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In this paper, for the proposed extended Laguerre polynomials ¢ A (@)

(x) 7, the generalized hypergeometric function of the type

91
oF »q>2 and extension of the Laguerre polynomial are introduced. Similar to those related to the Laguerre polynomials, the
generating function, recurrence relations, and Rodrigue’s formula are determined. Some corollaries are also discussed at the end.

1. Introduction and Applications

Due to its wide applications, the study of orthogonal polyno-
mials has been a popular research topic for many years. Many
of these polynomials are generated by hypergeometric func-
tions. Indeed, the orthogonal polynomials have numerous
properties of interest, e.g., recurrence relations and differential
equations. Based on their Rodrigues formulae, generating
functions and solutions of integral equations with orthogonal
polynomials as kernels have been extensively investigated.

Generalizations and extensions of orthogonal polyno-
mials are in the another familiar direction of research. One
of the polynomial set which has been extended is a set of
Laguerre polynomials. Laguerre polynomials are well-
known to form an orthogonal set with respect to the weight
function z%¢* on the interval (0, c0).

A set of Laguerre polynomials is generated by well-
known confluent hypergeometric function | F;. It can be also
generated by hypergeometric function F,. Another direc-
tion is the study of Laguerre polynomials based on more
than one variable which are often used in physical and statis-
tical model. One, too, combinatorial polynomial images,
moments, orthogonality relation, and a combinatorial
understanding Ikyrana coefficients Al-Salam and Chihara g
Laguerre polynomial, can study various aspects. Orthogonal
polynomials, namely, Hermite polynomials and Legendre

polynomials can also be studied through the finite series
involving Laguerre polynomials.

Laguerre polynomials are used to solve noncentral Chi-
square distribution. Laguerre polynomials are the orthogonal
polynomial satisfied the recurrence relations. Various special-
izations are studied with application to classical orthogonal
polynomials. Kinetic theory of particles based on Laguerre
polynomial macroscopic hydrodynamic quantities and kinetic
coeflicients of different medium is used to set.

There are a large number of generalizations and exten-
sions of Laguerre polynomials, e.g., Shively’s polynomials.
Many of these generalizations are based on its Rodrigues for-
mulae in addition to hypergeometric functions. Recently, an
interesting integral representation of generalized hypergeo-
metric functions has been determined. It is now natural to
point to a generalization of Laguerre polynomials based on
such a discovery. This idea has motivated the current work.
Also, it will explore deeper investigation and extensions of
results which we proved in our early studies and research.

In this work, we discuss the features of Extending
Laguerre polynomial involving qu, q>2. Extending

Laguerre polynomial set has been a popular research issue
well considered for years. There have a number of directions
to do so. One direction is to follow the definition of Laguerre
polynomials based on the confluent hypergeometric



function, explicitly

o 1

(@) X) = ( +'a)”1F1(—n;1+oc;x). (1)
n n!
Shively [1] extended the Laguerre polynomials as

R,(a,x) = (9)s F/(-nsa+n;x). (2)

He used a factor a + n instead of 1 + o in Laguerre polyno-
mials. In his study, he found a large number of its properties
including the result that a finite sum of Laguerre polynomials
is Shively’s polynomials. Habibullah [2] proved the Rodrigues
formula for Shively’s polynomials in the following form

exx—a—n

R,(a+1,x)= D" (x¥*"e ), (3)

n!
similar to the Rodrigues formula

eX ’
LDn(xa‘H’le—X)’ (4)

1ow=2
for the Laguerre polynomials.

Researchers have also often based their generalization on
extension of Rodrigues formula and subsequently deter-
mined properties of extended polynomials. Chatterjea [3]
developed an extension of the Laguerre polynomial by
strengthening the Rodrigues formula. Chatterjea and Das
[4] restructured their definition and the resultant study by
considering another version of the Laguerre polynomials.

Chen and Srivastava [5] found a stronger Rodrigues for-
mula to develop a generalization of the Laguerre polynomial.

The forms generalized Rodrigues formulae by Chak [6]
show that robust following of this method of defining exten-
sions of the Laguerre polynomial. Since comprehensive liter-
ature is available on special functions, we follow Shively’s
tradition to introduce the definition of the extended
Laguerre polynomials set based on special functions similar
to that contained the original definition.

Dattoli et al. [7] used an exponential generating func-
tions approach involving Hermite polynomials and Bessel
functions introduced new families. He, too, studied their
respective recurrence relations and showed that they fulfill
different differential equations. Trickovic and Stankovic [8]
of the Jacobi and Laguerre polynomial orthogonality of
rational functions that have proved equally. Trickovic and
Stankovic [8] have proved the orthogonality of the Jacobi
and the Laguerre polynomials.

Khan and Shukla [9] have introduced a novel method to
give operator representations of certain polynomials. They
gave binomial and trinomial operators representations of
certain polynomials. Grinshpan [10] has shown that all solu-
tions to the equations of a family of integral equations fulfill
modulus inequality. Duenas et al. [11] a derivative of a Dirac
delta by adding a perturbation of a Laguerre-Hahn func-
tional gain catalog.
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Kim et al. [12] have studied some interesting identities
and also studied Bernoulli and Euler’s numbers in connec-
tion with the properties of Laguerre polynomials. They
derived identities by using the orthogonality of Laguerre
polynomials w.r.t the relevant inner product. Marinkovic
et al. [13] have demonstrated the theory of deformed
Laguerre derivative defined by iterated deformed Laguerre
operator. Nowak et al. [14] convolution type Laguerre func-
tion expansions in order to prove the standard estimates has
developed a technique. Khan and Habibullah [15] have
introduced A, ,(x) =, F,(-n/2, (—n+1/2);1/2,1; x%).

Khan and Kalim [16] have introduced

(@) 3
A = —-> , ; , y——
3m() 3 3 3 3 3 3 Yy

1+« -m —-m+1 -m+2 l+a 2+a 3+«
m
a3 ; :

(5)

Doha et al. [17] modified generalized Laguerre expan-
sion coefficients of the derivatives of a function in terms of
its original expansion coefficients, and an explicit expression
for the derivatives of modified generalized Laguerre polyno-
mials of any degree and for any order as a linear combina-
tion of modified generalized Laguerre polynomials
themselves is also deduced.

Dattoli et al. [18] applied operational techniques to intro-
duce suitable families of special functions. Andrews et al. [19],
Trickovic and Stankovic [20], Radulescu [21], and Doha and
Youssri [22] have done a lot of work for properties of Laguerre
polynomials. Akbary et al. [23] can be referred for other appli-
cations of Laguerre polynomials. Li [24], Aksoy et al. [25],
Wang [26], and Krasikov and Zarkh [27] have studied prob-
lems of permutation of polynomials, bijections that can induce
polynomials with integer coefficients is modulo .

We organize our manuscript as: we present the proper-
ties and applications of extended polynomials in Section 2.
We give the extended Laguerre polynomials in Section 3.
We discuss the generating functions in Section 4. We pres-
ent the recurrence relations in Section 5. We give the differ-
ential equations in Section 6. We discuss the Rodrigues
formula in Section 7. We give the special properties in Sec-
tion 8. We present some other generating functions in Sec-
tion 9. We give the expansion of the polynomials in
Section 10. We present the conclusion in the last section.

2. Extended Polynomial Properties and
Application Elementary Results

Das [28] has modified the work of Al-Salam [29]. Carlitz [30]
has given a generating function and an explicit polynomial
expression for the polynomial Y?,(x; k), a variant of Laguerre
polynomials. Srivastava [31] has derived the several bilinear
generating functions by using generalized hypergoemetric
functions. Explicitly, we can mention [Erdélyi p, 190] [32].

I'a+m+n+1)

Dm|: oc+mL(tx+m) :| —
L) I'e+n+1) X
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One generalization of Laguerre polynomials is R, (a, x) as
Shively defined it by [Rainville p, 298] [33].

he used these results as an integral equation involving Shively’s
polynomials. Karande and Thakare [34] have derived the gen-
erating functions, bilinear generating functions, and recur-
rence relations by using the biorthogonal set of Konhausar.
Panda [35] has studied a new generalization based on several
known polynomials systems belonging to the families of the
clagsical Jacobi, Hermite, and Laguerre polynomials. Parashar

)00, () -G

[36] has introduced a new set of Laguerre polynomials L{®"
(x) related to the Laguerre polynomials L) (x). Sharma and
Chongdar [37] have proved an extension of bilateral generat-
ing functions of the modified Laguerre polynomials.

Lemma 1. If j € Z* and n is any nonnegative integer, then

(%)j(_"; 1>j (%q_]l:(q)wm.

(8)

Proof.

)G )G

(—n+ 1> (—n+1
+
q q

)(—n+l
1 +
q

2) (—n+1+,_1)
g 7))

() ) () (o) =) 097 - ()

n+2q+l> <—n+qj—q+1>
q b

S
SR
gy o) (s

Lemma 2. If k € Z* and n is any nonnegative integer, thus

@u=2(),(5F) - () )

Rainville [33] (p 22).

Lemma 3. If k € Z" and n is any nonnegative integer, thus

OiiB(k,n)= 0Zo:(>Z<):B(I<,1fz+k), (11)
n=0 k=0 n=0 k=0

Rainville [33] (p 57).

Lemma 4. If k € Z" and n is any nonnegative integer, then

[Nk

B(k, n) =

Mg
[\/]8

ZBkn k),

k=0

(12)

=
1]
=
=
I}
=]
I
=1

n

Rainville [33] (p 56).

) () - g

©)

3. The Extended Laguerre Polynomials A (@) (x)

9, n
We define the extended Laguerre polynomial set
(@)
A (%) o by
qn
-n o-n+l o -ntg-1
e’ a7 aqa
A(“>(x)_ (antx)y,qu x|, (13)
> g+a q+l+a  29+a-1
a’ 9 7 4

where a € R, n,q € Z*.

(@)

Theorem 5. If { A
qn

(x)} are the extended Laguerre poly-

nomials, then

() o (-1)% (x)¥ N
—qj)!(q+(x)qj(qj)!’aE]R’n€Z .

g n =(n
(14)



Proof. Consider

-n -n+1 -n+qg-1
@ a’ q a
&
a7 =S40 p x4
g n n: q
2g+a—1

qt+a g+l+a
P s

]
e(q+a
_ (‘In! . Z{

q
( "+q_1/q)j }(X_)q]

q
(- n/q)( n+ I/q)
)i

(q+alq);(q+1+alq), - (2q+a-1/q), [ (qj)! ’
(15)
By using Lemma 1
L@ )= e"(qr: ®),
qn ’
§ % (1) ()7
Sla¥(n Nq+alq)(q+1+alq); - (29 +a-1/q);| (4j)!
(16)
Then from Lemma 2, we have
[E] . .
o 4 —1\9 q]
A( ) (x):ex(q+a)nz ( '1) (x) N (17)
q,n j=0 (n—cy).(q+oc)qj (CI])
O

4. Generating Functions
The following theorem formulates a generating function for

o
the extended Laguerre polynomials A =~ (x).
gn

Theorem 6. If n,j € Z", then

00 [%] j X 41 j
(n¥er (x)Y
L2 e, @)

_ e\ 4
:e"”OFq(——;qua q+1+a ”.,2q+oc 1;<it> )
q q q q

> >

(18)
Proof. By using Lemma 3, we acquire
020: (3 qfextn i i (~1)Werm+ai (x)qf
n:0]=0 q+06 n=0 j=0 T’l'q+06 (Q])'
(& [g et
n=0""| | =0 (4 ‘x)qj (9)!
X+t N\ (_Xt)qj
=0 (g+ “)qj(qj)! .
(19)
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By using Lemma 2, we acquire

(o8} [2 ( 1)qjextn (x)qj

1=0 j=0 (n- ‘U)'(Q*'“)qj( )!

(—xt)¥
= qV(q+alq)(q+1+alq); - (29 +a - 1/g),(qj)!

—"”F( qta g+l+a 2q+a—1_<—xt)>
=€ 0 q > 5> PIRREY > | —— .
q q q q

x+t

Iz

(20)
O
Corollary 7. If a € R and n,q,j € Z*, then
oA 0 (x)t" (—xt)q
qn X+t -
zo ara, © !
q+a g+l+a  2q+a-1
e’ qa 7 q
(21)

Proof. From Equation (14), we acquire

(@)
o |A (x) oo [ ,
gn q 7|
Zo (q+a), Zo ]Zln 9j)! q+0¢) ] @'

(22)

A use of Theorem (18), therefore, shows that the

extended Laguerre polynomials have the generating function
given by

o -
OOA( )(x)t" <7xt>q
q’” _ X+t
L ara, N ’
gta g+l+a 2q+a-1
a’ qa 7 9
(23)
O

Theorem 8. If c € Z7, then
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c c+1 c+gq-1
“ bl bl bl bl
@, o e
-~ g, n e* —xt \1
Z = = —heal — : (24)
=  (q+a), (I-1)1 a 1-t
q+a g+l+a 2q+a-1
q bl q bl bl q bl
Proof. From Equation (22), we note that (a)
(0,4 ()
(a) r;) (q+a), (1-t)T4a
i Aq n(x) 0 % (_l)q] (x)qj g,%’...)#;
c d t" = c) e* R A i,
n:o( n (q+a), nzo( )y | (m—a)ig+a),| (9)! <_xt .
(25)
qta g+l+a 2q+a-1
a’ qa 7 q
(28)
By using Lemma 3, we acquire
O
(@) R
(c), A (x)t" _ o Corollary 9. If a € R and n,m, j € Z", then
0 g e e
o (gtra), =0 j=0 n! (a+ “)qj(‘li)!
, S (o) 1 x — 2xt
.3 i(HqJ)nt”] [ (©)y | e(-xt)? ZAq = o () (29)
- ' o ' . n=0 b
o0|n=0 ™™ (a+a),;| (@)
(26)

Proof. Put ¢ = q+ « in Equation (24), we obtain our desired
result. O

Since (¢}, = (c-+ i), (), and (1— 1) = T2 (m), "

. T 5. Recurrence Relations
/n!, it thus implies that

We describe the recurrence relations for the extended

o
() Laguerre polynomials A (@) (x).
o (0,4 ()t . g n
Z g n _ (©)g e (—xt)?
o (ata), A=Y (q+ ®),; (9)! Theorem 10. If a € R and n, j € Z*, then
_ e" i (C)qj 1 < —xt > ai
(-0 |(@+a)y] @) \1-t) (@) (@)
xDA  (x)=(n+x)A  (x)
(27) g1 an
() d
-(g+a+n-1A (x),D:d—.
By using Lemma 2, we consequently obtain the required gn-1 *

result (30)



Proof. From Equation (18)

zA‘i“i e, | )

=0 q + a
q+a q+1+a 2q+a-1
a’ a7 aqa
(31)
(o)
Leto,,(x)=A " (x)/(q+a),
qn

Suppose that

oF

q )| -o()

qgta g+l+a 2g+a-1
7 g p ;
(32)
4
Then F = *** (x ) Zaqn , (33)

provide that the series is uniformly convergent. By tak-
ing partial derivatives,

Z_i — ex+t1//+xq_ltqex+t1//’, (34)

aa_l; — ex+tw+xqtq—lex+t /) (35)
F F

xg—x—t%—t:xF—tF. (36)

Now, since F =} 2,0, ,(x)t", therefore,

?Ti = Za'q’n(x)t" and t%—F = Z no,,(x)t". (37)
n=0 n=0

Equation (36) then yields

[ee)
tn _ Z O'q’n(x)tnﬂ
Z Ogn-1(

(38)

x)t" —xZUW
:xzaqn
n=0

(o) oo
x Z cr'q’n(x)t” - z naq
n=0 n=0

We get 0, ,(x) =0, and for n> 1,

xojq,n (x) - naq,n (x) = xaq,n (x) - Gq,n—l (x) (39)
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This implies that

(@) x)=(n+x (@) x)-(q+a+n-1)A (@) (x).
gn-—1

(40)

Theorem 11. If « € R and n > 2 then

pa (x) = DA (@) (x)+A (@) (x) - 24 («)

q,n gn—1 q,n q,n-—

Proof. From Equation (29), we get the following

(1-1) 7% exp [x(ll__ztt)] = OZO:A (@) (x)t".  (42)

n=0 ¢, N

Let F=A(t exp{(

)} qun L@

(o] e

(l—t)g—i = (1-20)A(t) exp P(l_zﬂ. (45)

1-t¢

By using Equation (42), we obtain

=(1-2t)F. (46)

OF
Since F = qun t", therefore we have P qun "
(47)

Equation (46) can be expressed as

Zy,q,n(x)tn - Z y’q,n(x)twr1 = Z yq)n (x)tn -2 Z yq,n(x)th’
n=0 n=0 n=0 n=0

(48)

zy/q,n(x)tn - zy;,n—l(x)tn = zyq)n(x)tn -2 qu,n—l (X)f
n=0 n=1 n=0 n=1

(49)
We reach )”q,o(x) = O,y'q)l(x) =0 and for n>2,
DA (@) (x)=DA (@) (x)+A (@) (x)-24 @
q,n g,n-—1 qn q,n—
(50)
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Theorem 12. If « € R and n> g, then

DA @ (x)=A @ (x) - niA @ (x). (51)

g n g n 0 4]

Proof. Equation (46) can be written as
OF t
—=|{1- —|F. 52
ox { 1- t] (52)

By using Equation (42), we obtain

e DX I

By using Equation (47), we obtain.

RNCTED NI [zo ] [zqu,nw]

= ;yq,n(x)t” DI L

=0 j=0
(54)

Since Y2, ¥, B(k, n) =
[33], (p 56)).

o2 roB(k,n—k), (Rainville

i !
y tn+

||M8
[\/]8

yqn zyqn

= D Pgn(x)t" -
n=0

(55)

3
I
)

:‘N

._.o

Mg

yq,j(x)t .

0

=
I
—_

J

It follows that qu’o(x) =0, }’Iq,1(x) =0 and for n >4,y Iq’”(x
(0() (“) n-1

) =yq,n(x) - Z?;()lyq,j(x)’ and DA (x)=A (x) - Zj:o
q,n q,n
490
@ J 0
Theorem 13. If a € R and n>q + 1, then
nA @ (x)=(3x—q-a)A @ (x)-(q+a+n-2)A @ (x)
q,n gn—1 gn-2
| (56)

6. Differential Equation

Since the Extended Laguerre polynomial is a constant multi-
ple of hypergeometric functions qu, we may obtain the dif-

ferential equation.

Proof. We can have the following equation after eliminating
the derivatives from Equations (30) and (41).

0=nA (*) (x) —xDA ) (x)
g, n gn-1
+(2x-g-a-n+1)A @) (x)nA ®) (%)
gn—1 g, n
o) (@)
=xDA (x)-(2x-q-a-n+1)A (x).
gn-1 gn-1
(57)
Now, by using Equation (30), we finally have
(@) (@)
nA (x)=(n-1+x)A (%)
q,n gn-1
(@)
-(gq+a+n-2)A (x) (58)
qgn—2
(@)
+(2x-q-a-n+1)A (%),
qn-
nA @ (x)=(Bx-g-a)A (@) (%)= (g+a+n-2)A (@) (x).
q,n gn-1 gn-—2
. (59)
Theorem 14. If a € R and n,q,j€ Z", then
A(1+a) (x)+A(a) (x):A(1+a) (x).. (60)
g,n—1 q,n g, n
Proof. From Equation (14), we obtain
(1+a) i (- l)qj x4
Aq,n— ()= (q+1+txn1; ”_1_‘11)!(‘1+1+0‘)qu,
(61)
h (o) [n/4] aj
so t atAq n( x)=e(q+a), 2o (“1)Y/(n-qj)l(q+a)y)

(x2/(qj)).
By adding the above equations, we get
Theorem 15. If « € R and n > g, then

xD*A @) (x) + (g +a—3x)DA *) (%)

" @ (€3)

+(2x+n-q-a)A  (x)=0.
g1
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Proof. By taking partial derivatives of Equation (30), we By using Equation (30), we have
(1+a) @ _ £ l)qJ XU i XU
Apl(¥) + AL (x) = (g + 1+ @), P s IR n]Z—W) @
g 2] (q+a+n-DI(-1)7 x¥ . i (@ta+tn-1I(-1)¥ x¥
= (n-1-g)l(g+a+ap (@) & n-a)(q+atqi-1)(q)
o = (@+a+n-1(-1)¥ x_‘fj . o] (@+a+n-DI(-1)¥ x¥ . xn
o (n-1-a)llg+a+a)l(q)! = (m-a)ig+a+tgi-1lagn!  (gn)!
2] (@+a+n—1)x¥(-1)¥
:ex k=0 (q])'
{ 1 N 1 }+ x"
L l(n-1-g)l(g+a+q)!  (n-g)lqta+qi-1If = (qn)!
-[n_t_Il] j j n
o (q+a+n-1)I(-1)¥ Xt
& gt 1 g <qn>!}
1= i n (& - : 1+a
o (q+a+n)!(-1)¥ x¥ x| - ) (-1)¥ X =A( )
“| & g ar g o <qn>!} @ ., ¢
(62)
have
& o o o o [24 o
xDZA(qz,)n(x) + DA(q,J (x)=(n+ x)DA§,3 (%) +A( (%) xD*A () (x)+(q+a—-x)DA () (x)=(q+a+n)A (*) (x)
—(q+a+n- )DA(M)I() >n an an
(@) (@)
(64) +2xDA  (x)-2(n+x)DA  (x),
q.n q.n
By using Equation (41), we have (67)
or
xD*A ®) (x) +DA (*) (x)=(n+x)DA ) (x)+A (*) (%)
an gn gn g.n , (@ « «
a) o (@) xDA()(x)+(q+oc73x)DA()(x)+(2x+n7qfoc)A()(x):0.
(@+a+n-1)|DA  (x)=A  (x)+24 (x) wr wr e
gn gn gn-1 (68)
(65) H
7. Rodrigues Formula
or
The Rodrigues formula for the Laguerre polynomials is pre-
o @ o sented as
xD’A " (x)+(q+a-x)DA  (x)=(q+a+n)A (x)
qn q,n an (“) x*e* 7n tx+n —X
(«) L "(x)= D (x""e™), (69)
-2(q+a+n-1)A (x). n n!
gn-1

(66)  but we intend to extend this Rodrigues formula.
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Theorem 16. If x € R and n,j € Z*, then

—(g—1)-«a ,2x
((X) (X) _ X (a=1) eZ D" (x(q—1)+oc+ne—x>.

on o (70)

A

Proof. Consider the extended Laguerre polynomials involv-
ing qu, q>2

-n -n+1 -n+q-1
PRI 7 ;
o e*
4l )(x): (q,;a)"qu X4
> ' q+a g+l+a 2q+a—-1
a’ 9 7 qa

(71)

By Theorem (14), we have

() 1]
A (%)= %Z
q,n " j=0

{ n! } (q+a),xV
(n—gp)laj)'] (q+a),

exx—(q—l)—oc [%]

n!

(—l)an! (q+ m)nxqjﬂ)ﬁ(q*l)
(n—qj)!(qj)!l (g+m),

=0

(72)

Dn_Qj (x”“”(q*l)) = (q + a)nxqjﬂﬁ(q*l)/(q + a)

therefore, we write it as

Since o

(oc) x—(q—l)—ocer [ﬂ n!
-

qj)!(qj)!] [=1%e]

|
g n G =

n

—(q-1)-a 2x [E]n

n—qj -1 X € -qj
. [D qf(xn+a+(q >)} - Y ¢ 0

n! =
. (xn+zx+(q—1))qu(efx).
(73)

Lastly, we use the Leibnitz formula for the nth derivative
to obtain the following

—(g-1)-a 2
A (CX) (X) _ X (a=1) e an (x(q—1)+oc+ne—x) .
n!

gn

(74)

O
8. Special Properties
In this section, we determine the special features of the

extended Laguerre polynomials A~ ~ (x).
g n

Theorem 17. If a, € R and n, j,q € Z*, then

Jepa P
() _ z v g n—qj (75)
UED) @)
Proof. From Equation (29)
X () . 1 exo [ x 1-2t
2= o ((7))

Also, consider

e ({25t

(77)
iA ) (x)t" = (1 - )" P iA #) (x)t"
n=0 q, n n=0 q, n
QP B
D TP L L
(B)
~ o (a— ﬁ)qjthA (x)t"
- "
Zo ,Zo (4/)!
By utilizing Lemma 4, we acquire
o« @ el B T
n_ .n—4q
r;)A g n @ r;)j:O (a)!
(A)
o [ (@ B)gA ()t
- n—q
25 W
(79)
On comparing the coefficients of ", we acquire
g P
() . z Y ogn-gj (80)
e Y ]
O
Theorem 18. If a € R and n,j€ Z", then
o ] p
A( +ﬁ+Q)(x+y>:zA (B) (y)A( )(X) (81)
an 0 gn=qj  4.4q)
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Proof. Consider

(1= )T exp <x(

o ren (1)

e ()
(82)
By using Equation (75), we acquire
o, @ &, B L S (etprg) .
AT (@Y AT ()t =) A (x+y)t
n=0 ¢>N n=0 »n n=0 q,n
(83)
X a+p+ i
F AP (e ZZA(B mera @
n=0 q, n n=0j=0 (¢,N CL q]
(84)
By using Lemma 4, we acquire
o oo i
a+p+ 1 o
gaepra, L sdo® @
n=0 N n=0j=0 q,N— cy 9, qj
(85)
On comparing the coefficients of ", we acquire
i
a+p+ i o
L Q)(x+y):ZA (B) .(,‘v)A().(x) (86)
g n =0 gn=—4qj q-4]
O
Theorem 19. If a € R and n, j € Z*, then
A (o 9\4J
n +a X .
A" ) - e 9.4j Py )
g n =0 (q+a), (n—qj)!
Proof. Consider
)
eXHOFq q
qta q+l+a 2q+a-1
a’ a 7 qa
xyt

_ e(lfy)texﬂ/tOFq
2q+a-1

g+a g+l+a
> >t p

q q

Journal of Function Spaces

By using Equation (21), we get

(@)
A ()t

qn
z (g+a),

n=0

( )yt
(1 _y)"-qjtn-qj

(n—qj)!

On comparing the coefficients of ", we get

) )
. (xq)yfﬁ
9, 9]
(q + a)qj

4ot a-»"7 oy

(n—aqj)!
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Since (1—t-y) T =(1-t) " (1-p/1-t)"T"

x(1-2y-2t —x +t
(1527 e 55

(“’1’3 St )

Therefore, Equation (93) becomes

oo (@
.o o (MTa)IA (xt)t"y¥

(12 e e (724 e o)
' ((—x/l -t (y/l1 - t))

(1-y/l1-1)

By using Equation (29), we get

0000(n+q])!A *) (x1)t"y ¥
3 n+4qj (1 — )T oy
22 (@)'n! (1= exp
xt\ & (@), Y \Y
GAPESIES
(96)

On comparing the coefficients of y¥/, we get

00(n+q_j)!A *) (x1)t"
4 n+4qj = (] — )y ey
7 A

(276

9. Other Generating Functions

In this section, we study some other generating functions.

—xt
> exp  (94)

11

Theorem 21. If a € R and n, j,q € Z", then

(@) (@)
Oon!A (x)A ()t , .y
n_ gn _ —ga —x -
2 e e () e (1 )un

( q+a g+l+a 2q+a—1
g . ;

' (q(fy—t r))q)

Proof. Consider the series

(98)

@@ @
o MA T (AT ()t nyPA T (%) (-1)Vt
g-n gn _ gn
Zo (q+a), Zo,zo (a)(n—qj)!(q+a),
(99)
By using Lemma 3, we get
- nlA @ (x)A @ ()t o (n+ qj)!y'UA @ ‘(x)(—l)q"t'”'?j
qn q,n _ pn+q
) (q+a), Zo,zo (9/)!n!(q +a),;
(100)
(n+qj)lA (@) (x)t" .
5% gntqi  (yn¥ (101
=0 n=0 (qj)!n! (q+a),

x (—yti1 - t)¥
( t) qq/(qu(x/q) (q+1+alq); -

(2q+a- l/q)j

(-t exp [ @
(11 P<1ft>}.§0"q,j
(L) (-ytlq(1 - 1))¥ _
(q+0¢/q) (g+1 +oc/q) c(2q+a— I/q)]

(102)
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By using Equation (21), we get

X q,n q,n _ o« —xt x—yt

Z =(1-t)"%exp (I_—t) exp (1——1‘ oF,

) 2q+a-1
q q Cooa

(103)
O
Theorem 22. If |t| < 1, a € R and c,n € Z*, then
e AN
w5 (- 2)
c c+1 c+q-1
a q
(=x/(1=1))(yt/1-t)\1
I—yt/1—t
qg+a g+l+a 29+a-1
T g T g
-n -n+1 -n+q-1 ¢ c+1 c+tq-1
& a’ a7 a4 ¢ q9° " q | (@
=Y, F A (0,
= g+a q+l+a 2q+oc71_( ) gn
. 7 s (qy
(104)

Proof. Consider the series

=ty ep () o,

t

> > >

q q q

()

(__‘q+oc g+l+a 2q+a-1

(105)
Applying Equation (92), we get
c c+1 c+g-1
A I @
¢ _F (;"“)q _ i( )quq,qJ(x)ﬂ]
(1-0)7a 1-t & (@),
qta gtl+a 2q+a-1
a’ a 77 qa

Journal of Function Spaces

Replacing x by x(1—t)™" and ¢ by yt(1 - ¢t)™" yields

x yt\ ¢
eW(h)<11—JQﬂ
c+1 c+q-1
T

ESENSY

((—x/(l —1)(yt/1 - t))q

1-ytil—t

qgta qg+l+a

2q+a-1
g q q ;

o
L(O4A T (= -nY
= 9.9
JZO (q+a),
(107)
multiplying both sides by (1 - )" exp (~xt/1 - t)
(l—t)’q*u exp( X ) exp (i) (1_ Lt)*c
1-t 1-t 1-t
coerl . era-l.
9 q 7 q
*qF <w>q
e 1-yt/1—t
g+a q+l+a  2q+a-1
q ’ q > q ?
(c), A (®) (/1 =t)(pt/1 1t qi
(e N2 0qj 02 )
_( - ) exp <m> j:ZO (q+a)‘y
(a) -q-a—qj P
o ©@uA (K=t (1=1) TV exp (—xt/1 - )Ty VeV
= Z 9.9
=0 (a+a),
(108)

By using Lemma 4, we acquire

e NN
(I-1) exp( —t)(l 1—t> qu

c c+1 c+q-1
¢ qa " 4
(=x/(1=t))(yt/1 = £)\ 1
1—yt/1 -t
g+a qg+l+a 2g+a-1
q q q
a) o a
W [ @A @ (@) (m A (3
=Z i ‘1‘1]_ =ZZ 29
n=0 j=0 (W)!(n_‘ﬂ)!(Q"'“)qj n=0 j=0 (‘IJ)'(‘]"'O‘)qj

(109)

By using Lemma 1 and 2, we get our required result. [J
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10. Expansion of Polynomials

Since A( ') (x) forms an orthogonal set, the classical technique
for expandmg a polynomial. As usual, we prefer to treat the
problem by obtaining first the expansion of x?" and then
using generating function techniques.

Theorem 23. If e € R and n,j€ Z", then

griiara,a

n_ x 99
=0 (n—qj)l(q+ ‘x)qj

(110)

Proof. Equation (21) then yields

F( gta g+l+a 2q+(x—1.(—xt>q)
TN a7 g a \q

(@)

. Aq ) (%)t
=e—x—t ’7,
n=0 (q + Oc)n
(111)
i (=xt/q)™"
= (q+alq),(q+1+alg), - (29 +a—1/q),(qn)!
(@)
A (x)t"
[ee] _1 nyen OO
= e—X Z ( )' t q’ n
n=0 h: n=0 (q + “)n
(112)
o (B
- o o o (DA T (x)t
Z xt —e™ Z q-9]
=0 q ta qn(qn) 1=0 j=0 nl(q+ ®),j
(113)
By using Lemma 4, we get
o
[ (-1)"A (@) (x)t"
FEUC_ S5 gy (114)
n=0 (q+06) n! n=0 j=0 (n_qj)!(q+a)qj .
By equating the coefficient of ", we get
[ nl(g+a) A (@) (x)
X " 4.4 (115)

x"=e

=0 (n—qj)l(q+ ‘x)qj
]

11. Conclusion
Finally, in conclusion, we compromised the extended

«
Laguerre polynomials {A (@) (x)} based on the qu, q>2.
q)
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We obtained generating functions, recurrence relations,
and Rodrigue’s formula for these extended Laguerre polyno-
mials. In future work, we can extend it and can get more
results. We will apply Laplace transformation, and Elzaki
transformation and the same more transformations can
apply on the results of extended Laguerre polynomials.
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