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Abstract
In this paper, we deal with a fractional differential equation of order δ1 ∈ (3, 4] with
initial and boundary conditions,Dδ1ψ (x) = –H(x,ψ (x)),Dα1ψ (1) = 0 = I3–δ1ψ (0) =
I4–δ1ψ (0), ψ (1) = �(δ1–α1)

�(ν1)
Iδ1–α1H(x,ψ (x))(1), where x ∈ [0, 1], α1 ∈ (1, 2], addressing

the existence of a positive solution (EPS), where the fractional derivativesDδ1 ,Dα1 are
in the Riemann-Liouville sense of the order δ1, α1, respectively. The function
H ∈ C([0, 1]× R,R) and Iδ1–α1H(x,ψ (x))(1) = 1

�(δ1–α1)

∫ 1
0 (1 – z)

δ1–α1–1H(z,ψ (z))dz. To
this aim, we establish an equivalent integral form of the problem with the help of a
Green’s function. We also investigate the properties of the Green’s function in the
paper which we utilize in our main result for the EPS of the problem. Results for the
existence of solutions are obtained with the help of some classical results.

Keywords: existence of positive solutions; Green’s function; Krasnosel’skĭı theorem;
Arzela-Ascoli theorem

1 Introduction
Fractional differential equations (FDEs) in different scientific fields have attracted the at-
tention of scientists. Scientists are utilizing different and new mathematical tools for the
study of FDEs. The study in applied scientific fields can be observed in fields like physics,
biology, chemistry, economics, mechanics, aerodynamics, biophysics, etc. [, ].

In the study of FDEs, one can see valuable scientific work for the existence and unique-
ness of solution (EUS), multiple positive solutions for the nonlinear boundary value prob-
lems (BVPs). This work is nowadays a lively research area and scientists are highly inter-
ested in it. Scientists have given good contributions to this area, some of their work can
be studied in [–]. Here we highlight some useful and new important scientific work in
FDEs. Work on the integro-differential equations as regards the existence of solutions can
be studied in []. Baleanu et al. [] considered the existence of a solution for a class of
sequential FDEs in the Riemann-Liouville sense. Agarwal et al. [] have considered a class
of FDEs with two fractional derivatives for the existence of solutions in the Caputo sense.
Agarwal et al. [] studied a class of FDEs with sum boundary conditions. Abbas [] studied
a FDE of order α ∈ (m – , m] in Caputo’s sense for the EUS by using Schaefer’s fixed point
theorem and Hölder’s inequality. Baleanu et al. [] considered a finite difference inclusion
of fractional order  < γ <  for the existence of solutions. Wu and Liu [] investigated a
FDE of an m-point BVP at resonance in Caputo’s sense by the use of a Leggett-Williams
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norm-type theorem. Xin and Zhao [] have considered a Rayleigh equation for a peri-
odic solution with the help of coincidence degree theory. Sitho et al. [] have studied
a class of hybrid fractional integro-differential equations. Naceri et al. [] have consid-
ered a fourth order differential equation with deviating arguments for the existence of
solutions with the help of upper and lower solutions and Schauder’s fixed point theorem.
Henderson and Luca [] have considered a coupled system of a fractional order BVP in
the Riemann-Liouville sense for the nonexistence of solutions.

From the study of the scientific work as discussed above we felt the need of exploration
of the fractional differential equation (FDE) of order δ ∈ (, ]:

Dδψ(x) = –H
(
x,ψ(x)

)
,

Dαψ() =  = I–δψ() = I–δψ(), ()

ψ() =
�(δ – α)

�(δ)
Iδ–αH

(
x,ψ(x)

)
(),

where x ∈ [, ]. δ ∈ (, ], α ∈ (, ], for the existence of positive solution (EPS),
where the fractional derivatives Dδ , Dα are in the Riemann-Liouville sense of the or-
der δ, α, respectively, and H : C([, ] × R, R) and Iδ–αH(x,ψ(x))() = 

�(δ–α)
∫ 

 ( –
z)δ–α–H(z,ψ(z)) dz. To this aim, we establish an equivalent integral form of the problem
with the help of a Green’s function. We also investigate the properties of the Green’s func-
tion in the paper which we utilize in our main result for the EPS of the problem. We use
Arzela-Ascoli for the complete continuity of the integral operator and the Krasnosel’skĭı
fixed point theorem for the EPS.

Third order ordinary differential equations (TOODEs) are very much popular in the
mathematical modeling of engineering problems. Fakhar and Kara [] have given many
examples of TOODEs related to boundary layer models of the type ψ ′′′ = –(ψψ ′′ – ψ ′ –
A(ψ ′ + 

ηψ ′′) – Mψ ′), Blasius flow which is equivalent to the TOODE ψ ′′′ = –ψψ ′′, the
Falkner-Skan equation ψ ′′′ = –(ψψ ′′ + β( – ψ ′)), and many different classes of canonical
Chazy equations. Mohammadyari et al. [] have described a model of magneto hydrody-
namics and have presented the analytical solution of the model by a differential transform
method; the model is equivalent to the TOODE ψ ′′′ + Re(ψ ′ –ψψ ′′) – Mψ ′ =  with con-
ditions ψ = , ψ ′′ = , at x =  and ψ = /, ψ ′ =  at x = /. All these models are special
cases of our proposed problem.

This paper is organized in four sections. The first section is a literature review includ-
ing the most relevant and recent contributions. In the second section, we produce the
equivalent integral form of the problem () with the help of a Green’s function. Also some
properties of the Green’s function for the problem () are studied. In the third section we
have our main theorem for the existence of solution of the problem () based on the Kras-
nosel’skĭı fixed point theorem and the Arzela-Ascoli theorem. The final section presents
the conclusion of the paper and future plans as regards the problem ().

In this paper we will need the definitions of a fractional order integral and the fractional
order derivative in the Riemann-Liouville sense and some basic results of fractional cal-
culus. Some basic definitions and results are hereby given; for more details one may refer
to the references.
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Definition  If ψ(x) ∈ L(a, b), the set of all integrable functions, and δ > , then the left
Riemann-Liouville fractional integral, of order δ, is defined by

Iδ
+ψ(x) =


�(δ)

∫ x


(x – z)δ–ψ(z) dz. ()

Definition  For δ >  the left Riemann-Liouville fractional derivative of order δ is de-
fined by

Dδψ(x) =


�(n – δ)
Dn

∫ x


(x – z)n–δ–ψ(z) dz, ()

where n is such that n –  < δ < n and D = d
dz .

Lemma  For δ, ε > , such that n –  < δ < n, the following relations hold: Dδ xε =
�(+ε)

�(+ε–δ) xε–δ , ε ≥ n and Dδ xε =  if ε ≤ n – .

Lemma  Let a, b ≥  and H ∈ L[p, q]. Then Ia
+ Ib

+H(x) = Ia+b
+ H(x) = Ib

+ Ia
+H(x) and

DbIb
+H(x) = H(x), for all x ∈ [p, q].

Lemma  For ε ≥ δ >  and H(x) ∈ L[a, b], the following hold:

Dδ Iε
a+H(x) = Iε–δ

a+ H(x)

on the interval [a, b], if H ∈ C[a, b].

2 Green’s function and properties
Lemma  For z, x ∈ [, ], the solution of () is equivalent to the solution of the following
integral equation:

ψ(x) =
∫ 


K(x, z)H

(
z,ψ(z)

)
dz, ()

where K(x, z) is the Green’s function given by

K(x, z) =


�(δ)

⎧
⎨

⎩

–(x – z)δ– + xδ–( – z)δ–α– + xδ–( – z)δ–, z ≤ x,

xδ–( – z)δ–α– + xδ–( – z)δ–, x ≤ z.
()

Proof Applying the operator Iδ
 on the differential equation in (), we get the following

equivalent integral form:

ψ(x) = –IδH
(
x,ψ(x)

)
+ cxδ– + cxδ– + cxδ– + cxδ–. ()

The initial conditions I–δψ() = I–δψ() =  in () imply that c = c = . Using the
boundary conditions Dαψ() =  and ψ() = �(δ–α)

�(ν) Iδ–αH(x,ψ(x))() on (), we get

c =
∫ 



( – z)δ–α–H(z,ψ(z)) dz
�(δ)

,

c =
∫ 

 ( – z)δ–H(z,ψ(z)) dz
�(δ)

.

()
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By substituting the values of c, c, c, c, in (), we have

ψ(x) = –
∫ x



(x – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz

+ xδ–
∫ 



( – z)δ–α–H(z,ψ(s)) ds
�(δ)

()

+ xδ–
∫ 



( – z)δ–H(z,ψ(z)) dz
�(δ)

=
∫ 


K(x, z)H

(
z,ψ(z)

)
ds,

where K(x, z) is the Green’s function which is given by (). Thus, the proof is completed.
�

Lemma  For the Green’s function K(x, z) given by () and J = [, ], ν ∈ (, ], α ∈ (, ],
the following are satisfied:

(A) K(x, z) is continuous and K(x, z) ≥  for each x, z ∈ J ;
(A) maxx∈J K(x, z) = K(, z) for each z ∈ J ;
(A) minx∈[ 

 ,] K(x, z) ≥ λK(, z) for some λ ∈ (, ).

Proof The continuity of the Green’s function K(x, z) is obvious from the definition in ().
Consider K(x, z), for x, z ∈ J such that x ≥ z. z ≤ z

x implies that –( – z) ≤ –( – z
x ) and

δ – α –  < δ –  implies that ( – z)δ–α– > ( – z)δ–. Thus

K(x, z) =
–(x – z)δ–

�(δ)
+

xδ–( – z)δ–α–

�(δ)
+

xδ–( – z)δ–

�(δ)

= –
( – z

x )δ–

�(δ)
xδ– +

( – z)δ–α–

�(δ)
xδ– +

( – z)δ–

�(δ)
xδ–

≥ –( – z)δ–

�(δ)
xδ– +

( – z)δ–α–

�(δ)
xδ– +

( – z)δ–

�(δ)
xδ–

=
(
( – z)δ–α– – ( – z)δ–) xδ–

�(δ)
+

xδ–( – z)δ–

�(δ)
≥ . ()

From (), for x ≤ z it is obvious that K(x, z) ≥ . This completes the proof of (A). For (A),
we consider z, x ∈ J , such that x ≥ z. For δ ∈ (, ], α ∈ (, ], we have δ – α –  ≤ δ – ;
this implies that ( – z)δ–α– ≥ ( – z)δ– and

∂

∂x
K(x, z) =

–(δ – )(x – z)δ–

�(δ)
+

(δ – )xδ–( – z)δ–α–

�(δ)

+
(δ – )xδ–( – z)δ–

�(δ)

= (δ – )
[

–(x – z)δ– + xδ–( – z)δ–α–

�(δ)

]

+
(δ – )xδ–( – z)δ–

�(δ)

= (δ – )
[–( – z

x )δ– + ( – z)δ–α–

�(δ)

]

xδ–
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+
(δ – )( – z)δ–

�(δ)
xδ–

≥ (δ – )
[

–( – z)δ– + ( – z)δ–α–

�(δ)

]

xδ–

+
(δ – )( – z)δ–

�(δ)
xδ– ≥ . ()

Hence, it follows that maxx∈J K(x, z) = K(, z) = 
�(δ) [( – z)δ–α– + ( – z)δ–] and

minx∈[ 
 ,] K(x, z) = K( 

 , z). For the proof of (A), we utilize (A) and (A) in the follow-
ing calculations. For z ∈ (, 

 ], we have

minx∈[ 
 ,] K(x, z)

maxx∈[ 
 ,] K(x, z)

=
(–( 

 – z)δ– + ( 
 )δ–( – z)δ–α– + ( 

 )δ–( – z)δ–)
(–( – z)δ–) + ( – z)δ–α– + ( – z)δ–

=
(–( 

 – z)δ– + ( 
 )δ–( – z)δ–α–[ 

 + ( – z)δ ])
(( – z)δ–α–)

≥ (–( 
 – 

 )δ– + ( 
 )δ–( – 

 )δ–α–[ 
 + ( – 

 )α ])
(( – 

 )δ–α–)

=
(




)δ–[ 


+
(




)α]

. ()

For z ∈ ( 
 , ], we have

minx∈[ 
 ,] K(x, z)

maxx∈[ 
 ,] K(x, z)

=
( 

 )δ–( – z)δ–α–[ 
 + ( – z)α ]

( – z)δ–α–[ + ( – z)α ]

≥ ( 
 )δ–[ 

 + ( – 
 )α ]

[ + ( – 
 )α ]

=
( 

 )δ–[ 
 + ( 

 )α ]
[ + ( 

 )α ]
. ()

Choose

λ = min

{(



)δ–[ 


+
(




)α]

,
( 

 )δ–[ 
 + ( 

 )α ]
[ + ( 

 )α ]

}

. ()

Therefore, in view of (), (), and (), we have λ ∈ (, ) such that

min
x∈[ 

 ,]
K(x, z) ≥ λ max

x∈J
K(x, z) = λK(, z). ()

This completes the proof. �

3 Existence criterion
In this section, we address the existence of a positive solution of our problem (). For this
purpose, we get help from the Krasnosel’skĭı result. The details of the result can be found
in [].

Lemma  [] Let E be a Banach space and B ⊂ E be a cone. Assume that Q, Q are open
sets contained in E such that  ∈ Q and Q ⊂ Q. Assume, further, that F : B ∩ (Q \
Q) → B is a completely continuous operator. If either
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(B) ‖Fv‖ ≤ ‖v‖ for v ∈ B ∩ ∂Q and ‖Fv‖ ≥ ‖v‖ for v ∈ B ∩ ∂Q, or
(B) ‖Fv‖ ≥ ‖v‖ for v ∈ B ∩ ∂Q and ‖Fv‖ ≤ ‖v‖ for v ∈ B ∩ ∂Q,

then F has at least one fixed point in B ∩ (Q \Q).

Consider the Banach space E = {ψ(x) : ψ(x) ∈ C(J ), where J = [, ]}, endowed with
the norm ‖ψ(x)‖ = maxx∈J |ψ(x)|. We define an operator F : E → E by

Fψ(x) = –
∫ x



(x – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz

+ xδ–
∫ 



( – z)δ–α–

�(δ)
H

(
z,ψ(z)

)
dz

+ xδ–
∫ 



( – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz =

∫ 


K(x, z)H

(
z,ψ(z)

)
dz. ()

Theorem  Suppose that there are real constants k > k >  such that conditions (C),
(C) hold:

(C) There exists a real number k >  such that H(x,ψ) ≤ ξk whenever  ≤ ψ ≤ k.
(C) There exists a real number k >  such that H(x,ψ) ≥ νk whenever λk ≤ ψ ≤ k,

where λ is the constant defined by ().

Suppose also that H(x,ψ) ≥  and is continuous. Then the problem () has at least one
positive solution.

Proof We define the terms ξ = [
∫ 

 K(, z) dz]– and ν = [
∫ 



K( 

 , z) dz]–. From Lemma 
(A) the Green’s function K(x, z) is continuous and nonnegative, and also H(x,ψ(x)) ∈
C(J × R, R), therefore the operator F is continuous. Let S = {ψ(x) ∈ E : ‖ψ(x)‖ ≤ �}
where � = maxx∈J H(x, z) + . For any ψ(x) ∈ S , the operator F , defined in (), is

∣
∣Fψ(x)

∣
∣ =

∣
∣
∣
∣–

∫ x



(x – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz + xδ–

∫ 



( – z)δ–α–

�(δ)
H

(
z,ψ(z)

)
dz

+ xδ–
∫ 



( – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz

∣
∣
∣
∣

≤ �

(
(x – z)δ

�(δ + )

∣
∣
∣
∣



x
+ xδ– ( – z)δ–α

(δ – α)�(δ)

∣
∣
∣
∣




+ xδ– ( – z)δ

�(δ + )

∣
∣
∣
∣





)

= �

[
xδ

�(δ + )
+

xδ–

(δ – α)�(δ)
+

xδ–

�(δ + )

]

≤ �

[


�(δ + )
+


(δ – α)�(δ)

]

< ∞, ()

and it is bounded. Next, for ψ(x) ∈ S , x, x ∈ J , such that x > x, we have

∣
∣Fψ(x) – Fψ(x)

∣
∣ =

∣
∣
∣
∣–

∫ x



(x – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz

+
∫ x



(x – z)δ–

�(δ)
H

(
z,ψ(z)

)
ds
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+
(
xδ–

 – xδ–


)
∫ 



( – z)δ–α–

�(δ)
H

(
z,ψ(z)

)
dz

+
(
xδ–

 – xδ–


)
∫ 



( – z)δ–

�(δ)
H

(
z,ψ(z)

)
dz

∣
∣
∣
∣

≤ �

(
xδ

 – xδ


�(δ + )
+

xδ–
 – xδ–


(δ – α)�(δ)

+
xδ–

 – xδ–


�(δ + )

)

, ()

that is, ‖Fψ(x) – Fψ(x)‖ →  as x → x. With the help of ()-() and the Arzela-
Ascoli theorem, the operator F is completely continuous.

Consider a cone B = {ψ(x) ∈ E : ψ(x) ≥  and minx∈[ 
 ,] ψ(x) ≥ λ‖ψ(x)‖} in E , then for

any ψ ∈ B, we have

min
x∈[ 

 ,]
(Fψ)(x) ≥ λ

∫ 


K(, z)H

(
z,ψ(z)

)
ds

= λ max
x∈J

∫ 


K(x, z)H

(
z,ψ(z)

)
dz = λ

∥
∥Fψ(x)

∥
∥, ()

this implies that Fψ(x) ∈ B. Let Q = {ψ(x) ∈ B : ‖ψ(x)‖ < k}, we see that, for any ψ(x) ∈
∂Q, ‖ψ(x)‖ = k, so (C) is satisfied for all ψ ∈ ∂Q. So, for ψ(x) ∈ B ∩ ∂Q, we get

∥
∥Fψ(x)

∥
∥ = max

x∈J

∫ 


K(x, z)H

(
z,ψ(z)

)
dz

≤ ξk

∫ 


K(x, z) dz = k, ()

by (), we get ‖Fψ(x)‖ ≤ ‖ψ(x)‖ for ψ ∈ B ∩ ∂Q. Assume Q = {ψ ∈ B : ‖ψ(x)‖ < k},
for ψ ∈ ∂Q, we have ‖ψ(x)‖ = k, this implies that the condition (C) is satisfied for ψ ∈
B ∩ ∂Q; further, we have

F
(

ψ

(



))

=
∫ 


K

(



, z
)

H
(
z,ψ(z)

)
dz ≥

∫ 




K
(




, z
)

H
(
z,ψ(z)

)
dz

≥ νk

∫ 




K
(




, z
)

ds = k. ()

Thus, () yields ‖F (ψ(x))‖ ≥ ‖ψ(x)‖ for ψ ∈ B ∩ ∂Q. Therefore, with the help of
Lemma , the operator F has a fixed point, say ψ, such that k ≤ ‖ψ‖ ≤ k. This com-
pletes the proof. �

4 Illustrative example
Example  Consider the problem for x, z ∈ (, ] and ψ(x) ≥ 

Dδψ(x) =
(∫ 




K
(




, z
)

dz
)–(∫ 


K(, z) dz

)–  +  maxx∈(,] |ψ(x)|


, ()

with the conditions as defined in ().
We assume k = maxx∈(,] |ψ(x)|, then from () we have

H
(
x,ψ(x)

)
=

(∫ 




K
(




, z
)

dz
)–(∫ 


K(, z) dz

)–( + ψ(x)


)

≥ νψ(x),
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for ν = (
∫ 



K( 

 , z) dz)– and λψ(x) ≤ ψ(x) ≤ maxx∈(,] |ψ(x)| = k, where λ is defined by
(). We also have

H
(
x,ψ(x)

)
=

(∫ 




K
(




, z
)

dz
)–(∫ 


K(, z) dz

)–( + ψ(x)


)

≤ ξk,

for k = (
∫ 



K( 

 , z) dz)–( + maxx∈(,] |ψ(x)|
 ). Here  ≤ ψ ≤ k is obvious. Therefore the as-

sumptions (C), (C) are satisfied and hence by Theorem , we find that the problem ()
has a solution.

5 Conclusion
In this paper, we have utilized the Krasnosel’skĭı fixed point theorem along with the
Arzela-Ascoli theorem for the existence of a solution of the problem (). For this, we have
produced the equivalent integral form of the problem () using the Green’s function in
Lemma , then we discussed some properties of the Green’s function in Lemma . These
properties of the Green’s function, the Arzela-Ascoli theorem, and Krasnosel’skĭı fixed
point theorem were then utilized in Theorem  for the existence of a solution of the prob-
lem (). These results can be utilized for further studies of the problem () in q-difference
equations, p-Laplacian BVPs, hybrid FDEs for the existence and multiplicity, and many
other aspects.
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