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Abstract
In search of the exact solutions of nonlinear partial differential equations in solitons form has become most popular to

understand the internal features of physical phenomena. In this paper, we discovered various type of solitons solutions for
the conformable space-time nonlinear Schrödinger equation (CSTNLSE) with Kerr law nonlinearity. To seek such solutions,
we applied two proposed methods which are Sardar-subequation method and new extended hyperbolic function method. In
this way several types of solitons obtained for example bright, dark, periodic singular, combined dark-bright, singular, and
combined singular solitons. Some of the acquired solutions are interpreted graphically. These solutions are specific, novel,
correct and may be beneficial for edifying precise nonlinear physical phenomena in nonlinear dynamical schemes. It is revealed
that the proposed methods offer a straightforward and mathematical tool for solving nonlinear conformable space-time nonlinear
Schrödinger equation. These results support in attaining nonlinear optical fibers in the future.
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1. Introduction

Study of optical solitons have definitely increased momentum in the arena of the solitary waves.
Analysis of numerous solutions have been made to the nonlinear Schrödinger equations with low group
velocity dispersion, Kerr nonlinearities, dispersion terms, self-steepening, spatiotemporal dispersion, etc.
Usually, these solutions are qualifying chirped free and chirped solitons, combo solitons, and dark combo
soliton [4, 9, 10, 31, 33]. Although these results have many applications but communication by optic
fibers is one of them. Also, solitons have revolutionized the communication system through the wave
guides more recently. It is clear that the solitons establish the pillar of data transfer and communication
at unbelievable distances. However, all the power of the optical system lies on famous effects, which at
the same time establish conditions restrictions. Maximum of the time, pulse propagation in optical fibers
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can be concerned by nonlinearity, group velocity dispersion (GVD), and polarization type dispersion.
In recent times, fractional calculus looks in many regions of engineering and science such as rheology,
biology, control theory, physics, electrochemistry, systems identification, signal processing, viscoelasticity
and so on. In order to define nonlinear (NL) physical phenomena the acquiring the analytical solutions
for fractional differential equation (FDE) is one of the significant features. This physical phenomenon
may rest on both the time instant and the time history, which can be effectively demonstrated by using
the concept of derivatives and integrals of fractional order. Recently, numerous approaches have been
utilized to seek exact solutions of FPDEs in the literature (Zhou et al. [54]; Eslami et al. [18]; Mirzazadeh
et al. [40]; Vajargah et al. [51]; Sonomezoglu et al. [47, 48]; Zerrad et al. [52, 53]; Biswas and Suarez [49];
Gazizov et al. [21]; Biswas et al. [12]; Lukashchuk [38]; Hashemi [22]; Hosseini and Ansari [25]; Baleanu
et al. [6–8]; Hosseini et al. [26]; Inc et al. [34]; Akgül et al. [3]; Baleanu et al. [5]; Rehman et al. [43]; Inc
et al. [32]; Tchier et al.[50]; Hashemi et al. [24]). It is famous that some of the belongings of the fractional
derivatives are very tough in contrast with the typical ones, so there is a massive inspiration to crack
in discovering the solutions of some general equations similar to the fractional nonlinear Schrodinger
equation (NLSE). The NLSE is an essential model which defines many type of phenomena, such as optics
of nonlinear media, condensed matter physics, plasmas and photonics, (Eslami et al. [15, 16]; Eslami and
Rezazadeh [20]; Khodadad et al. [36]; Eslami [14, 17]; Ekici et al. [13]; Biswas et al. [11]; Mirzazadeha et al.
[39]; Eslami and Neirameh [19]; Neirameh and Eslami [41]). Additionally, NLSE explains the dynamics
behavior of solitons using optical fibers. The dimensionless NLSE with STD is given by

ιut + autx + buxx + cF(|u|
2)u = 0, (1.1)

where a, b, and c denote the coefficients of STD, GVD, and NL term, respectively and

F(|u|2)u ∈
∞⋃
r,s=1

ck
(
(−s, s)× (−r, r);R2

)
. (1.2)

The layouts of this paper are as follows. The governing equation is discussed in Section 2. Section 3
presents the analysis of the proposed methods SSM and new EHFM. In Section 4 SSM and the new
EHFM are applied and Section 5 consists the results and discussion. In Section 6 conclusion of this paper
is given.

2. Governing equation

In this section, we examine and analyze (1.1) given by Hashemi and Akgul [23] and

ι
∂αu

∂tα
+ a

∂α+βu

∂tα∂xβ
+ b

∂2βu

∂x2β + cF(|u|2)u = 0. (2.1)

We apply two methods which are Sardar-subequation method (SSM) (Rezazadeh et al. [44]) and new
extended hyperbolic function method (EHFM) (Shang [45, 46]; Nestor [42]) to discover optical solitons
solutions for the CSTNLSE with Kerr law nonlinearity. It is appropriate that many models in engineering
and science have an experiential parameters. Therefore, exact solutions provide authority to scientists to
plan and perform experiments, by launching suitable or natural situations, to decide these parameters.
Thus, exploration and finding solitons solutions is much effective in nonlinear sciences. The freshly
familiarized definition of fractional derivative called conformable derivative (Hosseini et al. [27–30];
Korkmaz and Hosseini [37]; Khalil et al. [35]; Hammad and Khalil [2]; Abdeljawad [1]) is applied to
transform fractional equations into ODEs, therefore discovering optical solitons solutions via two unlike
analytical techniques.

3. Analysis of the methods

In this section, we have analyzed two methods which are applied to construct novel solitons solutions
of the given model.
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3.1. Sardar-subequation method
Let the FPDE

H(u,uαt ,uβx ,u2β
x , . . .) = 0, (3.1)

to explore the travelling wave solutions, using following wave transformations in (1.1)

u(x, t) = u(η), η =
xβ

β
+ λ

tα

α
, (3.2)

Using (3.2) into (3.1), we obtain the following ODE

P(u,u ′,u ′′, . . .) = 0. (3.3)

Consider (3.3) has a solution as follows

u(η) =

N∑
i=0

FiΦ
i(η),

where Fi (0 6 i 6 N) are constants and Φ(η) admits the ODE as given below

(Φ ′(η))2 = ε+ δΦ2(η) +Φ4(η), (3.4)

where ε and δ are constants. (3.4) gives the solution as follows.
Case 1: When δ > 0 and ε = 0, then

Φ±1 (η) = ±
√
−δpq sechpq(

√
δη), Φ±2 (η) = ±

√
δpq cschpq(

√
δη),

where sechpq(η) = 2
peη+qe−η , cschpq(η) = 2

peη−qe−η .
Case 2: When δ < 0 and ε = 0, then

Φ±3 (η) = ±
√

−δpq secpq(
√
−δη), Φ±4 (η) = ±

√
−δpq cscpq(

√
−δη),

where secpq(η) = 2
peιη+qe−ιη , cscpq(η) = 2ι

peιη−qe−ιη .

Case 3: When δ < 0 and ε = δ2

4b , then

Φ±5 (η) = ±
√

−
δ

2
tanhpq(

√
−
δ

2
η),

Φ±6 (η) = ±
√

−
δ

2
cothpq(

√
−
δ

2
η),

Φ±7 (η) = ±
√

−
δ

2

(
tanhpq(

√
−2δ η)± ι√pq sechpq(

√
−2δ η)

)
,

Φ±8 (η) = ±
√

−
δ

2

(
cothpq(

√
−2δ η)±√pq cschpq(

√
−2δ η)

)
,

Φ±9 (η) = ±
√

−
δ

8

(
tanhpq(

√
−
δ

8
η) + cothpq(

√
−
δ

8
η)

)
,

where tanhpq(η) = peη−qe−η

peη+qe−η , cothpq(η) = peη+qe−η

peη−qe−η .

Case 4: When δ > 0 and ε = δ2

4 , then

Φ±10(η) = ±
√
δ

2
tanpq(

√
δ

2
η),
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Φ±11(η) = ±
√
δ

2
cotpq(

√
δ

2
η),

Φ±12(η) = ±
√
δ

2

(
tanpq(

√
2δ η)±√pq secpq(

√
2δ η)

)
,

Φ±13(η) = ±
√
δ

2

(
cotpq(

√
2δ η)±√pq cscpq(

√
2δ η)

)
,

Φ±14(η) = ±
√
δ

8

(
tanpq(

√
δ

8
η) + cotpq(

√
δ

8
η)

)
,

where tanpq(η) = −ιpe
ιη−qe−ιη

peιη+qe−ιη , cotpq(η) = ιpe
ιη+qe−ιη

peιη−qe−ιη .

3.2. New extended hyperbolic function method
The phases of the new EHFM are taken as follows.

Form 1: Let PDE as given in (3.1) with the wave transformation in (3.2) using wave transformation ODE
is obtained as in (3.3). We assume that (3.3) has a solution in the next form

u(η) =

N∑
i=0

FiΦ
i(η), (3.5)

where the coefficients Fi(i = (1, 2, 3, . . . ,N)) are constants and Φ(η) admits the ODE in next form, as

dΦ

dη
= Φ

√
Λ+ΘΦ2, Λ,Θ ∈ R. (3.6)

By using balancing rule in (3.3) the value of N is found. Replacing (3.3) into (3.5) with (3.6), gives a set of
equations for Fi(i = (0, 1, 2, 3, . . . ,N)). On solving this set, we yield set of solutions that admits (3.6), as
follows.
Set 1: When Λ > 0 and Θ > 0,

Φ(η) = −

√
Λ

Θ
csch(

√
Λ(η+ η0)).

Set 2: When Λ < 0 and Θ > 0,

Φ(η) =

√
−Λ

Θ
sec(
√
−Λ(η+ η0)).

Set 3: When Λ > 0 and Θ < 0,

Φ(η) =

√
Λ

−Θ
sech(

√
Λ(η+ η0)).

Set 4: When Λ < 0 and Θ > 0,

Φ(η) =

√
−Λ

Θ
csc(
√
−Λ(η+ η0)).

Set 5: When Λ > 0 and Θ = 0,

Φ(η) = exp(
√
Λ(η+ η0)).

Set 6: When Λ < 0 and Θ = 0,

Φ(η) = cos(
√
−Λ(η+ η0)) + ι sin(

√
−Λ(η+ η0)).
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Set 7: When Λ = 0 and Θ > 0,

Φ(η) = ± 1
(
√
Θ(η+ η0))

.

Set 8: When Λ = 0 and Θ < 0,

Φ(η) = ± ι

(
√
−Θ(η+ η0))

.

Form 2: Using the same pattern as previous, we adopt that Φ(η) admits the ODE as follows

dΦ

dη
= Λ+ΘΦ2, Λ,Θ ∈ R. (3.7)

Substituting (3.5) into (3.3) along with (3.7) with value of N, makes a set of (equations with the values of
Fi(i = 1, 2, 3, . . . ,N). Let the (3.7) accepts the solutions as follows
Set 1: When ΛΘ > 0,

Φ(η) = sgn(Λ)

√
Λ

Θ
tan(
√
ΛΘ(η+ η0)).

Set 2: When ΛΘ > 0,

Φ(η) = −sgn(Λ)

√
Λ

Θ
cot(
√
ΛΘ(η+ η0)).

Set 3: When ΛΘ < 0,

Φ(η) = sgn(Λ)

√
Λ

−Θ
tanh(

√
−ΛΘ(η+ η0)).

Set 4: When ΛΘ < 0,

Φ(η) = sgn(Λ)

√
Λ

−Θ
coth(

√
−ΛΘ(η+ η0)).

Set 5: When Λ = 0 and Θ > 0,

Φ(η) = −
1

Θ(η+ η0)
.

Set 6: When Λ ∈ R and Θ = 0,

Φ(η) = Λ(η+ η0).

Note: sgn is the famous sign function.

4. Application

In this section, we employ the under consideration methods to obtain optical solitons for the given
model, for Kerr law nonlinearity, we have that F(u) = u. Suppose the next wave transformation

u(x, t) = u(η)e
ι

(
k x
β

β +w tα

α

)
, η =

xβ

β
− V

tα

α
, (4.1)

substituting (4.1) into (2.1) and splitting into imaginary and real parts,

V =
aw− 2bk

1 − ak
,

and

k2(b− aV)u ′′(η) − (awk−w+ bk2)u(η) + cu3 = 0. (4.2)



M. A. Imran, N. Ullah, H. U. Rehman, D. Baleanu, J. Math. Computer Sci., 27 (2022), 28–41 33

4.1. Application of the SSM
Here, we employ the SSM for the solutions of NLSE. Using balancing pricipal on terms of u ′′ and u3

in (4.2), we get N = 1, so (3.1) converts to

u(η) = F0 + F1Φ(η), (4.3)

where F0 and F1 are constants. Substituting (4.3) into (4.2) and comparing the coefficients of polynomials
of Φ(η) to zero, we make a set of equations in F0, F1, c, and a. On resolving the set of equations, we get

F0 = 0, F1 =
k
√
−2b+ 2V(−bk2+w+bk2δ)

k(w+kVδ)√
c

, c 6= 0, a =
−bk2 + δbk2 +w

k(w+ kVδ)
.

Case 1: When δ > 0 and ε = 0, then

z±1,1(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
−pqδ sechpq(

√
δ (η))

)
eι
(
k x
β

β +w tα

α

)
, (4.4)

z±1,2(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
pqδ cschpq(

√
δ (η))

)
eι
(
k x
β

β +w tα

α

)
.

Case 2: When δ < 0 and ε = 0, then

z±1,3(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
−pqδ secpq(

√
−δ (η))

)
eι
(
xβ

β +λ t
α

α

)
,

z±1,4(x, t) =
k
√
−2b+ 2V(−bk2+w+bk2δ)

k(w+kVδ)√
c

(
±
√
−pqδ cscpq(

√
−δ (η))

)
eι
(
xβ

β +λ t
α

α

)
.

Case 3: When δ < 0 and ε = δ2

4b , then

z±1,5(x, t) =
k
√
−2b+ 2V(−bk2+w+bk2δ)

k(w+kVδ)√
c

(
±
√
−
δ

2
tanhpq(

√
−
δ

2
(η)

)
eι
(
xβ

β +λ t
α

α

)
, (4.5)

z±1,6(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
−
δ

2
cothpq(

√
−
δ

2
(η)

)
eι
(
xβ

β +λ t
α

α

)
,

z±1,7(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
−
δ

2

(
tanhpq(

√
−2δ (η))

± ι√pq sechpq(
√
−2δ (η))

))
eι
(
xβ

β +λ t
α

α

)
, (4.6)

z±1,8(x, t) =
k
√
−2b+ 2V(−bk2+w+bk2δ)

k(w+kVδ)√
c

(
±
√
−
δ

2

(
cothpq(

√
−2δ (η))

±√pq cschpq(
√
−2δ (η))

))
eι
(
xβ

β +λ t
α

α

)
, (4.7)

z±1,9(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
−
δ

8

(
tanhpq(

√
−
δ

8
(η))

+ cothpq(

√
−
δ

8
(η))

))
eι
(
xβ

β +λ t
α

α

)
. (4.8)



M. A. Imran, N. Ullah, H. U. Rehman, D. Baleanu, J. Math. Computer Sci., 27 (2022), 28–41 34

Case 4: When δ > 0 and ε = δ2

4 , then

z±1,10(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
δ

2
tanpq(

√
δ

2
(η))

)
eι
(
xβ

β +λ t
α

α

)
,

z±1,11(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
δ

2
cotpq(

√
δ

2
(η))

)
eι
(
xβ

β +λ t
α

α

)
,

z±1,12(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
δ

2

(
tanpq(

√
2δ (η))±√pq secpq(

√
2δ (η))

))
eι
(
xβ

β +λ t
α

α

)
,

z±1,13(x, t) =
k
√
−2b+ 2V(−bk2+w+bk2δ)

k(w+kVδ)√
c

(
±
√
δ

2

(
cotpq(

√
2δ (η))±√pq cscpq(

√
2δ (η))

))
eι
(
xβ

β +λ t
α

α

)
,

z±1,14(x, t) =
k
√

−2b+ 2V(−bk2+w+bk2δ)
k(w+kVδ)√
c

(
±
√
δ

8

(
tanpq(

√
δ

8
(η)) (4.9)

+ cotpq(

√
δ

8
(η))

))
eι
(
xβ

β +λ t
α

α

)
.

4.2. Application of the new EHFM

Form 1: Here, we employ the new EHFM for the solutions NLSE. Using balancing method in (4.2), we
get N = 1, so (3.5) gives

u(η) = F0 + F1Φ(η), (4.10)

where F0 and F1 are constants. Replacing (3.7) into (4.2) and equating the coefficients polynomials of Φ(η)
to zero, we get a set of equations in F0, F1, Λ and Θ. On resolving the set of equations, we attain

F0 = 0, F1 =

√
2
√
−bΘk2 + aΘk2V√

c
, c 6= 0,

V 6= 0, Λ =
bk2 −w+ akw

Θk2(b− aV)
, Θ = Θ. (4.11)

Set 1: When Λ > 0 and Θ > 0,

z1(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(
−

√
bk2 −w+ akw

Θ2k2(b− aV)
csch(

√
bk2 −w+ akw

Θk2(b− aV)
(η+ η0))

)
e
ι
(
xβ

β +λ t
α

α

)
. (4.12)

Set 2: When Λ < 0 and Θ > 0,

z2(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(√
−
bk2 −w+ akw

Θ2k2(b− aV)
sec(

√
−
bk2 −w+ akw

Θk2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
.

Set 3: When Λ > 0 and Θ < 0,

z3(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(√
−
bk2 −w+ akw

Θ2k2(b− aV)
sech(

√
−
bk2 −w+ akw

Θk2(b− aV)
(η+ η0))

)
e
ι
(
xβ

β +λ t
α

α

)
. (4.13)

Set 4: When Λ < 0 and Θ < 0,

z4(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(√
−
bk2 −w+ akw

Θ2k2(b− aV)
csc(

√
−
bk2 −w+ akw

Θk2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
.
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Set 5: When Λ = 0 and Θ > 0,

z7(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(
± 1

(
√
Θ(η+ η0)

)
eι
(
xβ

β +λ t
α

α

)
.

Set 6: When Λ = 0 and Θ < 0,

z8(x, t) =
√

2
√
−bΘk2 + aΘk2V√

c

(
± ι

(
√
−Θ(η+ η0)

)
eι
(
xβ

β +λ t
α

α

)
,

where η = xβ

β − V t
α

α .

Form 2: Operating balancing rule in (4.2), gives N = 1, so (3.5) reduces to

u(η) = F0 + F1Φ(η), (4.14)

where F0 and F1 are constants. Replacing (4.14) into (4.2) and equating the coefficients of polynomials of
Φ(η) to zero, we get a set of equations in F0, F1, Λ, and Θ. On resolving the set of equations, we attain

F0 = 0, F1 =
Θk
√
−2b+ 2aV√

c
, c 6= 0,

V 6= 0, Λ =
bk2 −w+ akw

2Θk2(b− aV)
, Θ = Θ. (4.15)

Set 1: When ΛΘ > 0,

z9(x, t) =
Θk
√
−2b+ 2aV√

c

(
χ

√
bk2 −w+ akw

2Θ2k2(b− aV)
tan(

√
bk2 −w+ akw

2k2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
. (4.16)

Set 2: When ΛΘ > 0,

z10(x, t) =
Θk
√
−2b+ 2aV√

c

(
− χ

√
bk2 −w+ akw

2Θ2k2(b− aV)
cot(

√
bk2 −w+ akw

2k2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
. (4.17)

Set 3: When ΛΘ < 0,

z11(x, t) =
Θk
√
−2b+ 2aV√

c

(
χ

√
−
bk2 −w+ akw

2Θ2k2(b− aV)
tanh(

√
−
bk2 −w+ akw

2k2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
.

Set 4: When ΛΘ < 0,

z12(x, t) =
Θk
√
−2b+ 2aV√

c

(
χ

√
−
bk2 −w+ akw

2Θ2k2(b− aV)
coth(

√
−
bk2 −w+ akw

2k2(b− aV)
(η+ η0))

)
eι
(
xβ

β +λ t
α

α

)
.

Set 5: When Λ = 0 and Θ > 0,

z13(x, t) =
Θk
√
−2b+ 2aV√

c

(
−

1
Θ(η+ η0)

)
eι
(
xβ

β +λ t
α

α

)
.

where χ = sgn(bk
2−w+akw

2Θk2(b−aV)
), η = xβ

β − V t
α

α .
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5. Results and discussions

In this study, we successfully construct novel solitons solutions along with hyperbolic and trigono-
metric function solutions for the CSTNLSE with Kerr law of nonlinearity using SSM and new EHFM.
These methods are considered as most recent schemes in this arena and that are not utilized to this equa-
tion earlier. For physical analysis, 3-dim and 2-dim plots of some of these solutions are included with
appropriate parameters. These acquired solutions discover their application in communication to convey
information because solitons have the capability to spread over long distances without reduction and
without changing their forms.

We only added particular figures to avoid overfilling the document. Moreover, we effectively con-
struct various solitary wave and solitons solutions along with hyperbolic and trigonometric function
solutions. Absolutely the developed results are fresh and different from that reported results. These
acquired solutions discover their application in communication to convey information because solitons
have the capability to spread over long distances without reduction and without changing their forms.
The authors proposed different analytic approach in newly issued article and reported some fascinating
findings. We can understand from all the graphs that the SSM and new EHFM are very effectual and
more specific in assessing the equation under consideration. In this paper, we only added particular
figures to avoid overfilling the document. The authors proposed different analytic approaches in newly
issued article and reported some fascinating findings. We can understand from all the graphs that the
SSM and new EHFM are very effectual and more specific in assessing the equation under consideration.
For graphical representation for (1.1), the physical behavior of (4.4) using the proper values of parameters
F2 = 2.45, a = 1.75, v = 0.65, p = 1, q = 1, α = 0.75, k = 0.8, and t = 1 are shown in Fig. 1, the physical
behavior of (4.5) using the appropriate values of parameters F2 = 2.45, a = −1.75, v = 0.65, p = 1, q = 1,
α = 0.75, k = 0.8, and t = 1 are shown in Fig. 2, the physical behavior of (4.9) using the proper values of
parameters F2 = 2.45, a = 1.75, v = 0.65, p = 1, q = 1, α = 0.75, k = 0.8, and t = 1 are shown in Fig. 3, the
entire behavior of (4.12) using the proper values of parameters F2 = 2.45, a = 1.75, v = 0.65, p = 1, q = 1,
α = 0.75, k = 0.8, and t = 1 are shown in Fig. 4, the complete behavior of (4.13) using the proper values
of parameters F2 = 1.4, α = 0.4, v = 0.5, Θ = 0.75, k = 0.65, β = 0.2, γ = 0.8, and t = 1 are revealed in
Fig. 5, the complete behavior of (4.16) with the proper values of parameters F2 = 1.4, α = −0.4, v = 0.5,
Θ = −0.75, k = 0.65, β = 0.2, γ = 0.8, and t = 1 are presented in Fig. 6, the absolute behavior of (4.17)
using the proper values of parameters F2 = 2.45, σ = 0.95, v = 0.5, Θ = −0.85, k = 0.45, and t = 1 are
revealed in Fig. 7.
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Figure 1: (a) 3D graph of (4.6) with α = 0.45, β = 0.65, w = 2, V = 2,p = 0.98, q = 0.95, k = 2, A = 3, b = 2, δ = 2, c = 4; (a-1) 2D
plot of (4.4) with t = 1; (a-2) Contour graph of (4.4).
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Figure 2: (b) 3D graph of (4.10) with α = 0.45, β = 0.65, w = 2, p = 0.98, q = 0.95, k = 2, A = 2.7, b = 2, δ = 2, c = 4, V = 2; (b-1)
2D plot of (4.5) with t = 1; (b-2) Contour graph of (4.5).
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Figure 3: (c) 3D graph of (4.19) with α = 0.45, β = 0.65, w = 2, p = 0.98, q = 0.95, k = 2, A = 2.7, b = 2, δ = 2, c = 4, V = 2; (c-1)
2D plot of (4.9) with t = 1; (c-2) Contour graph of (4.9).
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Figure 4: (d) 3D graph of (4.22) with b = 2.5, a = 1.5, v = 1, k = 2, p = 0.98, q = 0.95, α = 0.75, A = 2.7, α = 0.45, β = 0.65,
θ = 4, V = 3, w = 3; (d-1) 2D plot of (4.12) with t = 1; (d-2) Contour graph of (4.12).
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Figure 5: (e) 3D graph of (4.24) with b = 2.5, a = 1.5, v = 1, k = 2, p = 0.98, q = 0.95, α = 0.75, A = 2.7, α = 0.45, β = 0.65,
θ = 4, V = 3, w = 3; (e-1) 2D plot of (4.13) with t = 1; (e-2) Contour graph of (4.13).
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Figure 6: (f) 3D graph of (4.30) with b = 2.5, a = 1.5, v = 1, k = 2, p = 0.98, q = 0.95, α = 0.75, A = 2.7, α = 0.45, β = 0.65,
θ = 4, V = 3, w = 3; (f-1) 2D plot of (4.16) with t = 1; (f-2) Contour graph of (4.16).
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Figure 7: (g) 3D graph of (4.31) with b = 2.5, a = 1.5, v = 1, k = 2, p = 0.98, q = 0.95, α = 0.75, A = 2.7, α = 0.45, β = 0.65,
θ = 4, V = 3, w = 3; (g-1) 2D plot of (4.17) with t = 1; (g-2) Contour graph of (4.17).

6. Conclusion

We constructed novel optical soliton solutions for the CSTNLSE with Kerr law nonlinearity by using
SSM and new EHFM. Different cases of the constraints are used to describe specific solutions. The main
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aim of this study is to acquire optical solitons that could satisfy the constraint conditions posed on the
different parameters of the CSTNLSE. In order to describe the behavior of acquired solutions of the model,
we plotted some selected solutions by giving appropriate values to the involved parameters. The obtained
results may have much influence on numerous fields of nonlinear sciences. By obtained results, we can
recognize that the proposed methods are proficient, consistent and beneficial for discovering the exact
solutions of nonlinear FPDEs in a wide range. It has been detected that all the solutions of governing
model in this study are novel and unique. In future, we will be more interested in birefringence aspect and
cross-phase modulation to construct ultrashort optical pulses and soliton pulses. We need to investigate
some new type optical solitons and modulation instability analysis of some fractional order NLSE type
equations in the future.
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