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In this paper, for the proposed extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ
( )

, the generalized hypergeometric function of the type

qFq
, q > 2 and extension of the Laguerre polynomial are introduced. Similar to those related to the Laguerre polynomials, the

generating function, recurrence relations, and Rodrigue’s formula are determined. Some corollaries are also discussed at the end.

1. Introduction and Applications

Due to its wide applications, the study of orthogonal polyno-
mials has been a popular research topic for many years. Many
of these polynomials are generated by hypergeometric func-
tions. Indeed, the orthogonal polynomials have numerous
properties of interest, e.g., recurrence relations and differential
equations. Based on their Rodrigues formulae, generating
functions and solutions of integral equations with orthogonal
polynomials as kernels have been extensively investigated.

Generalizations and extensions of orthogonal polyno-
mials are in the another familiar direction of research. One
of the polynomial set which has been extended is a set of
Laguerre polynomials. Laguerre polynomials are well-
known to form an orthogonal set with respect to the weight
function zαe−z on the interval ð0,∞Þ.

A set of Laguerre polynomials is generated by well-
known confluent hypergeometric function 1F1. It can be also
generated by hypergeometric function 0F1. Another direc-
tion is the study of Laguerre polynomials based on more
than one variable which are often used in physical and statis-
tical model. One, too, combinatorial polynomial images,
moments, orthogonality relation, and a combinatorial
understanding Ikyrana coefficients Al-Salam and Chihara q
Laguerre polynomial, can study various aspects. Orthogonal
polynomials, namely, Hermite polynomials and Legendre

polynomials can also be studied through the finite series
involving Laguerre polynomials.

Laguerre polynomials are used to solve noncentral Chi-
square distribution. Laguerre polynomials are the orthogonal
polynomial satisfied the recurrence relations. Various special-
izations are studied with application to classical orthogonal
polynomials. Kinetic theory of particles based on Laguerre
polynomial macroscopic hydrodynamic quantities and kinetic
coefficients of different medium is used to set.

There are a large number of generalizations and exten-
sions of Laguerre polynomials, e.g., Shively’s polynomials.
Many of these generalizations are based on its Rodrigues for-
mulae in addition to hypergeometric functions. Recently, an
interesting integral representation of generalized hypergeo-
metric functions has been determined. It is now natural to
point to a generalization of Laguerre polynomials based on
such a discovery. This idea has motivated the current work.
Also, it will explore deeper investigation and extensions of
results which we proved in our early studies and research.

In this work, we discuss the features of Extending
Laguerre polynomial involving qFq

, q > 2. Extending

Laguerre polynomial set has been a popular research issue
well considered for years. There have a number of directions
to do so. One direction is to follow the definition of Laguerre
polynomials based on the confluent hypergeometric
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function, explicitly

L
αð Þ
n

xð Þ = 1 + αð Þn
n! 1F1 −n ; 1 + α ; xð Þ: ð1Þ

Shively [1] extended the Laguerre polynomials as

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ: ð2Þ

He used a factor a + n instead of 1 + α in Laguerre polyno-
mials. In his study, he found a large number of its properties
including the result that a finite sum of Laguerre polynomials
is Shively’s polynomials. Habibullah [2] proved the Rodrigues
formula for Shively’s polynomials in the following form

Rn a + 1, xð Þ = exx−α−n

n!
Dn xα+2ne−x

� �
, ð3Þ

similar to the Rodrigues formula

L αð Þ
n xð Þ = exx−α

n!
Dn xα+ne−xð Þ, ð4Þ

for the Laguerre polynomials.
Researchers have also often based their generalization on

extension of Rodrigues formula and subsequently deter-
mined properties of extended polynomials. Chatterjea [3]
developed an extension of the Laguerre polynomial by
strengthening the Rodrigues formula. Chatterjea and Das
[4] restructured their definition and the resultant study by
considering another version of the Laguerre polynomials.

Chen and Srivastava [5] found a stronger Rodrigues for-
mula to develop a generalization of the Laguerre polynomial.

The forms generalized Rodrigues formulae by Chak [6]
show that robust following of this method of defining exten-
sions of the Laguerre polynomial. Since comprehensive liter-
ature is available on special functions, we follow Shively’s
tradition to introduce the definition of the extended
Laguerre polynomials set based on special functions similar
to that contained the original definition.

Dattoli et al. [7] used an exponential generating func-
tions approach involving Hermite polynomials and Bessel
functions introduced new families. He, too, studied their
respective recurrence relations and showed that they fulfill
different differential equations. Trickovic and Stankovic [8]
of the Jacobi and Laguerre polynomial orthogonality of
rational functions that have proved equally. Trickovic and
Stankovic [8] have proved the orthogonality of the Jacobi
and the Laguerre polynomials.

Khan and Shukla [9] have introduced a novel method to
give operator representations of certain polynomials. They
gave binomial and trinomial operators representations of
certain polynomials. Grinshpan [10] has shown that all solu-
tions to the equations of a family of integral equations fulfill
modulus inequality. Duenas et al. [11] a derivative of a Dirac
delta by adding a perturbation of a Laguerre-Hahn func-
tional gain catalog.

Kim et al. [12] have studied some interesting identities
and also studied Bernoulli and Euler’s numbers in connec-
tion with the properties of Laguerre polynomials. They
derived identities by using the orthogonality of Laguerre
polynomials w.r.t the relevant inner product. Marinkovic
et al. [13] have demonstrated the theory of deformed
Laguerre derivative defined by iterated deformed Laguerre
operator. Nowak et al. [14] convolution type Laguerre func-
tion expansions in order to prove the standard estimates has
developed a technique. Khan and Habibullah [15] have
introduced A2,nðxÞ = 2F2ð−n/2, ð−n + 1/2Þ ; 1/2, 1 ; x2Þ.

Khan and Kalim [16] have introduced

A αð Þ
3,m yð Þ = 1 + αð Þm

m! 3F3
−m
3

,
−m + 1

3
,
−m + 2

3
;
1 + α

3
,
2 + α

3
,
3 + α

3
; y3

� �
:

ð5Þ

Doha et al. [17] modified generalized Laguerre expan-
sion coefficients of the derivatives of a function in terms of
its original expansion coefficients, and an explicit expression
for the derivatives of modified generalized Laguerre polyno-
mials of any degree and for any order as a linear combina-
tion of modified generalized Laguerre polynomials
themselves is also deduced.

Dattoli et al. [18] applied operational techniques to intro-
duce suitable families of special functions. Andrews et al. [19],
Trickovic and Stankovic [20], Radulescu [21], and Doha and
Youssri [22] have done a lot of work for properties of Laguerre
polynomials. Akbary et al. [23] can be referred for other appli-
cations of Laguerre polynomials. Li [24], Aksoy et al. [25],
Wang [26], and Krasikov and Zarkh [27] have studied prob-
lems of permutation of polynomials, bijections that can induce
polynomials with integer coefficients is modulo m.

We organize our manuscript as: we present the proper-
ties and applications of extended polynomials in Section 2.
We give the extended Laguerre polynomials in Section 3.
We discuss the generating functions in Section 4. We pres-
ent the recurrence relations in Section 5. We give the differ-
ential equations in Section 6. We discuss the Rodrigues
formula in Section 7. We give the special properties in Sec-
tion 8. We present some other generating functions in Sec-
tion 9. We give the expansion of the polynomials in
Section 10. We present the conclusion in the last section.

2. Extended Polynomial Properties and
Application Elementary Results

Das [28] has modified the work of Al-Salam [29]. Carlitz [30]
has given a generating function and an explicit polynomial
expression for the polynomial Yc

nðx ; kÞ, a variant of Laguerre
polynomials. Srivastava [31] has derived the several bilinear
generating functions by using generalized hypergoemetric
functions. Explicitly, we can mention [Erdélyi p, 190] [32].

Dm xα+mL α+mð Þ
n xð Þ

h i
=
Γ α +m + n + 1ð Þ
Γ α + n + 1ð Þ xαL αð Þ

n xð Þ,D =
d
dx

:

ð6Þ
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One generalization of Laguerre polynomials is Rnða, xÞ as
Shively defined it by [Rainville p, 298] [33].

Rn a, xð Þ = að Þ2n
n! að Þn 1F1 −n ; a + n ; xð Þ, ð7Þ

he used these results as an integral equation involving Shively’s
polynomials. Karande and Thakare [34] have derived the gen-
erating functions, bilinear generating functions, and recur-
rence relations by using the biorthogonal set of Konhausar.
Panda [35] has studied a new generalization based on several
known polynomials systems belonging to the families of the
classical Jacobi, Hermite, and Laguerre polynomials. Parashar

[36] has introduced a new set of Laguerre polynomials Lðα,hÞn

ðxÞ related to the Laguerre polynomials LðαÞn ðxÞ. Sharma and
Chongdar [37] have proved an extension of bilateral generat-
ing functions of the modified Laguerre polynomials.

Lemma 1. If j ∈ℤ+ and n is any nonnegative integer, then

−n
q

� �
j

−n + 1
q

� �
j

⋯
−n + q − 1

q

� �
j

= −1ð Þqj n!
qqj n − qjð Þ! :

ð8Þ

Proof.

Lemma 2. If k ∈ℤ+ and n is any nonnegative integer, thus

αð Þkn = kkn
α

k

� �
n

α + 1
k

� �
n

⋯
α + k − 1

k

� �
n

, ð10Þ

Rainville [33] (p 22).

Lemma 3. If k ∈ℤ+ and n is any nonnegative integer, thus

〠
∞

n=0
〠
n

k=0
B k, nð Þ = 〠

∞

n=0
〠
∞

k=0
B k, n + kð Þ, ð11Þ

Rainville [33] (p 57).

Lemma 4. If k ∈ℤ+ and n is any nonnegative integer, then

〠
∞

n=0
〠
∞

k=0
B k, nð Þ = 〠

∞

n=0
〠
n

k=0
B k, n − kð Þ, ð12Þ

Rainville [33] (p 56).

3. The Extended Laguerre Polynomials A
ðαÞ
q, n

ðxÞ
We define the extended Laguerre polynomial set

A
ðαÞ
q, n

ðxÞ
( )

by

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

;xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

0
BBBBB@

1
CCCCCA, ð13Þ

where α ∈ℝ, n, q ∈ℤ+.

Theorem 5. If A
ðαÞ
q, n

ðxÞ
( )

are the extended Laguerre poly-

nomials, then

A
αð Þ
q, n

xð Þ = ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! , α ∈ℝ, n ∈ℤ+:

ð14Þ

−n
q

� �
j

−n + 1
q

� �
j

⋯
−n + q − 1

q

� �
j

=
−n
q

� �
−n
q

+ 1
� �

−n
q

+ 2
� �

⋯
−n
q

+ j − 1
� �

,

−n + 1
q

� �
−n + 1

q
+ 1

� �
−n + 1

q
+ 2

� �
⋯

−n + 1
q

+ j − 1
� �

,

::⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
−n + q − 1

q

� �
−n + q − 1

q
+ 1

� �
−n + q − 1

q
+ 2

� �
⋯

−n + q − 1
q

+ j − 1
� �

=
−n
q

� �
−n + q

q

� �
−n + 2q

q

� �
⋯

−n + qj − q
q

� �
,

−n + 1
q

� �
−n + q + 1

q

� �
−n + 2q + 1

q

� �
⋯

−n + qj − q + 1
q

� �
,

::⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
−n + q − 1

q

� �
−n + 2q − 1

q

� �
−n + 3q − 1

q

� �
⋯

−n + qj − 1
q

� �
= −1ð Þqj n!

qjqj n − qjð Þ! :

ð9Þ
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Proof. Consider

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

;xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

0
BBBBBB@

1
CCCCCCA

=
ex q + αð Þn

n!
× 〠

n
q½ �

j=0

−n/qð Þj −n + 1/qð Þj ⋯ −n + q − 1/qð Þj
q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

( )
xð Þqj
qjð Þ! :

ð15Þ

By using Lemma 1

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n!

× 〠
n
q½ �

j=0

−1ð Þqjn!
qqj n − qjð Þ! q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

" #
xð Þqj
qjð Þ! :

ð16Þ

Then from Lemma 2, we have

A
αð Þ
q, n

xð Þ = ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! :

ð17Þ

4. Generating Functions

The following theorem formulates a generating function for

the extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 6. If n, j ∈ℤ+, then

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ!

= ex+t0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
−xt
q

� �q� �
:

ð18Þ

Proof. By using Lemma 3, we acquire

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ! = 〠

∞

n=0
〠
∞

j=0

−1ð Þqjextn+qj
n! q + αð Þqj

xð Þqj
qjð Þ!

= ex 〠
∞

n=0

tn

n!

" #
〠
∞

j=0

−1ð Þqktqj
q + αð Þqj

xð Þqj
qjð Þ!

" #

= ex+t 〠
∞

j=0

−xtð Þqj
q + αð Þqj qjð Þ! :

ð19Þ

By using Lemma 2, we acquire

〠
∞

n=0
〠
n
q½ �

j=0

−1ð Þqjextn
n − qjð Þ! q + αð Þqj

xð Þqj
qjð Þ!

= ex+t 〠
∞

j=0

−xtð Þqj
qqj q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj qjð Þ!

= ex+t0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
−xt
q

� �q� �
:

ð20Þ

Corollary 7. If α ∈ℝ and n, q, j ∈ℤ+, then

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð21Þ

Proof. From Equation (14), we acquire

〠
∞

n=0

A
αð Þ
q, n

xð Þ

q + αð Þn

2
6664

3
7775tn = 〠

∞

n=0
〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

" #
xð Þqj
qjð Þ!

2
4

3
5tn:

ð22Þ

A use of Theorem (18), therefore, shows that the
extended Laguerre polynomials have the generating function
given by

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð23Þ

Theorem 8. If c ∈ℤ+, then
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Proof. From Equation (22), we note that

〠
∞

n=0
cð Þn

A
αð Þ
q, n

xð Þ

q + αð Þn

2
6664

3
7775tn = 〠

∞

n=0
cð Þnex 〠

n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

" #
xð Þqj
qjð Þ!

2
4

3
5tn:

ð25Þ

By using Lemma 3, we acquire

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
= 〠

∞

n=0
〠
∞

j=0

cð Þn+qjextn+qj
n!

−1ð Þqj xð Þqj
q + αð Þqj qjð Þ!

= 〠
∞

j=0
〠
∞

n=0

c + qjð Þntn
n!

" #
cð Þqj

q + αð Þqj

" #
ex −xtð Þqj

qjð Þ! :

ð26Þ

Since ðcÞn+qj = ðc + qjÞnðcÞqj and ð1 − tÞ−m =∑∞
n=0ðmÞntn

/n!, it thus implies that

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
= 〠

∞

j=0

cð Þqj
1 − tð Þc+qj� 	

q + αð Þqj

" #
ex −xtð Þqj

qjð Þ!

=
ex

1 − tð Þc 〠
∞

k=0

cð Þqj
q + αð Þqj

" #
1
qjð Þ!

−xt
1 − t

� �qj

:

ð27Þ

By using Lemma 2, we consequently obtain the required
result

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
=

ex

1 − tð Þc qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA
:

ð28Þ

Corollary 9. If α ∈ℝ and n,m, j ∈ℤ+, then

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1
1 − tð Þq+α exp

x − 2xt
1 − t

� �
: ð29Þ

Proof. Put c = q + α in Equation (24), we obtain our desired
result.

5. Recurrence Relations

We describe the recurrence relations for the extended

Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 10. If α ∈ℝ and n, j ∈ℤ+, then

xDA
αð Þ
q, n

xð Þ = n + xð ÞA
αð Þ
q, n

xð Þ

− q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ,D =

d
dx

:

ð30Þ

〠
∞

n=0

cð ÞnA
αð Þ
q, n

xð Þtn

q + αð Þn
=

ex

1 − tð Þc qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBB@

1
CCCCCCCCA
: ð24Þ
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Proof. From Equation (18)

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
= ex+t0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð31Þ

Let σq,nðxÞ = A
ðαÞ
q, n

ðxÞ/ðq + αÞn.
Suppose that

0Fq

−−;
−xt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA = ψ

xqtq

q

� �
:

ð32Þ

Then F = ex+tψ
xqtq

q

� �
= 〠

∞

n=0
σq,n xð Þtn, ð33Þ

provide that the series is uniformly convergent. By tak-
ing partial derivatives,

∂F
∂x

= ex+tψ + xq−1tqex+tψ′, ð34Þ

∂F
∂t

= ex+tψ + xqtq−1ex+tψ′, ð35Þ

x
∂F
∂x

− t
∂F
∂t

= xF − tF: ð36Þ

Now, since F =∑∞
n=0σq,nðxÞtn, therefore,

∂F
∂x

= 〠
∞

n=0
σq,n′ xð Þtn and t

∂F
∂t

= 〠
∞

n=0
nσq,n xð Þtn: ð37Þ

Equation (36) then yields

x〠
∞

n=0
σq,n′ xð Þtn − 〠

∞

n=0
nσq,n xð Þtn = x〠

∞

n=0
σq,n xð Þtn − 〠

∞

n=0
σq,n xð Þtn+1

= x〠
∞

n=0
σq,n xð Þtn − 〠

∞

n=1
σq,n−1 xð Þtn:

ð38Þ

We get σ2,0′ ðxÞ = 0, and for n > 1,

xσq,n′ xð Þ − nσq,n xð Þ = xσq,n xð Þ − σq,n−1 xð Þ: ð39Þ

This implies that

xDA
αð Þ
q, n

xð Þ = n + xð ÞA
αð Þ
q, n

xð Þ − q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ:

ð40Þ

Theorem 11. If α ∈ℝ and n ≥ 2 then

DA
αð Þ
q, n

xð Þ =DA
αð Þ

q, n − 1
xð Þ + A

αð Þ
q, n

xð Þ − 2A
αð Þ

q, n − 1
xð Þ:

ð41Þ

Proof. From Equation (29), we get the following

1 − tð Þ−q−α exp x
1 − 2t
1 − t

� �
 �
= 〠

∞

n=0
A

αð Þ
q, n

xð Þtn: ð42Þ

Let F = A tð Þ exp x
1 − 2t
1 − t

� �
 �
= 〠

∞

n=0
yq,n xð Þtn, ð43Þ

∂F
∂x

=
1 − 2t
1 − t

� �
A tð Þ exp x

1 − 2t
1 − t

� �
 �
, ð44Þ

1 − tð Þ ∂F
∂x

= 1 − 2tð ÞA tð Þ exp x
1 − 2t
1 − t

� �
 �
: ð45Þ

By using Equation (42), we obtain

1 − tð Þ ∂F∂x = 1 − 2tð ÞF: ð46Þ

Since F = 〠
∞

n=0
yq,n xð Þtn, therefore we have ∂F

∂x
= 〠

∞

n=0
yq,n′ xð Þtn:

ð47Þ
Equation (46) can be expressed as

〠
∞

n=0
yq,n′ xð Þtn − 〠

∞

n=0
yq,n′ xð Þtn+1 = 〠

∞

n=0
yq,n xð Þtn − 2〠

∞

n=0
yq,n xð Þtn+1,

ð48Þ

〠
∞

n=0
yq,n′ xð Þtn − 〠

∞

n=1
yq,n−1′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 2〠

∞

n=1
yq,n−1 xð Þtn:

ð49Þ
We reach yq,0′ ðxÞ = 0, yq,1′ ðxÞ = 0 and for n > 2,

DA
αð Þ
q, n

xð Þ =DA
αð Þ

q, n − 1
xð Þ + A

αð Þ
q, n

xð Þ − 2A
αð Þ

q, n − 1
xð Þ:

ð50Þ
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Theorem 12. If α ∈ℝ and n ≥ q, then

DA
αð Þ
q, n

xð Þ = A
αð Þ
q, n

xð Þ − 〠
n−1

j=0
A

αð Þ
q, j

xð Þ: ð51Þ

Proof. Equation (46) can be written as

∂F
∂x

= 1 −
t

1 − t


 �
F: ð52Þ

By using Equation (42), we obtain

∂F
∂x

= 1 −
t

1 − t


 �
〠
∞

n=0
yq,n xð Þtn: ð53Þ

By using Equation (47), we obtain.

〠
∞

n=0
yq,n′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 〠

∞

n=0
tn+1

" #
〠
∞

n=0
yq,n xð Þtn

" #

= 〠
∞

n=0
yq,n xð Þtn − 〠

∞

n=0
〠
∞

j=0
yq,j xð Þt jtn+1:

ð54Þ

Since ∑∞
n=0∑

∞
k=0Bðk, nÞ =∑∞

n=0∑
n
k=0Bðk, n − kÞ, (Rainville

[33], (p 56)).

〠
∞

n=0
yq,n′ xð Þtn = 〠

∞

n=0
yq,n xð Þtn − 〠

∞

n=0
〠
n

j=0
yq,j xð Þtn+1

= 〠
∞

n=0
yq,n xð Þtn − 〠

∞

n=1
〠
n−1

j=0
yq,j xð Þtn:

ð55Þ

It follows that yq,0′ ðxÞ = 0, yq,1′ ðxÞ = 0 and for n > q, yq,n′ ðx

Þ = yq,nðxÞ −∑n−1
j=0 yq,jðxÞ, and DA

ðαÞ
q, n

ðxÞ = A
ðαÞ
q, n

ðxÞ − ∑n−1
j=0

A
ðαÞ
q, j

ðxÞ.

Theorem 13. If α ∈ℝ and n ≥ q + 1, then

nA
αð Þ
q, n

xð Þ = 3x − q − αð ÞA
αð Þ

q, n − 1
xð Þ − q + α + n − 2ð ÞA

αð Þ
q, n − 2

xð Þ:

ð56Þ

Proof. We can have the following equation after eliminating
the derivatives from Equations (30) and (41).

0 = nA
αð Þ
q, n

xð Þ − xDA
αð Þ

q, n − 1
xð Þ

+ 2x − q − α − n + 1ð ÞA
αð Þ

q, n − 1
xð ÞnA

αð Þ
q, n

xð Þ

= xDA
αð Þ

q, n − 1
xð Þ − 2x − q − α − n + 1ð ÞA

αð Þ
q, n − 1

xð Þ:

ð57Þ

Now, by using Equation (30), we finally have

nA
αð Þ
q, n

xð Þ = n − 1 + xð ÞA
αð Þ

q, n − 1
xð Þ

− q + α + n − 2ð ÞA
αð Þ

q, n − 2
xð Þ

+ 2x − q − α − n + 1ð ÞA
αð Þ

q, n − 1
xð Þ,

ð58Þ

nA
αð Þ
q, n

xð Þ = 3x − q − αð ÞA
αð Þ

q, n − 1
xð Þ − q + α + n − 2ð ÞA

αð Þ
q, n − 2

xð Þ:

ð59Þ

Theorem 14. If α ∈ℝ and n, q, j ∈ℤ+, then

A
1 + αð Þ
q, n − 1

xð Þ + A
αð Þ
q, n

xð Þ = A
1 + αð Þ
q, n

xð Þ:: ð60Þ

Proof. From Equation (14), we obtain

A
1 + αð Þ
q, n − 1

xð Þ = ex q + 1 + αð Þn−1 〠
n−1
q½ �

j=0

−1ð Þqj
n − 1 − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! ,

ð61Þ

so that A
ðαÞ
q, n

ðxÞ = exðq + αÞn∑½n/q�
j=0 ðð−1Þqj/ðn − qjÞ!ðq + αÞqjÞ

ðxqj/ðqjÞ!Þ.
By adding the above equations, we get

6. Differential Equation

Since the Extended Laguerre polynomial is a constant multi-
ple of hypergeometric functions qFq

, we may obtain the dif-

ferential equation.

Theorem 15. If α ∈ℝ and n ≥ q, then

xD2A
αð Þ
q, n

xð Þ + q + α − 3xð ÞDA
αð Þ
q, n

xð Þ

+ 2x + n − q − αð ÞA
αð Þ
q, n

xð Þ = 0:

ð63Þ
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Proof. By taking partial derivatives of Equation (30), we

have

xD2A αð Þ
q2,n xð Þ +DA αð Þ

q,n xð Þ = n + xð ÞDA αð Þ
q,n xð Þ + A αð Þ

q,n xð Þ
− q + α + n − 1ð ÞDA αð Þ

q,n−1 xð Þ:
ð64Þ

By using Equation (41), we have

xD2A
αð Þ
q, n

xð Þ +DA
αð Þ
q, n

xð Þ = n + xð ÞDA
αð Þ
q, n

xð Þ + A
αð Þ
q, n

xð Þ

− q + α + n − 1ð Þ DA
αð Þ
q, n

xð Þ − A
αð Þ
q, n

xð Þ + 2A
αð Þ

q, n − 1
xð Þ

" #
,

ð65Þ

or

xD2A
αð Þ
q, n

xð Þ + q + α − xð ÞDA
αð Þ
q, n

xð Þ = q + α + nð ÞA
αð Þ
q, n

xð Þ

− 2 q + α + n − 1ð ÞA
αð Þ

q, n − 1
xð Þ:

ð66Þ

By using Equation (30), we have

xD2A
αð Þ
q, n

xð Þ + q + α − xð ÞDA
αð Þ
q, n

xð Þ = q + α + nð ÞA
αð Þ
q, n

xð Þ

+ 2xDA
αð Þ
q, n

xð Þ − 2 n + xð ÞDA
αð Þ
q, n

xð Þ,

ð67Þ

or

xD2A
αð Þ
q, n

xð Þ + q + α − 3xð ÞDA
αð Þ
q, n

xð Þ + 2x + n − q − αð ÞA
αð Þ
q, n

xð Þ = 0:

ð68Þ

7. Rodrigues Formula

The Rodrigues formula for the Laguerre polynomials is pre-
sented as

L
αð Þ
n

xð Þ = x−αex

n!
Dn xα+ne−xð Þ, ð69Þ

but we intend to extend this Rodrigues formula.

A 1+að Þ
q,n−1 xð Þ + A að Þ

q,n xð Þ = ex q + 1 + αð Þn−1 〠
n−1
q½ �

j=0

−1ð Þqj
n − 1 − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! + ex q + αð Þn 〠
n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + αð Þqj

xqj

qjð Þ!

= ex 〠
n−1
q½ �

j=0

q + α + n − 1ð Þ! −1ð Þqj
n − 1 − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! + 〠
n
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qj − 1ð Þ!

xqj

qjð Þ!

2
4

3
5

= ex 〠
n−1
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − 1 − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! + 〠
n−1
q½ �

j=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qj − 1ð Þ!

xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5

= ex
〠
n−1
q½ �

k=0

q + α + n − 1ð Þ!xqj −1ð Þqj
qjð Þ!

1
n − 1 − qjð Þ! q + α + qjð Þ! +

1
n − qjð Þ! q + α + qj − 1ð Þ!

� 

+

xqn

qnð Þ!

2
666664

3
777775

= ex 〠
n−1
q½ �

k=0

q + α + n − 1ð Þ! −1ð Þqj
n − qjð Þ! q + α + qjð Þ! q + α + nf g xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5

= ex 〠
n−1
q½ �

j=0

q + α + nð Þ! −1ð Þqj
n − qjð Þ! q + α + qjð Þ!

xqj

qjð Þ! +
xqn

qnð Þ!

2
4

3
5 = ex q + 1 + αð Þn 〠

n
q½ �

j=0

−1ð Þqj
n − qjð Þ! q + 1 + αð Þqj

xqj

qjð Þ! = A
1 + αð Þ
q, n

xð Þ:

ð62Þ

8 Journal of Function Spaces



Theorem 16. If α ∈ℝ and n, j ∈ℤ+, then

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
Dn x q−1ð Þ+α+ne−x

� �
: ð70Þ

Proof. Consider the extended Laguerre polynomials involv-
ing qFq

, q > 2

A
αð Þ
q, n

xð Þ = ex q + αð Þn
n! qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

;

xq

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBB@

1
CCCCCA:

ð71Þ

By Theorem (14), we have

A
αð Þ
q, n

xð Þ = ex

n!
〠
n
q½ �

j=0

n!
n − qjð Þ! qjð Þ!


 �
q + αð Þnxqj
q + αð Þqj

=
exx− q−1ð Þ−α

n!
〠
n
q½ �

j=0

−1ð Þqjn!
n − qjð Þ! qjð Þ!

" #
q +mð Þnxqj+α+ q−1ð Þ

q +mð Þqj
:

ð72Þ

Since Dn−qjðxn+α+ðq−1ÞÞ = ðq + αÞnxqj+α+ðq−1Þ/ðq + αÞqj,
therefore, we write it as

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
〠
n
q½ �

j=0

n!
n − qjð Þ! qjð Þ!


 �
−1ð Þqje−x� 	

� Dn−qj xn+α+ q−1ð Þ
� �h i

=
x− q−1ð Þ−αe2x

n!
〠
n
q½ �

j=0

n

CqjD
n−qj

� xn+α+ q−1ð Þ
� �

Dqj e−xð Þ:
ð73Þ

Lastly, we use the Leibnitz formula for the nth derivative
to obtain the following

A
αð Þ
q, n

xð Þ = x− q−1ð Þ−αe2x

n!
Dn x q−1ð Þ+α+ne−x

� �
: ð74Þ

8. Special Properties

In this section, we determine the special features of the

extended Laguerre polynomials A
ðαÞ
q, n

ðxÞ.

Theorem 17. If α, β ∈ℝ and n, j, q ∈ℤ+, then

A
αð Þ
q, n

xð Þ = 〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þ

qjð Þ! :
ð75Þ

Proof. From Equation (29)

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1
1 − tð Þq+α exp x

1 − 2t
1 − t

� �� �
: ð76Þ

Also, consider

1
1 − tð Þq+α exp x

1 − 2t
1 − t

� �� �
= 1 − tð Þ− α−βð Þ 1 − tð Þ−q−β exp

� x
1 − 2t
1 − t

� �� �
,

ð77Þ

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 1 − tð Þ− α−βð Þ 〠
∞

n=0
A

βð Þ
q, n

xð Þtn

= 〠
∞

n=0

α − βð Þqntqn
qnð Þ! 〠

∞

n=0
A

βð Þ
q, n

xð Þtn

= 〠
∞

n=0
〠
∞

j=0

α − βð ÞqjtqjA
βð Þ
q, n

xð Þtn

qjð Þ! :

ð78Þ

By utilizing Lemma 4, we acquire

〠
∞

n=0
A

αð Þ
q, n

xð Þtn = 〠
∞

n=0
〠
n
q½ �

j=0

α − βð ÞqjtqjA
βð Þ

q, n − qj
xð Þtn−qj

qjð Þ!

= 〠
∞

n=0
〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þtn

qjð Þ! :

ð79Þ

On comparing the coefficients of tn, we acquire

A
αð Þ
q, n

xð Þ = 〠
n
q½ �

j=0

α − βð ÞqjA
βð Þ

q, n − qj
xð Þ

qjð Þ! :
ð80Þ

Theorem 18. If α ∈ℝ and n, j ∈ℤ+, then

A
α + β + qð Þ

q, n
x + yð Þ = 〠

n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þ: ð81Þ
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Proof. Consider

1 − tð Þ−q−α exp x
1 − 2t
1 − t

� �� �
1 − tð Þ−q−β exp y

1 − 2t
1 − t

� �� �

= 1 − tð Þ−q− α+β+qð Þ exp x + yð Þ 1 − 2t
1 − t

� �� 

:

ð82Þ

By using Equation (75), we acquire

〠
∞

n=0
A

αð Þ
q, n

xð Þtn 〠
∞

n=0
A

βð Þ
q, n

yð Þtn = 〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn,

ð83Þ

〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn = 〠
∞

n=0
〠
∞

j=0
A

βð Þ
q, n

yð Þtn A
αð Þ

q, qj
xð Þtqj:

ð84Þ
By using Lemma 4, we acquire

〠
∞

n=0
A

α + β + qð Þ
q, n

x + yð Þtn = 〠
∞

n=0
〠
n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þtn:

ð85Þ

On comparing the coefficients of tn, we acquire

A
α + β + qð Þ

q, n
x + yð Þ = 〠

n
q½ �

j=0
A

βð Þ
q, n − qj

yð ÞA
αð Þ

q, qj
xð Þ: ð86Þ

Theorem 19. If α ∈ℝ and n, j ∈ℤ+, then

A
αð Þ
q, n

xyð Þ = 〠
n
q½ �

j=0

q + αð ÞnA
αð Þ

q, qj
xqð Þyqj

q + αð Þqj
1 − yð Þn−qj
n − qjð Þ! :

ð87Þ

Proof. Consider

ex+t0Fq

−−;

−xyt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBB@

1
CCCCCCCA

= e 1−yð Þtex+yt0Fq

−−;

−xyt
q

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBB@

1
CCCCCCCA
:

ð88Þ

By using Equation (21), we get

〠
∞

n=0

A
αð Þ
q, n

xyð Þtn

q + αð Þn
= 〠

∞

n=0

1 − yð Þntn
n!

〠
∞

n=0

A
αð Þ
q, n

xð Þyntn

q + αð Þn

= 〠
∞

n=0
〠
∞

j=0

A
αð Þ

q, qj
xð Þyqjtqj

q + αð Þqj
1 − yð Þntn

n!
:

ð89Þ

By using Lemma 4, we acquire

〠
∞

n=0

A
αð Þ
q, n

xyð Þtn

q + αð Þn
= 〠

∞

n=0
〠
n
q½ �

j=0

A
αð Þ

q, qj
xð Þyqjtqj

q + αð Þqj
1 − yð Þn−qjtn−qj

n − qjð Þ!

= 〠
∞

n=0
〠
n
q½ �

j=0

A
αð Þ

q, qj
xð Þyqj

q + αð Þqj
1 − yð Þn−qjtn
n − qjð Þ! :

ð90Þ

On comparing the coefficients of tn, we get

A
αð Þ
q, n

xyð Þ = 〠
n
q½ �

j=0

q + αð ÞnA
αð Þ

q, qj
xqð Þyqj

q + αð Þqj
1 − yð Þn−qj
n − qjð Þ! :

ð91Þ

Theorem 20. If α ∈ℝ and n, j, q ∈ℤ+, then

〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtn

qjð Þ!n! = 1 − tð Þ−q−α−qj exp −xt
1 − t

� �
A

αð Þ
q, j

x
1 − t

� �
:

ð92Þ

Proof. Consider the series

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtnyqj

qjð Þ!n! = 〠
∞

n=0
〠
n
q½ �

j=0

n!A
αð Þ
q, n

xð Þtn−qjyqj

qjð Þ! n − qjð Þ!

= 〠
∞

n=0
A

αð Þ
q, n

xð Þ〠
n
q½ �

j=0

n

Cqjt
n−qjyqj

= 〠
∞

n=0
A

αð Þ
q, n

xð Þ t + yð Þn

= 1 − t − yð Þ−q−α exp x 1 − 2y − 2tð Þ
1 − y − t

� �
:

ð93Þ
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Since ð1 − t − yÞ−q−α = ð1 − tÞ−q−αð1 − y/1 − tÞ−q−α

exp
x 1 − 2y − 2tð Þ

1 − t

� �
= exp xð Þ exp −x y + tð Þ

1 − t − yð Þ
� �

= exp xð Þ exp −xt
1 − t

� �
exp

� −x/1 − tð Þ y/1 − tð Þ
1 − y/1 − tð Þ

� �
:

ð94Þ

Therefore, Equation (93) becomes

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtnyqj

qjð Þ!n! = 1 − tð Þ−q−α

� 1 −
y

1 − t

� �−q−α
exp xð Þ exp −xt

1 − t

� �
exp

� −x/1 − tð Þ y/1 − tð Þ
1 − y/1 − tð Þ

� �
:

ð95Þ

By using Equation (29), we get

〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtnyqj

qjð Þ!n! = 1 − tð Þ−q−α exp

� −xt
1 − t

� �
〠
∞

j=0
A

αð Þ
q, j

x
1 − t

� � y
1 − t

� �qj
:

ð96Þ

On comparing the coefficients of yqj, we get

〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xqð Þtn

qjð Þ!n! = 1 − tð Þ−q−α−qj exp

� −xt
1 − t

� �
A

αð Þ
q, j

x
1 − t

� �
:

ð97Þ

9. Other Generating Functions

In this section, we study some other generating functions.

Theorem 21. If α ∈ℝ and n, j, q ∈ℤ+, then

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp −xt

1 − t

� �
exp

x − yt
1−t

� �
0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð98Þ

Proof. Consider the series

〠
∞

n=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

n=0
〠
n
q½ �

j=0

n!yqjA
αð Þ
q, n

xð Þ −1ð Þqjtn

qjð Þ! n − qjð Þ! q + αð Þqj
:

ð99Þ

By using Lemma 3, we get

〠
∞

n=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

n=0
〠
∞

j=0

n + qjð Þ!yqjA
αð Þ

q, n + qj
xð Þ −1ð Þqjtn+qj

qjð Þ!n! q + αð Þqj
,

ð100Þ

= 〠
∞

j=0
〠
∞

n=0

n + qjð Þ!A
αð Þ

q, n + qj
xð Þtn

qjð Þ!n!
−ytð Þqj
q + αð Þqj

:
ð101Þ

By using Theorem (92), we get

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 〠

∞

j=0
1 − tð Þ−q−α−qj exp −xt

1 − t

� �
A

αð Þ
q, j

� x
1 − t

� � −ytð Þqj
q + αð Þqj

= 1 − tð Þ−q−α exp

� −xt
1 − t

� �
〠
∞

j=0
1 − tð Þ−qjA

αð Þ
q, j

� x
1 − t

� � −ytð Þqj
q + αð Þqj

= 1 − tð Þ−q−α exp

� −xt
1 − t

� �
× 〠

∞

j=0
A

αð Þ
q, j

� x
1 − t

� � −yt/1 − tð Þqj
qqj q + α/qð Þj q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þj

= 1 − tð Þ−q−α exp −xt
1 − t

� �
〠
∞

j=0
A

αð Þ
q, j

� x
1 − t

� � −yt/q 1 − tð Þð Þqj
q + α/qð Þ j q + 1 + α/qð Þj ⋯ 2q + α − 1/qð Þ j

:

ð102Þ
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By using Equation (21), we get

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp −xt

1 − t

� �
exp

x − yt
1−t

� �
0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð103Þ

Theorem 22. If jtj < 1, α ∈ℝ and c, n ∈ℤ+, then

1 − tð Þ−1−α exp x
1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

n=0
2qFq

−n
q
,
−n + 1

q
,⋯,

−n + q − 1
q

,
c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

; qyð Þq

0
BBB@

1
CCCAA

αð Þ
q, n

xð Þtn:

ð104Þ

Proof. Consider the series

〠
∞

j=0

n!A
αð Þ
q, n

xð ÞA
αð Þ
q, n

yð Þtn

q + αð Þn
= 1 − tð Þ−q−α exp − x + yð Þt

1 − t

� �
× 0Fq

� −−;
q + α

q
,
q + 1 + α

q
,⋯

2q + α − 1
q

;
�

� xyt
q 1 − tð Þ

� �q�
:

ð105Þ

Applying Equation (92), we get

ex

1 − tð Þc qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−xt
1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBB@

1
CCCCCCCCA

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
xð Þtqj

q + αð Þqj
:

ð106Þ

Replacing x by xð1 − tÞ−1 and t by ytð1 − tÞ−1 yields

exp
x

1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ yt/1 − tð Þqj

q + αð Þqj
,

ð107Þ

multiplying both sides by ð1 − tÞ−q−1 exp ð−xt/1 − tÞ

1 − tð Þ−q−α exp x
1 − t

� �
exp

−xt
1 − t

� �
1 −

yt
1 − t

� �−c

× qFq

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 1 − tð Þ−q−α exp −xt
1 − t

� �2
〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ yt/1 − tð Þqj

q + αð Þqj

= 〠
∞

j=0

cð ÞqjA
αð Þ

q, qj
x/1 − tð Þ 1 − tð Þ−q−α−qj exp −xt/1 − tð Þqyqjtqj

q + αð Þqj
:

ð108Þ

By using Lemma 4, we acquire

1 − tð Þ−1−α exp x
1 − t

� �
1 −

yt
1 − t

� �−c

qFq

�

c
q
,
c + 1
q

,⋯,
c + q − 1

q
;

−x/ 1 − tð Þð Þ yt/1 − tð Þ
1 − yt/1 − t

� �q

q + α

q
,
q + 1 + α

q
,⋯,

2q + α − 1
q

;

0
BBBBBBBBB@

1
CCCCCCCCCA

= 〠
∞

n=0
〠
n
q½ �

j=0

cð Þqjn!A
αð Þ

q, qj
xð Þtn−qjyqjtqj

qjð Þ! n − qjð Þ! q + αð Þqj
= 〠

∞

n=0
〠
n
q½ �

j=0

cð Þqj −nð ÞqjA
αð Þ

q, qj
xð Þtnyqj

qjð Þ! q + αð Þqj
:

ð109Þ

By using Lemma 1 and 2, we get our required result.
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10. Expansion of Polynomials

Since AðaÞ
q,nðxÞ forms an orthogonal set, the classical technique

for expanding a polynomial. As usual, we prefer to treat the
problem by obtaining first the expansion of xqn and then
using generating function techniques.

Theorem 23. If α ∈ℝ and n, j ∈ℤ+, then

xqn = e−x 〠
n
q½ �

j=0

n! q + αð ÞnA
αð Þ

q, qj
xð Þ

n − qjð Þ! q + αð Þqj
:

ð110Þ

Proof. Equation (21) then yields

0Fq −−;
q + α

q
,
q + 1 + α

q
,⋯

2q + α − 1
q

;
−xt
q

� �q� �

= e−x−t 〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
,

ð111Þ

〠
∞

n=0

−xt/qð Þqn
q + α/qð Þn q + 1 + α/qð Þn ⋯ 2q + α − 1/qð Þn qnð Þ!

= e−x 〠
∞

n=0

−1ð Þntn
n!

〠
∞

n=0

A
αð Þ
q, n

xð Þtn

q + αð Þn
,

ð112Þ

〠
∞

n=0

−xtð Þqn
q + αð Þqn qnð Þ! = e−x 〠

∞

n=0
〠
∞

j=0

−1ð ÞntnA
αð Þ

q, qj
xð Þtqj

n! q + αð Þqj
:

ð113Þ
By using Lemma 4, we get

〠
∞

n=0

−1ð Þnxntn
q + αð Þnn!

= e−x 〠
∞

n=0
〠
n
q½ �

j=0

−1ð ÞnA
αð Þ

q, qj
xð Þtn

n − qjð Þ! q + αð Þqj
:

ð114Þ

By equating the coefficient of tn, we get

xqn = e−x 〠
n
q½ �

j=0

n! q + αð ÞnA
αð Þ

q, qj
xð Þ

n − qjð Þ! q + αð Þqj
:

ð115Þ

11. Conclusion

Finally, in conclusion, we compromised the extended

Laguerre polynomials A
ðαÞ
q, n

ðxÞ
( )

based on the qFq
, q > 2.

We obtained generating functions, recurrence relations,
and Rodrigue’s formula for these extended Laguerre polyno-
mials. In future work, we can extend it and can get more
results. We will apply Laplace transformation, and Elzaki
transformation and the same more transformations can
apply on the results of extended Laguerre polynomials.
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