrals unless
p=aand § =b with a #{#I° f(x)} and a=? {#*I}_f(x)}. These situations have been studied in [9].
In the definitions of the fractional integrals #*I”, f(z) and #*I_ f(x) we have excluded the constants o "

because these factors have no effect in the calculations rather than the extra coefficients o in the definitions
of D’ f(x) and #*D}_ f(x). Moreover we should note that we could define the operators

19
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x

garp gy ST [l@—p)*—(t—p))""
ool () rw>! L

ft)dt,

where a >0, 0< <1, —co<p<oo, £>0and —oo <7 < oo such that z # p and —co < a <z < b < 00,
and

b
_s*a/ww—ma—w—wﬂﬂl
- f()dt,

N (@ —t)t=e

T

S f(w)

where a >0, 0< <1, —c0o<d <00, £>0and —0o <7 < oo such that x #20 and —co <a <z <b< oo.

Then the corresponding fractional derivatives would be

?fDﬁf@%Fuiﬁﬂ@pf°gi/Kx?;ﬁﬁﬂfp]ﬁﬂWﬁ
where x € (a,b] and —oo < p < oo such that p # = when p € (a,b], and
b -8
2D 1(0) = o -yt [ O

where x € [a,b) and —oo < ¢ < oo such that § # z when § € [a,b).

We shall note that it is still possible to introduce additional fractional integrals and derivatives. Indeed,

we shall consider the following fractional integral

a T — o _ aB-1

where o >0, 0 < <1, —00o < p < oo and & < b < oo. Using the substitution (x — p)* — (t — p)* = u one
gets that

0
501 fla) = %) / WU (= p)* = ul® + p) du.

—i2e00

For u = i2*t we may write the following

0
a _i2a5 — a 20, s
B () = /tﬁ ([ =) =24 4 p) a.
Now corresponding fractional derivative is defined as

2-204[-3 d

DL f(e) = (o= ) =gy / 05 ([ = o) = 2% +p) .

20
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Now more calculations are possible. Indeed we get that

208 4 O N
B,aDi (JU) = (x—p)l—amdix_f t_ﬁf ([(x_p)a _iQat:Ia +p) dt
j2a8 0 _3 g « S0yl w o o L1
:m;{ot °f ([(I_p) — i*1] +P) [(z = p)™ —2t] " at

i2aﬁ 0

:F(i / f’([(ﬂi—p)o‘—izat]%+p> [(z — p)> — %]

1
>

t
(=8) [ gvar

1- 5) —00 .
g o t@ ([ g
R

1

Now let [(z — p)* —i**¢]® + p = ¢. Then we have

/3,04Dif(1,) — _j20(B=1)+2apB 1—1(15_ ﬁ) / [(m - p,];(oéx)__(tf_(jz)a]5+1 (t N p)aildt. (51)
For a =1 in (5.1) we get that
1 B [ @ -1
YD) = 5 g / @

which is the Marchaud fractional derivative. This definition given in (5.1) seems to be new in the literature for
a>0 and a # 1.

On the other side from Theorem 3.1 we may write for a differentiable function f that

1 (@) £ Al )
ﬂ,aDP+ ) =
o Hl®{uxmampwﬁ+fuzmQQMﬂﬁ}
1 { f(a) P (ORS (G .
FA=5) @ =p)* = (@=p9"  [@=p)*=(t—p))" "~

R (R () . aqd}
Y e T

__ 1 f(z) wi | flz) — f(t) el
S r(1-p) { [(z — p)* — (a — p)]” " Baf [(z — p) — (t — p)a]’ T (t=p) dt}

which is an analogue of (5.1).

Finally in the definition of ﬂ’a15+f(a:) we may use the substitution
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to get

1 1 (;70) (52)

=L e B v
- F(ﬁ)< p) (a,{)a f(( P

z—p

=
<
Q=
+
S
N—
—~~
—_
I
<
~—
T
-
U
<

For a« =1 and p =0 in (5.2) we get that

1
28
ML) = 1 [ @) (=0

which is the Dzherbashyan’s generalized fractional integral.
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