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ABSTRACT

Introduction: Recently, a new family of fractional derivatives called the piecewise fractional derivatives
has been introduced, arguing that for some problems, each of the classical fractional derivatives may
not be able to provide an accurate statement of the consideration problem alone. In defining this kind
of derivatives, several types of fractional derivatives can be used simultaneously.

Objectives: This study introduces a new kind of piecewise fractional derivative by employing the Caputo
type distributed-order fractional derivative and ABC fractional derivative. The one- and two-dimensional
piecewise fractional Galilei invariant advection-diffusion equations are defined using this piecewise frac-
tional derivative.

Methods: A new class of basis functions called the orthonormal piecewise Vieta-Lucas (VL) functions are
defined. Fractional derivatives of these functions in the Caputo and ABC senses are computed. These func-
tions are utilized to construct two numerical methods for solving the introduced problems under non-
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equations

tems of algebraic equations.

Results: The accuracy and convergence order of the proposed methods are examined by solving several

examples. The obtained results are investigated, numerically.

Conclusion: This study introduces a kind of piecewise fractional derivative. This derivative is employed to

define the one- and two-dimensional piecewise fractional Galilei invariant advection-diffusion equa-

tions. Two numerical methods based on the orthonormal VL polynomials and orthonormal piecewise

VL functions are established for these problems. The numerical results obtained from solving several

examples confirm the high accuracy of the proposed methods.

© 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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local boundary conditions. The proposed methods convert solving the original problems into solving sys-

Introduction

During the last decades, fractional derivatives have received
much attention due to their wide applications in accurate model-
ing of dynamic systems [1]. The most important reasons for these
applications are the memory and inheritance properties of frac-
tional derivatives, as well as their greater degree of freedom than
conventional derivatives. Fractional derivatives are classified into
singular and non-singular derivatives relative to the kernel func-
tion in their definition. The Caputo and Riemann-Liouville frac-
tional derivatives can be mentioned as the most famous singular
fractional derivatives [1]. In contrast, the fractional derivative pre-
sented by Atangana and Baleanu [2] and the fractional derivative
introduced by Caputo and Fabrizio [3]| can be mentioned as the
most common non-singular fractional derivatives. Each of the
introduced definitions can be used appropriately and as needed
for different problems. The interested reader can find some of the
uses of these derivatives in [4-9]. Meanwhile, various numerical
and analytical methods have been proposed to solve problems
involving these derivatives. For instance, see [10-13]. By integrat-
ing fractional derivatives with respect to the order of the derivative
in a given interval, another family of fractional derivatives called
the distributed-order fractional derivatives is produced [14,15].
Therefore, the distributed-order fractional form of the singular
and non-singular fractional derivatives can be defined. In recent
years, many applications of this type of derivatives have been
reported in various authorities. For instance, see [16-19]. Recently,
a new family of fractional derivatives called the piecewise frac-
tional derivatives has been introduced, arguing that for some prob-
lems, each of the fractional derivatives listed above may not be
able to provide an accurate statement of the consideration problem
alone [20]. In defining this kind of derivatives, several types of frac-
tional derivatives can be used simultaneously. Some of the
research done in this field can be seen in [20-25]. In this work,
we define another type of piecewise fractional derivatives using
the Caputo distributed-order fractional derivative and the non-
singular fractional derivative provided by Atangana and Baleanu
in the Caputo sense (ABC). We also use this type of fractional
derivative to define a piecewise fractional form of the one- and
two-dimensional Galilei invariant advection-diffusion equations.
We remind that the Galilei invariant advection-diffusion equations
model the evolution of various phenomena in engineering and
science [26]. During the last years, several numerical methods have
been used to solve different forms of the fractional Galilei invariant
advection-diffusion equations. For instance, see [27-31].

There are two important points that should be considered when
choosing basis functions to construct a suitable numerical method
for solving fractional differential equations. First, fractional differ-
entiating and integrating of these functions should be easily possi-
ble. Second, a numerical method constructed based on these
functions should have good accuracy, which requires that these
functions be able to approximate the functions in the problem, as
well as the solution of the problem with good accuracy. According
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to the above points, if we are dealing with a problem whose solu-
tion is a piecewise function, the basis functions of polynomials,
despite the simplicity of calculating their fractional derivatives
and integrals, can not be a good basis. In such cases, it is better
to use piecewise polynomials as basis functions. In recent years,
such basis functions have been widely used to solve various frac-
tional problems. For instance, see [32-36]. In this study, we
define the orthonormal piecewise Vieta-Lucas (VL) functions as
a new family of the basis functions and employ them to solve
the one- and two-dimensional piecewise fractional Galilei invari-
ant advection-diffusion equations. Two formulas for computing
fractional derivatives of these functions in the Caputo and ABC
senses are presented. We use a collocation method by employing
these functions and their fractional derivatives together with the
Gauss-Legendre integration technique for converting the prob-
lems under consideration into algebraic systems of equations.
We evaluate the accuracy of the methods numerically by solving
some examples.

Preliminaries

Here, we briefly study some concepts regarding piecewise frac-
tional derivative used in this work.

Definition 1. ([37]) The gamma function is given by

I'(z) = / s*le™ds,ze€ C, %(z) > 0.
0

Note that for all n € N, we have I'(n) = (n — 1)!.

Definition 2. ([1]) The Mittag-Leffler functions are defined by

ZF(erl @

and

,u v

ZF(],quv

where 7 € C and p, v € R*.

Definition 3. ([1]) Assume f(7) is a differential function over [a, 7]
and 0 < « < 1 is a real number. The Riemann-Liouville fractional
derivative of order o of f(7) is given by

&[5 (x=9)"f(s)ds,

T(1—a) dt

RL yf {
= fi,

Definition 4. ([1]) Let f(7) is a differential function over [a, 7] and
0 <o <1 is a real number. The Caputo fractional derivative of
order o of f(7) is given by

O<a<1,
(4)

o=1.
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{m]a) Ji(t=9)7"f(s)ds, O0<o<1,
f),

Property 1. ([1]) For the differentiable function f, and 0 < o < 1,
we have the following relation between the above two fractional
derivatives:

Df (1) = (5)

o=1.

RLpyo _cne f(ia) .

aDIf(T)_aDif(T)+]—‘(],OC)T . (6)

Property 2. ([1]) For 0 < o < 1 and k € N U {0}, we have

CD“( )k { 07 k = 0’ (7)
T—a) = ke

o %7 k:1,2,....

Definition 5. ([2]) Suppose that f(7) is a differential function over
[a,7] and 0 < B < 1 is a real number. The ABC fractional derivative
of order g of f(7) is given by

ABCDBf (1) = {AIB(/;}) jat Eg (%ﬁﬁs)ﬂ)f(s)d& 0<p<T, (8)
f), =1,
where AB(f) =1 -+ B/T'(p).
Property 3. For 0 < < 1 and k € N U {0}, we have
gBCDﬁ(T - a)k = { 0’(/;) K(t—a _a)? k=0 (9)
BORCE By (L), k=12,

Definition 6. ([38]) Let f(7) is a differential function over [a, 7]

and p(o) > OWherep;féOoce[Ol]andfO o)doe = co > 0. The
Caputo distributed-order fractional dlfferentlatlon of f(t) is
defined by

D150 = [ ppif (o (10)

where p(a) is the distribution of order o. Note that for o« =0, we
have ¢(D?f(t) = f(t). Moreover, for p(a) = d(a — 1), where § is the
Dirac delta function and 0 < 1 < 1, we have

DIf(v) = /1 30t — A)gDYf (v)dor = GDef (1) (11)
0

Definition 7. Let the assumptions of Definitions 5 and 6 be valid.
Then, using the Caputo distributed-order fractional derivative
and ABC fractional derivative the following kind of piecewise frac-
tional derivative can be defined:

DY (1),

10 (gt

where 7, € (0,7,) and SD?™f(t) and 45¢D/f(t) are defined respec-
tively in Definitions 6 and 5.

PDp

[

(12)

Basis functions and approximation

In this section, we first review the one variable VL polynomials
and then introduce the orthonormal piecewise VL functions.
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One variable Vieta-Lucas polynomials

The one variable VL polynomials can be defined over [0, 7,] as
[39]

2, i=0,
Uopi(D) = $ <, prikdi@oiskony (2)¢ (13)
o SR (L), i
=0
The orthogonal property of these polynomials is as
<‘Lrbz( )s l//TbJ / wrb l//z,,:( )‘//m( )dt
4, i=j= (14)
=2, i=j# O,
0, i#],

\/.L.7 is the weight function. The orthonormal
TpT—T

form of the above polynomials with respect to the weight function
¢, (7) can be defined over [0, 7,] as

Za,,f"‘c i=0,1,

where w, (1)

¥z, i(T) (15)

where

1
(tp) _ Ve
Gy = k(20 k
1 (=DTRD+k-1)! (4 l >1
Var @ik \g) 0 TZ L
A function f(7)
mal one variable VL polynomials as

el?

W,

[0, 7p] can be approximated by the orthonor-

N
)= fie (0 2F¥_(0) (16)

i=0
where

T
F=[fofi . f5]
with
fi= (ai@0@), = [ 0@ @@,
and
T

W0 = @ ¥ @) v, 200 (17)

Error upper bound of the one variable Vieta-Lucas polynomials
expansion

In the sequel, we derive a formula for the error upper bound of
the one variable VL polynomials expansion.
fec™ o,
X, 5= 5pan{ e, o)y (0o SO} 1 F¥_ 2(0) s the

best approximation of f(7) in X. Then, we have

Theorem 1. Assume that and

\‘VﬁLrN“
0.5 (N + 1)

H[(r) -F¥ (1)

L2

ot

f(/l\;ﬂ) (‘C) .

where L = sup, -,
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Proof. Since the set {] T, T2, .., r”} is a basis for the polynomials

space of degree N, we can define
, 2,
fo(®) =f(0) + 2f(0) + =S (0) + ... +

Based on the Taylor series expansion, there is a T € [0, 7] such that

Tﬁﬂ
(N + 1)!

Since FT‘PT ﬁ(‘[) is the best approximation of f(7) in XT T from the
b b»

() — fol0)| = £ gy,

above result, we get

f(o)-F'¥_~(1)

< If(7) _fO(T)“Lg)rb 0.%]

Lﬁ)zb 0.7y

= (9 0o, (OIf(@) ~ fo(0)Pdr)
=Gy < g, (1)22("1) Wﬂ) @)

f(;"\‘l) (1)

(n+1):

12

2
d‘c)

sup i

7€(0.7p)

r(2n+3)

< = s
= (2n+2)!

which completes the proof.

Operational matrices of derivative

Here, two matrix relationships regarding the first- and second-
order derivatives of the orthonormal one variable VL polynomials
are expressed.

Theorem 2. The first-order derivative of the vector ‘}’I ﬁ(r)
b,

defined in (17) can be represented as

L”‘N(T) Dy 19
av P Al (19)
where D is an (N + 1) X (N + l) matrix as
Tp.N
DY_=A -DYA L.
N N N TN
with
1, i=j=1,
{A A] = LM(&)Fl 2<i<1’\\[+]]<'<i
N [ V21 2j-2)(i-))! 7, ) Sls , 1SS
0, otherwise,
(20)
VT, i=j=1,
Ti-1r(i-1 ~ .
{A*h] ) sl 2<i<N+1,j=1,
TN | . V2(i-1)T(i-4) LS ..
u g, 2SISN+1,2<j<1,
0, otherwise,
(21)
and
{ﬁﬂ)} _Ji-1 Zglg'Nﬁ—l,lg]gl—l,l:]—s-l, (22)
N 1 0, otherwise.
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Proof. From (15), it is obvious that ‘PT ﬁ(‘c) can be represented as
bs

T
~(1)=A ~| T
‘L’b,N(T) AT,,,N ’

™

where the elements of the matrix AT - can be computed using rela-
-
tion (20). We have

1 0 1
T 1 T
d¥Y ~(t
TbeN():A dle|_a |2t —A D] 72
dt wNdT | | TN wN N
rﬁ Nrﬁ* rﬁ

where the elements of the matrix D can be computed using rela-
N

tion (22). Thus, from the above two relations, we obtain

ler ;\I\(T) (1 1 1
— N <A ~DYA" A>qf ~(1) 2D ¥ (1),
dt N N N TN N TN

where the elements of the matrix A:E can be computed using rela-
by
tion (21). Then, the desired result is obtained. O

Corollary 3. From the above Theorem, we obtain the following
relation for the second-order derivative of the vector ‘IJT ﬁ(r):
b

d2 T ﬁ(r) (1) (1) (2)
b _ R L ~
g =DUxDlow @Dt S (23)

As a numerical example, for N =5, we have

0 0 0 0 00O
22 0 0 0 0 0
py _ 1 0 8 0 0 0 0
T, 6v2 0 12 0 0 0f
0 16 0 16 0 0
102 0 20 0 20 O
0 0 0 0 00O
0 0 0 0 00O
p? _ 1 162 0 0 0 00
KERE 0 9% 0 0 0O
1282 0 192 0 0 O
0 480 0 320 0 O

Orthonormal piecewise Vieta-Lucas functions

The orthonormal piecewise VL functions can be defined over
[0, 7] as

VN, (NT—n1y), Te |2 Ohn]

Prpnm(T) = { o [N, N } (24)
0, otherwise,

where NMe7Z",n=0,1,...,.N—1 and m=0,1 M — 1. These

functions are orthonormal with respect to the weigh functions
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1 Te [nrb (IH»l)‘Eb}
27 N ’
W, a(T) = Ty(NT-n7y)~(NT-nT) (25)
0,

otherwise,

where n=0,1,...,N — 1. These piecewise functions can be applied

for approximating any function g(7) € Lﬁh L10,7p] as
N-1M-1 "o
Zzgnm P, nm 26O Tp,NM (1), (26)
n=0m=0
where
T
G= [goo Zo1 - Som-1)18€10 &1 -+ Eim-1)| - 18N-1)0 En-1)1 "g(N—l)(Mflj] s

with
T
&mm = <(/)1b,nm(r)7g(f)> = / Wtb.n(r)(/)-gb_nm(f)g(f)dl',
Wiy n 0
and

Do, nm(T) = [@zboo(l—) @2,01(T) - Py ou-1) (TP, 10(T) @y 11(T) - @y 1y (T -

T
[P, (v-1)0(T) Pz, n-1)1(T) "'(prb.(N—l)(M—l)(T)] -
(27)

Error upper bound of the orthonormal piecewise Vieta-Lucas functions
expansion

In the continuation, we obtain an error bound for the orthonor-
mal piecewise VL functions expansion.

Theorem 4. Let M is a positive integer and g € CM [%7%} for

n=0,1,...,N-1.1f g*(1)
of g(7) in the space

= GTtDTb_NM(T) is the best approximation

N-l,m:O,l,...,M—l},

(28)

I, nw = span{gorbvnm(r), n=01,...,

the upper bound of the error satisfies the following relation:

yaMt) T (2M +1)
18(0) =& @l o <yt |~ 2nr (29)
where
M = max sup  [g™(1)|,n=0,1,....N—13.
Proof. From the [*-norm, we have
l&(®) - & Ol 0z = Zug (O, pign
(30)
-1 (n+1)7p 5
:meT,,” We, n(7)|8(T) — &7(7)[ dT.
n=0

Since g*(7) is the best approximation of g(7) in IT;, yu, for any sub-

interval [’”b %} we have

g(1) — &' (1) < lg(r) - &(1)],

where g(7) is the Taylor series expansion of g(7). So, from the above
relation and the Taylor series Theorem, we obtain

(c "

. g"(@))

lg(1) —g" (1)l < sup (31)

nty (n+1)7,
Te [T”—( o ”]
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forn=0,1,...,N — 1. Substituting (31) into (30), yields

llg(t) —g*(7) sup

(«w
M!
e |52

I fz 0,7p)
Weyn [mb (n1)y
N

2
1g<””<f)> dt
]

W, n(T)(T— '"") Mz

VEUMT (2M+])
2M)!

__ W
(M!)ZNZM\I

VERMT (2M+])
(2M)!

__ M
= )N

Subsequently, by putting the square root on the both sides of the

above relation, we obtain
F(2M + %)
M)

VMM

le(z) - ey 07 S TN

&l

which completes the proof. O

Hybrid expansion

A function »((, 7) defined over [0, (] x [0, ) may be expanded
by the above the orthonormal one variable VL polynomials and
orthonormal piecewise VL functions as follows:

;\I\ NM T
ZZZ]’JV/W (P‘tbj ) ( ¢ N(C)) v(Drb NM(T)v (32)
i=0 j=1 b
where @2,i(T) = @y (T with j=nM+m+1 for
n=0,1,....N-1 and m=0,1,...,M—1, and V=[y;] is an

(N + 1) x NM matrix with entries

"= / / W, (OWe, (D, 1(0) Py (D) 0(C, T)dTdC,

0<i<N,1<j<NM.

Error upper bound of the hybrid expansion

Here, we derive an upper bound for the error of the above

hybrid expansion. In the sequel, we assume that
= span{u//;b70(§), Ve, 100, l//cb,ﬁ(c)} and ¥ =span{ -, 1(7)
(pfb-z(r)7 sy Q)TbvNM(T)}'

Theorem 5. Suppose that v(¢, 1) € C%*! ([O,

1. If v°((,1) = (‘Y:bﬁ(C))

approximation of (¢, 7) in the space 2 x #. Then, we have the
below error upper bound:

) % [”,f,b i) T"D for

T
n=0,1,...,N— V@, ny(T) is the best

lo(6,7) - v*(&, T)HLEV wepn (0014105

o1 Z"Z*ZN,( 29+ 2\ TP (k+ )T (2g —k +3)
(q+ 1) N+ T —~ k k'(2q—k+2) ’
(33)
where .# = max{.#,, n=0,1,...,N—1} and

My = max sup WO D)), k=0,1,...,q+1}.
(LT)E[0.8)% [Hrb (n+1) Tb}
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Proof. we have

2.0 - v (Dl ey (045105
N-1

=MD =Tl | (o [ram)) (34)
1

2:

(n+1)7p

I Iy we, (OWen(D[0(E,T) = (¢ T) Pz,

(=]

P
Since v*({,7) is the best approximation of ({,7) in 2 x %, for any
sub-interval {’”" M] we have

v(C ), (35)

where #((, 1) is the Taylor series expansion of »({,t). On the other
hand, we have

o 1/,0 nty\ 0
y(s,r):kzgm(é,a*{-ﬁ-( N)@‘L’) v((,7)
()

@ Q+1 (Cm + (T - m) m)%l (( T)

v, 1) - v (Gl < vl 1) -

©n-(0)

€=(t2)

Thus, from the above two relations, we obtain

o< g ()" 39

From ()()()(34)-(36), we have

[v(CT) — v (¢, T)Hfzwgb_wrb L(10.,]%[0.7))
N-1 2 (n+1)rb nt 2042
(q+1 JI Wy, (OWe,n(0)(E + (T — 7)) “drdl
n=0
2N e . NN 2042 5 gy
S Tae 2 Jo f Wi, (OWe, n(T) ({4 (T - ")) “drdl.
n=0
Also, we have
By i (W)€ + (T~ e

= b I 5w (Owe, (5)(C + )" dids
2q+2

:#ZNk(zqﬂ) [sb Th Cb(z)wr

k=l

L (5)C*s?a-k2drds

2q+2

1 iNk(Zqﬁ) 22 T ()T (2q-K+)
NZ3 k k(2 q—k+2)! :
k=0

Hence, from the above two relations, we get

o 7) - ”*(QT)Hng;

N CEARCEA]

Wk 1
X ((q+])!)2 N2a+2
2q+2 k2
ZNk 2q+2 mb bq (k+2) (2q k+2)
k(2 q—k+2)!

Eventually, by putting the square root on both sides of the above
relation, the desired result is obtained.(

Fractional derivatives of the orthonormal piecewise Vieta-Lucas
functions

Here, we introduce two formulae for computing fractional
derivatives of the orthonormal piecewise VL functions in the
Caputo and ABC senses.

Journal of Advanced Research 49 (2023) 175-190

Theorem 6. Suppose that ¢, ,,,(7) are the functions given in (24)

and 0 < « < 1 is a real number. Then, we have
(Prb,nm(r)7 o= 0-,
ng%b,nm(T) = Py (T, 00) = q)/r,,,nm(r)v o=1, (37)

Pm(T), 0<a <1,

where
0 m=0,
7 _ 3 . (Tp) _ k-1 nt, (n+1)7y
(ptb.nm“-)* N;kamk (NT nrb) ’ ’EE{ N }7 m:1,2,...,M71,
0, otherwise,
(38)
and
0, m=0,
PY (1) = Oom(®,2), T [m,, %]
Tom Oy nm(T,00), TE |:(”+1)77b T ] m=12,... M—1,
0, otherwise,
39)
with
m k'a
O+ k—o
Oz, nm(T,0) = N zzrk (Hl (NT — nt,)* %, (40)
and
; .m k k-1
Oty T
Dy (T,00) = FQ’];)Zkaﬁn;;){H,g (k—1)(NT —nty)k™
k=1 =1 1=
k 1 r—1 .
=S TTAITk=D [N G (Ne - (n+ 1)w) ]}
r=11=1 =1

(41)

Proof. For o« =0, the proof is obvious. For o =1, from (15) and
(24), we have wrb w® _ 0. Also, for m = 1,2,...,M—

B szka ) (

1, we have

d(prb o )k—1’ Te [mb (n+l\1l)rb] ’
dt ]
0, otherwise.

For 0 < o < 1, from Property 2 and relations (15) and (24), w
obtain

gDz(prb.nO(T) =0,

and form=1,2,...,M —1, we get

d( T) nm
§D., un(T) =iy Jo (=) L ds
r(@) ﬁx;lb (t—s)"4 (Wrbm(NS nrb))ds

_ (1)1,
= t%v (t—5)™* (zp% n(Ns— nfb))ds Te [("””" T ]
otherwise.

(42)

Te [%7("*]\1)%]7

o

Using (15) and (42), we obtain

1 m
NG - k-1
r(qﬁm)zkagﬁ N f"f-;‘l“_S) aL(s nlflb) ds,

L2 Z (Tb)Nk

k=1

nt, (n+1)7,
Te[Tb«( . b}’

S

(n+ mb

gD:(ptb,nm (T) =

T8

'L' s)—ac(s nrb) dS Te [(nﬂ)f‘, T]

otherwise.
(43)

o

Furthermore, Property 2 yields
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Jpe-9 (=) =St ) e
and integration by parts gives

1;T;H%(r—s)""(s—%)k 1ds

18 CRICR

ST ()

Substituting (44) and (45) into (43) yields

Ocynm(,9), T [T, 0500],
C
ODf(/)Tb.nm(T) = ﬁfb,ﬂm(f7 ®), T€ [(”*1)% T ]

0, otherwise,

where 0;, nn (T, ) and 9, um (T, ) are introduced respectively in (40)
and (41). Hence, the proof is completed. O

Theorem 7. Let ¢ ., (7) are the functions given in (24) and

0 < B < 1 is areal number. Then, we have
_ q)/r nm(‘[’-)7 p=1,
6Dy )4 Th={ o 46
0 q)r,,,nm( ) @rb,nm( /) (P(r/i),nm(f), 0 < ﬁ < 17 ( )
where @’ ., (7) are as in (38) and
0, m=0,
Neyam(T.), T€ [T,2505]
g_oftlz).nm(r) = (n+1)t m=1. 2 M 1
Grb,nm(rvﬁ): Te [ b T] -
0, otherwise,
(47)
with
1
N’A m —BN~P(NT—n1)*
Mgy (T, B) = 3 Za TK(NT —n7p) Eppen ( b 5 ; b) :
k=1 —#
(48)
and
m : k k-1 .
O, nm('f ﬂ) mlAB/(fﬁ Za kaZF(J/m (7%#)]{ IJW (kfl)(f ntsb)kﬂ/f
k=1 1=1 1=1

ST I oot (-

==1 I=1

)

(49)

Proof. For g =1, the details of the proof are given in Theorem 6.
For 0 < 8 < 1, using Property 3 and relations (15) and (24), we get

0° DL, no(T) =0, (50)
and form=1,2,....M — 1, we have
MIAB;(" Za () kﬁw,, E,;( sl )(Ns nty)'ds, te {%,‘” ,\Pf"]
ABCDlrm ( )
Tp.nm

k—
M’*” Zaf,ff{ kj,n,,” 'E, ( g )(Ns nt,)ds, te {m rb}

0, otherwise.
(51)

Property 3 yields
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. B
T2 (W) (Ns —n,)'ds
k-1 _ nmpyk 5
_N AB(f)E!éT ) Epin ( ﬁ(l _B ) ) 52

Moreover, from the definition of the Mittag-Leffler function, we
have

(n+1)Tp
N

nty

N

_ney L
;F(mﬂ)(

[
E; (—_ﬁ ](r_—ﬁs) >(Ns —nt,)*ds

(n-l)rb

£ ﬁ)j /T”

1-3 S)ﬂj( Mb>k

(53)

Furthermore, integration by parts gives

(n+1)7

/J ' (t—s)’ (5 7%)“(15
N (k=1 (1_%)’#}/;

w1 ()
e[

b)j/f+r:| - 51

Hence, from Eqgs. (51)-(54), we have

1
nrb=nm(r7ﬁ)7 TE [Mb %]7
Ooymm(T.B), TE [“’*”“’ f]
07

where 1, (T, ) and o, am (T, f) are introduced respectively in (48)
and (49). Thus, the expressed assertion is proved.

chDf(Prb‘nm (T) =

otherwise,

Corollary 8. From the above Theorem, we have

YPr, nm (T, 00)dor, 0 < T <1y,
5. (1) = {f‘) )Py (7, @) !

Qr,nm (T, B), T < T T
Two variables orthonormal Vieta-Lucas polynomials and their
properties

PDP

TiTq

(55)

In this section, we introduce the two variables orthonormal VL
polynomials and derive some new results for them.

Two variables Vieta-Lucas polynomials

For N, M € z*, we can define the two variables VL polynomials
on [0,{,] x [0,&,] as

l//;,,g,,,ij(@ &= ‘//g,,.i(i)‘//g,i(f)ai =0,1,...

where ,, ;(() and y;, ;(¢) are defined similar to (15). These functions

N, j=01,...,.M,  (56)

are orthonormal with respect to the weight function
Wy, (0,6) = W A function h € Lw [O., {p] x [0, &p]) can
Spe—¢ Cpe—¢
be approximated by these polynomials as
N M .
v A P
ZZ beni(G O EHW. oo ((0), (57)
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where
- [hoo hot ...

with

h~ h~

h ~hyohy ...
om 10T NO N1

h~ ..
M

hy = / ! / " 0 (G O Ey ey 5 (0, E)dEAL,
0 JO

and
B L L L B A S R TR
T

l//;b;b_”@(’lﬁcf) “‘w:b;nﬁﬂ(g’ W, 5,9 NM(C 9]
(58)

Note that for convenience, we can rewrite (57) as follows:

(;\I\H) (ﬁﬂ)—l )
h(¢, &) ~ hirg (5, 6) 2 HTY (69, (59)
ShShs

=0

where iy = hy and e, 1(8,€) = Vi, (0, €) with [ = (M +1)i+ for
i=0,1,...,Nandj=0,1,..., M.

Hybrid approximation

A function »({, ¢, 7) defined over [0, ;] x [0, &) x [0, Tp] may be
expanded via the orthonormal two variables VL polynomials and
orthonormal piecewise VL functions as follows:

(1) (M) -1 i
VLT~ Dyl (0, E) ey (1) 2 (w

=0

<

T
—(z, f)) VO, (1),

{pép.NM

-
]

(60)

where V = [7;] is an (N + 1) (1\71 + 1) x NM matrix with entries

= [ [ [ 0u oW O0n st

for 0<IK (N+1)(M+l) and 1<j<NM, and wg ,(7) and

ydrdéd(,

Wy, (¢, ¢) have already been introduced.
Two-dimensional operational matrices

Here, we obtain some relationships for the classical derivatives
of the orthonormal two variables VL polynomials.

Theorem 9. The first- and second-order derivatives of the vector

Y NIVI(C’ ¢) defined in (58) can be expressed as follows:
EbShy
M~ (0)
pep NM PLY (4,8
- NM  G&.NM*7 7 ’ (61)
W ~~(9) a
beb.NM _ R N I
et = QLY o (00),
and
PY ~~(L9) 2
ibfb.NM _ P(/\/\‘{I N CV
BCZ NM  $ép: NM(C’ ')7 (62)
PV (0 o
pép NM v
o0& a QAA gbngM(g <)
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where
{D“L] L [D“&} I {D“L] I
GNJg M GN]3p M N l(ﬁﬂ) M
{D“L] I- [D“L} I {D“L] I-
pl. =p" A@;[A— %N 21 GwNjop M GN]2(Ne1) M
NM N
{D“L] | [D“L} I- . {D“A] I~
G.N (ﬁﬂ)l M 4N (Ne1)2 M N (ﬁ—l)(Nﬂ) M
pY. 0~ 0~ .. O~ O-~
&M M M M M
o- . 0~ .. 0~ O-
M &M M M M
o _| . . .
NM N N N N ’
0~ O0- O- D“ 0~
M M M &M M
0~ O~ O~ .. 0~ DV
M M M M &M
and
{D“L] I- [D(ZL} I- {D“L] I~
»Nl11 M 5Nl M Ni(Ne) M
{D(ZL] L [D@ I . {Dm] I
P2 =D% @I~ = P sN]gp M Nl 2 (1) M
NM 0N
{D(ZL] I~ [D‘ZL} I- . {D(ZL] I~
4N (ﬁn)] Mol G (ﬁﬂ)z M &N (A Y (1) M
p?. 0~ O~ .. O~ O-
&M M M M M
0~ D?. 0~ ... 0~ O-~
M HM M M M
(2) . . . .
Q’,m_ : : Do : : ’
0~ O~ O~ ..D%. 0~
M M M &M M
0~ O~ O~ .. 0~ D%
M M M M &M

in which P2, and QY. for 1=1,2 are (N+1><I\7I+1>-order
NM NM

square matrices, D” . and D . for [ = 1,2 are the matrices derived
&N &p.M

in Theorem 2 and Corollary 3, ® denotes the Kronecker product, 01\7:
is an (M + 1>—order zero matrix and l& is an (M + 1>—order iden-
tity matrix.

Proof. The proof is straightforward. So, we leave it to the inter-
ested reader. O

The proposed method for the one-dimensional problem

In this section, we establish a hybrid method based on the
orthonormal one variable VL polynomials and orthonormal piece-
wise VL functions to solve the following one-dimensional piece-
wise fractional Galilei invariant advection-diffusion equation:

D2 o(C,T) + K10 (1) = K Dy T (0 (7)) + WL T, 0(E 7)),
(£, 1) €10,8] x [0, 7], (63)
with the initial condition
v(£,0) = £(0), (64)
and non-local boundary conditions
2(0,7) — gy2:(0, r) 3 1<o<c)v<c. T)d¢ + g(0), (65)
V(G T)+Q1f/4 &hs T f Ki(Qwv(, 1)dl + h(T),
where K1,k >0,0<y<1,(,7,>0,0<71 <7T,05,0; >0 and
0 < B < 1arereal numbers, w, f, Ko, K;,g and h are continuous func-
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tions in their domains, 8D}~ #(¢, 7) is the Riemann-Liouville frac-
tional derivative of order 1 -y with respect to t of #({, 1), and
PPy (¢, T) is the piecewise fractional derivative with respect to

rrl

T of v({, 7). To solve the above problem, we approximate »({, t) as

N NM T
=33 b (000 2 (¥ 50) Vo). (66
i=0 j=1 cb>
where V = [v;] is an (N + 1) x NM undetermined matrix as
Voo Vo1 Vonm
Vio Un Vinm
V=
I~ U~ U~
NO N1 NNM
From (12), (37), (46) and (66), we get
N NM
S v, Q) fy PP (T, O<T<TH,
i=0 j=1
oDEZ w(L )
N NM
DN v, (0 Peyi(T,B), T <T<Tp,
i=0 j=1
(67)

where (anbJ(T7 O{) = (b‘fbv”m(Tv O() and (7:DTbJ(T7ﬂ) = (prb,nm('f,ﬁ) with
j=nM+m+1forn=0,1,.... N-1and m=0,1,...,M — 1. The
integrals in (67) can be computed by an p-point Gauss-Legendre
integration method as

/p Ve, (T, 0)der iiw,o@(%,+1)>q?>fb_j<r%(%r+l)>7 (68)

where

. 2
W=,
(l - T%) (L%(‘L’,))
and {%,}"_, are the Gauss-Legendre integration nodes in [-1, 1]. For

more details, see [40]. Substituting (68) into (67) yields
SDAII (L, T) 2 DL T, )

111

N NM
DD vy, (¢ wap LA +1) Qg (t.1(E+1)), O<t<Ty,
i=0 j=1

~

i=
N

NM
SN v, (O Py i(T. ), T<T< T

i=0 j=1
(69)

Theorem 2 and Corollary 3, together with relation (66), result in

T
%) V(Drb,NM(T),

(o 50) (07 Vot

Property 1, together with Theorem 6 and relation (70), give

(70)

D06 ) = (7, 50) (P7) Vi (e

*1%) (‘{,,N(i))r('{b ) Vo, w(0),  (71)
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where

e, nu(T,7) = [Pry00(T, 1 =7) P01 (T, 1= 7). Qe o1)
(T, 1 =PNPr,10(T, 1 =7) Pry11(T,1-7) ..
Qe a1 (T, T =) |Pr, v-100(T, 1 V)

Pey -1 (T 1 =) o Py vy (T.1 = )]

Meanwhile, for the functions given in (64) and (65), the following
approximations can be considered:

(72)

N
O = fi,(0) = FT"I"L Q=Y ﬁ(g)Tl{ (73)
i=0 b Shs
and
N-1M-1
Zzgnm (pr,, nm GT(DI[, NM( )
n=0m=0
(74)
N-1M-1
Zzgnm (prb nm HT(DT,, NM( )
n=0m=0
By considering (64), (65), (66), (70), (73) and (74), we derive
T
(‘P[b.ﬁ(g“)> (V(I)Tb_,NM(O) - FA]> ~ 0, (75)

and

T T T
((l{’ _3(0)> V-9, (\yy _E(O)> <D{”ﬁ> VngcTM)q)Tb_NM(r)w,
T T
<l{1y E(Cb)> V+Ql (‘FV T\I\(Cb)> ( ) V- KTV H ™ (D-[bwm(f)zo,
b b (N
(76)
where
_ _ — — T _ — — _ T
K, = [l(oo ko] koﬁ] s K, = |:k1() ki ... k]/[\;] s
and
koi = J5* Ko(Qw, :(0de, ki = [ Ki(Owy, (0dS, i=0,1,...,N.

Substituting (66), (69), (70) and (71) into (63) yields

T T
WLT,B) +Ka (‘Pgbﬁ(g)> (DbN) V., NM(‘C)—K;{(‘{‘:DE({)) <D;bN) V@, wa(7,7)
- T T T 77
i (v, 50) (07) vo, ~M<O>}—w<zﬁr‘ (¥,50) vcbr,,_wm) 7
R((,T.8,7) ~0.
From ()()()(75)-(77), we extract the below system:
R(Z05, 8 py) 0, 2<i< R, 2<j<NM,

[Al]i =0,
[Az]; = 0,[A3]; =0,

+

ey

; (78)

J
Eventually, we achieve a solution for the problem by solving system

(78) for specific values of  and 7, and determining V and substitute
it into (66).

2
1

Z =
.zq

NN
//\ //\

The proposed method for the two-dimensional problem

Here, we propose a hybrid method based on the orthonormal
two variables VL polynomials and orthonormal piecewise VL func-
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tions to solve the following two-dimensional piecewise fractional
Galilei invariant advection-diffusion equation:

DEDT V(L& T) + Ka (0,6 T) + Rav:((,E,T)
= 0Dy (K3 v (L& T) + Kavze(0.6,7) + W&, T, 0(0 6. T)),

(79)
with ({,¢,7) € 0,{] x [0, &) x [0, Tp), under the initial condition
v((,6,0)=F(L,9), (80)
and non-local boundary conditions

2(0,¢,7) - 00 (0, c,r = 5 Ko(C, &)2(L, &, T)dC + 8o (6, T),
v(gb, O+ 01200, 6,7 = [ K (G OV 6 0d0+ 81 (8 7),
v((,0,7) = 052:((,0,7) = ﬁf” Ka (¢, &)v(C &, 0dé + 82(L,7),
V(& T) + 03e(L 8, T) = [P Ka (L O0(L & T)dE + 83(¢,7T),

(81)

where % >0 for [=1,2,3,40<79<1,{,&,75>0,0<11 <

7,0, >0 for [=0,1,2,3 and 0 < <1 are real numbers, w,f K,
and g, for [ = 0,1,2,3 are continuous functions in their domains.
To solve the above problem, we assume

(N+1) (M) -1 i
U(C,f,‘[) =~ Z Z@Ulpgbéb.l(ésé)@‘[b\j(r) £ (qj

=0 =

;
. NM(@ 5)) VO, (),

(82)
where V = [v;] is an (N + 1) (1\71 + 1) x NM undetermined matrix.

From (12), (37), (46) and (82), as well as employing the Gauss-
Legendre integration method, we get

EDLT v(C e D)2 ULETH)
(1) (441) -1 g p
3 > oy MlLsZWP(%(TFFU)QDM(T%(T,-H)) 0<1T<TH,
1=0 Jj=1 r=1
| ) (1)1
D, 2,10, ) Py (T, B), T <T<Tp.
=) =
(83)
Based on Theorem 9 and relation (82), we obtain
T
wen= (¥, 000) (PL) Voom,
T
veltin = (¥, 2560) (P2 ) Ve (7
{pép.NM NM
T (84)
AL E ~ PN % Q) \/
ve((, 6, T) = (T:,,q, NM(C,Q)) (Qm> Vo, v (1),
T T
vecen = (5500 (@) Voume.
Sh<h» NM

Property 1, together with Theorem 6 and relation (84), yield

(g,g))T(PQL)TV@D,W(T#)

NM

B (0 (L¢,7))

i NM
(85)
and
RIDI=7 (0.(L,€,7)) :< e & f)>T<Q9L>T‘7®rb.w(T7W
(v 000) (@) Vom0 2ue .

(86)
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where érb:NM(T,”/) has already been defined in (72). From (80) and
(82), we get

(*

Also, from (81), (82) and (84), we obtain

T T
- . URRY
<‘{I§bi ~0o (lpibib NM (0’ C)) (Pﬁl\//\l> V(DID'NM(T)

T
~(020) Vo mi(x) - 20(6.7) 2T (61 =0,
(¥

T T
10 (% 5 (00) (P ) V(o)
(Lv

o~

T
o760 V(0 ~F0.0) 2 To(c. ) = 0 7)

5 NM

T _
<o,¢)) Vb, (1)

»EpNM

T
(&, 4)) Vi (T)

T
f(mwo) Vo, () — 21 (6,7) 2T E,7),

&NM

M (v,

bEp NM NM

« 0))TV¢I,, w(®) M<4,0>)T(Q%)Tvmf,,,wm

(0720) Vo w0260 2T,
T7 ” T T7
(%, 5 c)) Voo +ar(¥, o) (@) Voum(
T
- (cb{”m (:)) Vb, (1)~ &5(0,7) £ TL4(0,7),
(88)
where
©) gy e o BN
‘I)C,h_m(é)a/()”(o(g,é)‘lﬂ aaGod, A O (= [PRIGOY, e ltOd
o) 0= & s
e = Jo'Ka(t ¥ anGods @ ,,mé = o Ka (Lo ey &OAL

By substituting Eqgs. (82)-(86) into (79), we get
T T T T
560) (P ) Vo i (7, 5500 (@) Vo mi(®

T
—rzgu](c‘s,r,w—mx;::v)—w(as.r, (¥,,5069) er,wm)

2R(,¢1T,8.7) ~0.

WLETH) +Ra (w -
Gpép.N.

(89)
From (87)-(89), we extract the following system:
R(i,&,t,5,7) =0, i=2,3,...,N.j=2,3,...,M,1=2,3,....NM,
I (&:,¢) =0, i=1,2,...,N+1,j=1.2,... M+1,
I, (¢, 71) =0, r=1.2, j=1,2,....M+1,1=2,3,... NM,
I, (¢, 7) =0, r=3,4, i=2,3,...,N,1=2,3,....NM,
(90)
where
OIS VS A A 1L
a(ve1)” T 2(me) 2NM

Finally, we obtain a solution for the problem by solving system (90)
for specific values of § and y, and determining V and substitute it
into (82).

Numerical examples

In this section, we examine the accuracy of the proposed meth-
ods by solving several examples. The following formulae are used
to compute the accuracy of the obtained results:

One-dimensional problem:

The maximum absolute error is computed as

oo max

(LD)El0.5]%[0,7]

T
060~ (¥, 50)) Vo (o)

where v is the exact solution. Also, the convergence order (CO) of
the method is calculated as
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e

where m; and m,are the number of basis functions used in the first
and second implementations, respectively.

Two-dimensional problem:

The maximum absolute error at the terminal time is computed
as

e, = max
(£,9)€[0,]%[0,8)

)

T7
CET) - (T (@ é)) V., i ()

(pép . NM

where v is the exact solution. Also, the CO of the method is com-
puted similar to the one-dimensional problem.

Note that Maple 18 (with 25 digits) on a X64-based PC with
Intel (R) Core (TM) i7-7500U CPU @ 2.90 GHz and 32.0 GB of
RAM is applied for all simulations. Meanwhile, the series in the
Mittag-Leffler functions are truncated after 35th term. Moreover,
for numerical integration, we put p = 15.

eXAMPLE 1. Consider the problem
ngéa)'ﬂ v(,7) + v:((, T) + sin()e V&
1
= gLD‘ZC(vEC(Cv T)) + W((Zv T)7 (4’7 T) € [07 2} X [07 2]7
where p(o) =T'(4 — ) and

Journal of Advanced Research 49 (2023) 175-190

The below conditions are imposed for this problem
v((,0) =0,
and

v(0,7) — v, (0,7) = foz sin(Q)w({,7)d{ + 73 (§(sin(4) — 4) — ),
0(2,7)+ 0:(2,7) = J¢ cos({)v({,T)d¢ + 73 (sin(2) 4 cos(2) +1(cos?(2)-1)).

The function »(¢,7) = t3sin({) is the problem exact solution. The
results acquired of the established approach are shown in Table 1
for two values of B. These results reflect the high accuracy of the
method presented in the previous section. This table also confirms
that the results have a high degree of convergence. The columns
regarding the CPU time (seconds) confirm the low computational
works of the expressed method. Fig. 1 illustrates the behavior of
the obtained results for the case g = 0.4.

ExAamPLE 2. Consider the problem
eDI V() + 205(0 ) + p(L D T) ~2)

= 28D (v (L) + WL T), (L. 7) € [0,3] x [0.1),
where p(a) = I'(5 — o) and

w((,T) =T (Tt - 4)

_243V3 2\ w
357 3

2473 (1-1
16‘55 lng‘c) )7 0<T<%7
. . 3 i
w(¢, 1) =13 cos(l) + sin({) + sin(¢)e~® sin© -t} ( 24n8 b
e (8) +4 B
15v7 i s (). 0<p<1. 1<t<1
67%(1-1)
NG 0<t<3, 473, B=1,
i _ph L. . .
+ sin(?) Ei’:%%”ﬁEM( ]@;’)7 0<p<l, ,_ <o The below conditions are imposed for this problem
3 X
3‘[27 ﬁ =1L 1}((7 O) = 07
and
Table 1 .
The results obtained with two values of g and some choices of N where (N = 3,M = 4) in Example 1.
=04 =08

N N M [ co CPU time [ co CPU time

6 3 4 1.2672 x 1072 - 17.00 85641 x 1072 - 2040

8 1.4996 x 10~ 15.4225 27.31 1.0125 x 107% 15.4258 30.84

10 1.0445 x 107 22.2584 43.18 7.1087 x 10°%7 22.2227 63.07

12 4.8273 x 10799 29.4918 68.21 3.3095 x 10°%° 29.4517 71.26

0.5

0 o T

il

T

””////’/’///I/I/I/IIII////I/II/I/;/I/;’
77

i,
////III
]

0 o0 ' T

Fig. 1. Approximate solution (left) and associated absolute error function (right) with g = 0.4 where (ﬁ =12,N=3,M =4) in Exa.mple 1.
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v(0,7) — fo e‘v(¢,T)dl — 14, The following conditions are used for this problem:

v(3, )+21/ 3,71)=[Je *vgrdg——r4(1+2e*3—e*‘3). v((,0) =0,

The problem exact solution is »(¢, 7) = t*e <. Table 2 is used to con- ~ and

firm the validity of the results obtained by the presented approach. —22,(0,7)
For the case g = 0.2 the extracted results are shown in Fig. 2.
/ {sin(Q) (¢, T)d¢

EXAMPLE 3. Consider the problem (3 4208 (1) 1 o (2)> 2, 0<7< %7
gnfg“* v((,7) +30:(0,7) + 20, T) *3 2 T, 3<1<2,
1 v(1,7)+3v(1,7
—EDH (0L 1)+ WD, (LT) € [0.1] x[0.2), (1,7 + 301, 7)
where p(a) = I'(3 — o) and = /0 cos(O)v(¢, T)dl
w(Z,T) = (g,(1) + &(7)) cos(¢ . . T, 0<Tt<i,
(6.7) = (& (¢) + &(1)) cos(0) N (cos(l) s _1(1 Sin(2) 1)) L 0<t<d
. 2, 0<1<3, 2\2 B, <t
+(2cos(() = 3sin(())y 5 , cr<n
T ISTS 4 The problem exact solution is
in which 2 3
T 0<t<3,
v(¢,T) = cos({ ’ 2
meh, 0<c<i co-wsiol 7500
&i(1) = {g3 (1), 0<p<1, <1<2, We have reported the results achieved of applying the presented
312, p=1, ’ technique for two values of £ in Table 3. For the case § = 0.6, the
with extracted results are shown in Fig. 3. Taken together, these results
confirm the high capability of the proposed method.
&0 = R0 0Ea(- 5 -)) - -9 B (L))
+T25ﬂ3( L )} (){%7 (t—2)E;, (,%ﬂ(r,%)ﬁ) ExAamMpLE 4. Consider the problem
+9(t-3)Eps (—5 (1 -3 ) +6(t - Bpa (15 (e 3" }, oD U(E & 1) + 200(L 6, T) + 206(L 6. T)
3 _
and = gLD%(vCC(Cv 57 T) + UEE(C» 57 T)) + Z}(Q 67 T) + W(Cv 57 T)’
- 1 {%T%, 0<t<3, with (¢, ¢, 1) € [0,1] x [0,1] x [0, 1], where p(«) = (3 — a) and
&2(T) =+ 3 7 1
PO s+ p@-ygide B e-9% j<e<2

Table 2
The results obtained with two values of g and some choices of N where (N=2,M =5) in Example 2.
=02 =06
N N M [ co CPU time [ co CPU time
5 2 5 2.1066 x 102 - 09.40 2.0956 x 107 - 11.78
7 3.6329 x 107% 12.0670 14.46 3.6511 x 107 12.0365 16.98
9 5.6495 x 10 16.5674 21.31 5.7010 x 107 16.5512 24.04
11 6.1773 x 107 22.5038 35.03 6.2487 x 10°%8 22.4917 38.54
x1078
1 8
0.8 § 6
5]
— 06 o
< 54
> 04 3 I
17}
e i
0.2 <2 W
0 0
3 3

0 o0 0 o

Fig. 2. Approximate solution (left) and associated absolute error function (right) with g = 0.2 where (N =11,N=2,M =5) in Exa.mple 2.

186



M.H. Heydari, M. Razzaghi and D. Baleanu Journal of Advanced Research 49 (2023) 175-190

Table 3
The results obtained with two values of  and some choices of N where (N = M = 4) in Example 3.
=06 B=08
N N M e co CPU time [ co CPU time
5 4 4 1.7158 x 1079 - 17.85 1.5813 x 107% - 20.62
7 7.1428 x 1079 16.2911 21.56 6.6171 x 1079 16.2757 2717
9 16229 x 10°% 24.2208 25.84 1.5081 x 10~ 24.2086 28.62
1 23193 x 101! 32.6440 33.10 21586 x 10~ 11 32.6362 36.45
x1071
10 25
8 7 s 2 T
7 5 i
=6 515 iy
< o g
< = 7/
> 4 o 1
[%]
Qo
2 <05
0 0
1 1
2 2
. 0.5 0.5
0 o0 T 0 o0 T
Fig. 3. Approximate solution (left) and associated absolute error function (right) with g = 0.6 where (N =11,N=M = 4) in Exa.mple 3.
W((,&,7) =277 cos({)sin(¢) with (,¢,7) € [0,1] x [0,1] x [0,3], where p(a) = T'(4 — o) and
3) i si i _ . . B
+27%sin(¢)cos (¢) +32\f21"(4)7:547st1n(5) sin) _ 2 sin(¢)sin (¢) w((, & 1) = —7(sin ({) sin (£) — cos({) cos(&))
_ + 16 73 cos(¢) sin(¢) — 7° sin(t) cos?({) sin®
=l 0<t<id, 5V : 2(@1) (©) (1) ({)sin”(¢)
. . T°(T—
+sin(¢)sin(¢){ (2484 2 3(ﬂ) 0<p<1 TG 0<t<3,
AN Tlcr<l ,
i 6AB —
2‘C, ﬁ:], +COS(C) Sln(é) T(ﬁﬁ)TE’EBA(]/Z;): 0< .B < ]7 %< T <§
X X7
2 _
The following conditions are used for this problem: 3, p=1,
v((,¢,0) =0, The initial condition for this problem is
and 1}((7 67 0) = 07
0(0,6,7) — £ v:(0,¢,7) = f(} (¢, &, T)de — 2 sin (¢) and the boundary conditions are
—72sin (&)(sin (1) — cos (1)), 1 T
p(1,6,7) + B 2(1,67) =1 [ (. &, 7)de — Le? sin (£)(2 cos (1) - 5), 20.6.0)-52:(0.6.7) 2/0 sin(g)cos(S)2(¢,¢,7)d¢
V(5,0,7) + 35 ¥:(8,0,7) = [y €v(C, &, T)dé 1 5, o .
1 22sin (¢)(1 + 100 sin (1) — 100 cos (1)), 57 ((cos*(1) ~1)cos(8) +2),
1
V(0 1T) + g (L 1,T) = fy L & Tyde VLED) + 0161 :/ sin(f)cos(&) vz . 1)d
+-1572 sin (¢)(300¢ sin (1) — 500 cos (1) + 100 sin (1) + cos (1)). 1Len+(1.67) 0 (©cos()u(t.¢,ndl
15.
The exact solution of the problem is »(¢, &, T) = T2 sin(¢) sin(¢). The +§‘c3 sin(¢)((cos?(1) — 1) cos(¢)
results obtained py the proposed technique for two ve-llues of B at +2(cos(1) —sin(1))),
T = 1 are shown in Table 4. These results confirm the high accuracy .
of the proposed method in solving this example. In the case of 2(C.0.7T)+0-(L.0.T :/ cos(8)sin(é) v d
B = 0.3, the obtained results are shown in Fig. 4. 0.7 +2:(.0.7) 0 (Osin(©)v(C.¢, 1yd¢
1 1.
+§r3 cos({) <§ sin(2)cos({) —cos({) — 2) ,
exampPLE 5. Consider the problem \
1 . .
gngg%ﬁv(c, ET) 4+ (8, E,1) + v:(0 6, 1) V(G0 +5vl 1T = /0 cos({)sin(&) (¢, ¢,T)dé
1 /1 1 . 1 1.
= ISLD‘ZE (i UCC(Cy 57 T) + i Vee (Ca 57 T)) + Sln(T) 7)2(4,7 é, ‘C) +j‘53 COS(C) < (i Sln(z) - ]> COS(()

+w((, 1), +-cos(1)+2sin(1)).
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Table 4
The results obtained with two values of  and some choices of (N, M, N, M) in Example 4.
p=03 =09
N M N M [ co CPU time e co CPU time
4 4 1 3 9.1325 x 107 - 003.18 72820 x 1079 - 003.23
5 5 1 4 6.4626 x 1079 09.8826 009.98 6.4432 x 1079 09.5782 009.90
6 6 2 5 49878 x 1077 01.9998 191.60 47105 x 1077 02.0421 192.03
7 7 2 6 2.6051 x 10798 06.0170 442.68 2.5094 x 10798 05.9767 453.45
x108
3
S
o 2
2
=
21
e}
<
0
1
1
¢ 0 o 3 0 0
Fig. 4. Approximate solution (left) and associated absolute error function (right) at T = 1 with g = 0.3 where (N =M= 7,N =2,M = 6) in Exa.mple 4.
Table 5 o
The results obtained with two values of g and some choices of (N, M) at 7 =2 where (N = 1,M = 4) in Example 5.
B =045 B =0.95
N M N M [ co CPU time [ co CPU time
4 4 1 4 26351 x 1073 - 022.62 1.3443 x 107 - 017.48
5 5 3.3100 x 10°% 04.6484 098.76 1.2555 x 10% 05.3125 064.03
6 6 1.4468 x 10°% 08.5842 184.29 7.8835 x 107 07.5907 150.85
7 7 1.2541 x 1079 07.9322 398.68 50177 x 107%7 08.9340 345.32
8 8 4.0907 x 107 12.8167 898.23 2.3347 x 1078 11.4867 797.32
%108
3

N

—_

v(¢,€,1.5)
Absolute error

e

¢ 0 0 § 0 0 3

Fig. 5. Approximate solution (left) and associated absolute error function (right) at T = 1.5 with g = 0.95 where (N = M = 8,N = 1,M = 4) in Exa.mple 5.

The analytic solution of this problem is v((, ¢, T) = 72 cos({) sin(¢). comes confirm the high accuracy of the method in solving this
We have used the hybrid method proposed for the two- example. Note that the execution time of the program is relatively
dimensional problem to solve this example. The obtained results long due to the non-linear nature of the problem. For g =0.95,
with two values of  at 7 =3 are reported in Table 5. These out- the behaviors of obtained results are illustrated in Fig. 5.
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Conclusion

In this paper, the distributed-order fractional derivative in the
Caputo type together with the ABC fractional derivative were used
to define a new kind of piecewise fractional derivative. This deriva-
tive was used to define piecewise fractional forms of the one- and
two-dimensional Galilei invariant advection-diffusion equations.
The orthonormal piecewise Vieta-Lucas (VL) functions (as a useful
class of basis functions) were generated using the orthonormal VL
polynomials to construct two hybrid methods for solving these
problems. Analytical formulas regarding the Caputo and ABC frac-
tional derivatives of these piecewise functions were obtained. The
proposed methods transformed solving the problems under con-
sideration into solving systems of algebraic equations. Several
examples were studied to investigate the validity of the obtained
results. These dervived results confirmed the high capability and
accuracy of the proposed methods. As a future research direction,
the methods introduced in this paper can be easily developed by
generating fractional Vieta-Lucas functions to solve problems with
fractional solutions.
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