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Abstract: HIV-1 infection is a dangerous diseases like Cancer, AIDS, etc. Many mathematical
models have been introduced in the literature, which are investigated with different approaches. In
this article, we generalize the HIV-1 model through nonsingular fractional operator. The non-integer
mathematical model of HIV-1 infection under the Caputo-Fabrizio derivative is presented in this paper.
The concept of Picard-Lindelof and fixed-point theory are used to address the existence of a unique
solution to the HIV-1 model under the suggested operator. Also, the stability of the suggested model is
proved through the Picard iteration and fixed point theory approach. The model’s approximate solution
is constructed through three steps Adams-Bashforth numerical method. Numerical simulations are
provided for different values of fractional-order to study the complex dynamics of the model. Lastly,
we provide the oscillatory and chaotic behavior of the proposed model for various fractional orders.
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1. Introduction

Human immunodeficiency virus (HIV) is a virus that affects cells that render a person more
susceptible to other infections and diseases and helps the body fighting infection. A retrovirus that
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causes AIDS is the HIV [1]. HIV infects, destroys, and decreases CD4+ T cells, thereby reducing
immune system defense [2]. The body gets much highly responsive towards infections and steadily
loses its defense. One of today’s most severe and fatal diseases is AIDS. In 2019, 38 million
individuals worldwide were living with HIV, 1.7 million people got newly infected with HIV, and 690
thousand people died from AIDS-related diseases, as per UNAIDS 2020 annual assessment. No
vaccine for HIV has ever been found, despite significant success in handling the disease. Much effort
has been made by researchers over the last two decades to develop mathematical models that have a
significant rule in studying HIV-related disease control and prevention. The relationship between HIV
viruses and uninfected CD4+ cells and the impact of drug treatment on infected cells has usually
described by most of these mathematical models. The simplest model isẋ = c − βx − γxy,

ẏ = γxy − dy.
(1.1)

This model is influenced by Anderson’s model and many other models [3, 4]. An updated model
of Eq (1.1) has introduced by Tuckwell and Wan [5] with three categories: Uninfected cells x , infected
CD4+ T-cells y, and plasma virion density z. The proposed ODE-based model with three components
is given by: 

ẋ = s
′

− µx − βxz,

ẏ = βxz − εy,

ż = cy − ςz,

(1.2)

subject to the I.Cs x(0) = k1,y(0) = k2, and z(0) =k3. The description of the parameters are given in
Table 1. When drug treatment is not 100 percent effective, the rate of certain coefficients can vary.
Infected cells that produce components of the virus are infected when the drug therapy starts. A part
of the infected cells will improve if drug treatment is not successful, and the leftover cells will start
developing a virus.

Table 1. Parametric values for the numerical simulation.

Parameters Description values
s
′

“the rate of production or creation of CD4+ T-cells” 0.272
µ “the rate of natural death” 0.00136
β “the rate of infected CD4+ cells from uninfected CD4+ cells” 0.00027
ε “the rate at which virus-producing cells multiply until they die” 0.33
c “the rate at which infected cells produce virions viruses” 50
ς “the rate at which virus particles die” 2

Differential equations in fractional order appear as mathematical modelling in biology and
other areas of science. Because the DEs of the variable order save memory and has connected to
fractals [16, 17]. The field of fractional calculus has earned interest among researchers during the last
few decades. It is because fractional calculus can more effectively describe the persistence and
inherited features of different components and procedures than ODE based models [6, 7]. Various
operators have been introduced in fractional calculus concerned with different kernels. In recent
decades, mathematicians have investigated the fractional operators from various point of view [8, 9].
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Fractional operators have been used for modelling various infectious diseases. Shaikh et al. used
fractional operator to study dynamical behaviour HIV/AIDS model [10]. Rahman et al. investigated
time fractional Φ4 equation under different fractional operators [11]. Various dynamical systems in
economics field have also been studied through fractional calculus. For instance, in [12], the authors
have investigated reliability index and option pricing formulas of the first-hitting time model based on
the uncertain fractional-order differential equation with Caputo type. Many applications of the
fractional calculus can be found in the literature. Different analytical and numerical methods have
been used for solving nonlinear fractional DEs [13–15]. Most of the physical processes are modelled
by nonlinear fractional order DEs. Solving nonlinear fractional DEs by analytical methods are
very difficult. Therefore, researchers developed many numerical methods to solve fractional DEs
numerically. Traditional fractional derivatives, on the other hand, possess a singular kernel that often
creates problems with describing some properties. To resolve this, a new definition of fractional
integral and derivative has introduced by Caputo and Fabrizio that includes an exponential kernel
rather than a singular kernel [18]. Much consideration was also paid to these operators and proved to
be better at adopting several real-world problems for mathematical models [19–21]. Saifullah et al.
investigated Klein-Gordon Equation under nonsingular operators [23]. Ahmad et al. studied the
Ambartsumian equation under the Caputo-Fabrizio fractional operator [24]. Moore et al. used the
Caputo-Fabrizio fractional derivative to analyze the transmission of HIV disease [25]. Due to the
success of this operator, we generalize the model (1.2) as follows

CF Dγ
t x(t) = s

′

− µx − βxz,
CF Dγ

t y(t) = βxz − εy,
CF Dγ

t z(t) = cy − ςz.

(1.3)

In this paper, we explore an existence theory for the system (1.3) using a fixed point theory to ensure
that the proposed model has at least one solution. Also, we utilize Euler method to derive the general
procedure of solution to the model (1.3) under the CF derivative. In the literature, the study of
oscillatory and chaotic dynamics of the considered model was missing. The most important is: We
present the oscillatory and chaotic behaviour of the HIV1 infection for different fractional operator.

2. Preliminaries

Here we give definitions of CF fractional operators and formula of Laplace transform of CF
derivative. Let FI represent the fractional integral.

Definition 2.1. [18] If V(t) ∈ H1[0,T ],T > 0, γ ∈ (0, 1], then the CF derivative of V(t) is defined as:

CF Dγ
t [V(t)] =

M(γ)
1 − γ

∫ t

0
V
′

(%)K(t, χ)dχ,

where K(t, χ) = exp
[
−γ t−χ

1−γ

]
and M(γ) represent normalization function such that M(1) = M(0) = 1.

Definition 2.2. [19] The FI of V(t) in CF sense is given by:

CF Iγt [V(t)] =
1 − γ
M(γ)

V(t) +
γ

M(γ)

∫ t

0
V(χ)dχ, t ≥ 0, γ ∈ (0, 1]. (2.1)
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Definition 2.3. [22] For M(γ) = 1, the Laplace transform of
[
CF Dγ

t [V(t)]
]

is:

L
{
CF Dγ+M

t [V(t)]
}

=
1

1 − γ
L

[
V (h+γ)(t)

]
L

[
exp

(
−γt

1 − γ

)]
(2.2)

=
1

s + γ(1 − s)

sh+1L [V(t)] +

h∑
i=0

sh−iV (i)(0)

 . (2.3)

One can be obtain the following results for h = 0, 1 respectively

L
[
CF Dγ

t [V(t)]
]

=
sL [V(t)] − V(0)

s + γ(1 − s)
, (2.4)

L
[
CF Dγ+1

t [V(t)]
]

=
sL [V(t)] + sV(0) − V

′

(0)
s + γ(1 − s)

. (2.5)

3. Main work

Here, Picard-Lindelof and fixed-point theory have addressed the existence of a unique solution to
the proposed model. Also, the stability of the suggested model has proven by using the Picard iteration
and fixed point theory. The model’s general solution is constructed through Adams-Bashforth method.

3.1. Existence and uniqueness results

Consider the right hand sides of (1.2) as

Ω1 (t, x) = s
′

− µx − βxz,

Ω2 (t, y) = βxz − εy,

Ω3 (t, z) = cy − ςz.

So the system (1.3) gets the form 
CF Dγ

t x(t) = Ω1 (t, x) ,
CF Dγ

t y(t) = Ω2 (t, y) ,
CF Dγ

t z(t) = Ω3 (t, z) ,

(3.1)

let
∆ = sup

C[d,bn]
‖Ωn (t, .)‖ , for n = 1, 2, 3,

with
C [d, bn] = [t − d, t + d] × [u − cn, u + ck] = G ×Gn, f or n = 1, 2, 3.

Assume a uniform norm on C [d, bn] as:

‖B‖∞ = sup
t∈[t−d,t+d]

|B(t)| . (3.2)

Applying CF Iγt to (3.1), one can achieve
x(t) − x(0) = CF Iγt Ω1 (t, x) ,
y(t) − y(0) = CF Iγt Ω2 (t, y) ,
z(t) − z(0) = CF Iγt Ω3 (t, z) .

(3.3)
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x(t) = x(0) +

1−γ
M(γ) [Ω1 (t, x) −Ω1 (0, x(0))] +

γ

M(γ)

∫ t

0
Ω1 (χ, x) dχ,

y(t) = y(0) +
1−γ
M(γ)

[
Ω2 (t, y) −Ω2 (0, y(0))

]
+

γ

M(γ)

∫ t

0
Ω2 (χ, y) dχ,

z(t) = z(0) +
1−γ
M(γ) [Ω3 (t, z) −Ω3 (0, z(0))] +

γ

M(γ)

∫ t

0
Ω3 (χ, z) dχ.

(3.4)

Define the Picard operator Φ : C (G,G1,G2,G3)→ C (G,G1,G2,G3) as

Φ (B(t)) = B0(t) + [Ψ (t,B(t)) − Ψ0(t)]
1 − γ
M(γ)

+
γ

M(γ)

∫ t

0
Ψ (χ,B(χ)) dχ, (3.5)

where

B(t) =


x(t)
y(t)
z(t)

, B0(t) =


x(0)
y(0)
z(0)

,

Ψ (t,B(t)) =


Ω1 (t, x)

Ω2 (t, y)

Ω3 (t, z)

, Ψ0(t) =


Ω1 (0, x(0))

Ω2 (0, y(0))

Ω3 (0, z(0)) .

Assume that the proposed model obeys:

‖B(t)‖∞ ≤ max{d1, d2, d3}. (3.6)

Let ∆ = max{∆1,∆2,∆3} and there exits t0 = max{t ∈ D} so that t0 ≥ t, one get

‖ΦB(t) −B0(t)‖ =

∥∥∥∥∥∥Ψ (t,B(t))
1 − γ
M(γ)

+
γ

M(γ)

∫ t

0
Ψ (χ,B(χ)) dχ

∥∥∥∥∥∥
≤

1 − γ
M(γ)

‖Ψ (t,B(t))‖ +
γ

M(γ)

∫ t

0
‖Ψ (χ,B(χ))‖ dχ

≤
1 − γ
M(γ)

∆ +
γ

M(γ)
t∆

≤ d∆ ≤ max{d1, d2, d3} = d
′

,

where d =
1+γt0
M(γ) , and satisfies d < d

′

∆
. Also to evaluate the following equality

‖ΦB1 − ΦB2‖ = sup
t∈D
|B1(t) −B2(t)| . (3.7)

Using definition of Picard operator, we proceed as

‖ΦB1 − ΦB2‖ =

∥∥∥∥∥1 − γ
M(γ)

[Ψ (t,B1(t)) − Ψ (t,B2(t))]

+
γ

M(γ)

∫ t

0

[
Ψ (χ,B1(χ)) − Ψ (χ,B2(χ))

]
dχ

∥∥∥∥∥∥
≤

1 − γ
M(γ)

ϑ ‖B1(t) −B2(t)‖ +
γϑ

M(γ)

∫ t

0
‖B1(χ) −B2(χ)‖ dχ
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≤

{
1 − γ
M(γ)

ϑ +
γϑt0

M(γ)

}
‖B1(t) −B2(t)‖

≤ dϑ ‖B1(t) −B2(t)‖ ,

with ϑ < 1. For Φ to fulfill contraction condition we must have dϑ < 1. Thus the Picard operator Φ

obeys the contraction condition. Therefore, the proposed model posses a unique solution.

3.2. Stability of the proposed model

Here, we will demonstrate the Picard type stability by using fixed point theory. Applying CF Iγt
on (1.3), we obtain

x(t) − k1 =
1−γ
M(γ)

[
s
′

− µx(t) − βx(t)z(t)
]

+
γ

M(γ)

∫ t

0

[
s
′

− µx(χ) − βx(χ)z(χ)
]

dχ,

y(t) − k2 =
1−γ
M(γ)

[
βx(t)z(t) − εy(t)

]
+

γ

M(γ)

∫ t

0

[
βx(χ)z(χ) − εy(χ)

]
dχ,

z(t) − k3 =
1−γ
M(γ)

[
cy(t) − ςz(t)

]
+

γ

M(γ)

∫ t

0

[
cy(χ) − ςz(χ)

]
dχ.

(3.8)

Let x0(t) = k1, y0(t) = k2 and z0(t) = k3; then the Picard iteration is defined as:
xi+1(t) =

1−γ
M(γ)

[
s
′

− µxi(t) − βxi(t)zi(t)
]

+
γ

M(γ)

∫ t

0

[
s
′

− µxi(χ) − βxi(χ)zi(χ)
]

dχ,

yi+1(t) =
1−γ
M(γ)

[
βxi(t)zi(t) − εyi(t)

]
+

γ

M(γ)

∫ t

0

[
βxi(χ)zi(χ) − εyi(χ)

]
dχ,

zi+1(t) =
1−γ
M(γ)

[
cyi(t) − ςzi(t)

]
+

γ

M(γ)

∫ t

0

[
cyi(χ) − ςzi(χ)

]
dχ.

(3.9)

Definition 3.1. [26] Let (B, ‖.‖) represents a Banach space and Φ be a self mapping of B with the
inequality: ∥∥∥Φx − Φy

∥∥∥ ≤ L ‖x − Φx‖ + l ‖x − y‖ ,

∀ x, y ∈ B,where L ≥ 0 and 0 ≤ l ≤ 1. Then Φ is Picard Φ-stable.

Now, let us consider the recursive formula for the proposed model (1.3) as:
xi+1(t) = xi(t) + L −1

[
s+γ(1−s)

s L
[
s
′

− µxi(t) − βxi(t)zi(t)
]]
,

yi+1(t) = yi(t) + L −1
[

s+γ(1−s)
s L

[
βxi(t)zi(t) − εyi(t)

]]
,

zi+1(t) = zi(t) + L −1
[

s+γ(1−s)
s L

[
cyi(t) − ςzi(t)

]]
.

(3.10)

Theorem 3.2. If Φ be a self mapping such that
Φ(xi(t)) = xi+1(t) = xi(t) + L −1

[
s+γ(1−s)

s L
[
s
′

− µxi(t) − βxi(t)zi(t)
]]
,

Φ(yi(t)) = yi+1(t) = yi(t) + L −1
[

s+γ(1−s)
s L

[
βxi(t)zi(t) − εyi(t)

]]
,

Φ(zi(t)) = zi+1(t) = zi(t) + L −1
[

s+γ(1−s)
s L

[
cyi(t) − ςzi(t)

]]
.

(3.11)

Then the iteration (3.9) is Φ-stable if 
{1 − µΥ1 − βC2Υ2} < 1,
{1 + βC1Υ3 − εΥ4} < 1,
{1 + cΥ5 − ςΥ6} < 1.

(3.12)

AIMS Mathematics Volume 7, Issue 3, 4778–4792.



4784

Proof. First, we need to show that Φ has a fixed point. For this, we compute Φ(xi(t)) − Φ(x j(t)) for all
(i, j) ∈ N × N as follows:

Φ(xi(t)) − Φ(x j(t)) =

= xi(t) − x j(t) + L −1
[

s + γ(1 − s)
s

L
[
s
′

− µxi(t) − βxi(t)zi(t)
]]

−L −1
[

s + γ(1 − s)
s

L
[
s
′

− µx j(t) − βx j(t)z j(t)
]]

= xi(t) − x j(t) + L −1
[

s + γ(1 − s)
s

L
[
−µ

(
xi(t) − x j(t)

)
β
(
xi(t)zi(t) − x j(t)z j(t)

)]]
. (3.13)

Now, applying norm to Eq (3.2), one can obtain∥∥∥Φ(xi(t)) − Φ(x j(t))
∥∥∥

≤
∥∥∥xi(t) − x j(t)

∥∥∥
+

∥∥∥∥∥∥L −1
[

s + γ(1 − s)
s

L
[
−µ

(
xi(t) − x j(t)

)
− β

(
xi(t)zi(t) − x j(t)z j(t)

)]]∥∥∥∥∥∥
≤

∥∥∥xi(t) − x j(t)
∥∥∥

+L −1
{

s + γ(1 − s)
s

+ L
[
−µ

∥∥∥xi(t) − x j(t)
∥∥∥

−β
(
‖xi(t)‖ ‖zi(t)‖ −

∥∥∥x j(t)z j(t)
∥∥∥)]} . (3.14)

Due to the same role of both solutions, we assume that∥∥∥Φ(xi(t)) − Φ(x j(t))
∥∥∥ � ∥∥∥Φ(yi(t)) − Φ(y j(t))

∥∥∥ � ∥∥∥Φ(zi(t)) − Φ(z j(t))
∥∥∥ . (3.15)

From Eqs (3.14) and (3.15), we get

‖Φ(xi(t)) − Φ(x j(t))‖ ≤
∥∥∥xi(t) − x j(t)

∥∥∥ + L −1
{

s + γ(1 − s)
s

L
[
−µ

∥∥∥xi(t) − x j(t)
∥∥∥

−β
∥∥∥z j(t)

∥∥∥ ∥∥∥xi(t) − x j(t)
∥∥∥]} .

Since xi, x j,zi and z j are convergent sequences, there exists constants C1,C2,C3 and C4 for all t such that

‖xi‖ ≤ C1,
∥∥∥x j

∥∥∥ ≤ C2, ‖zi‖ ≤ C3,
∥∥∥z j

∥∥∥ ≤ C4.

Thus, Eq (3.14) becomes∥∥∥Φ(xi(t)) − Φ(x j(t))
∥∥∥ ≤ {1 − µΥ1 − βC2Υ2}

∥∥∥xi(t) − x j(t)
∥∥∥ . (3.16)

Similarly, we have ∥∥∥Φ(yi(t)) − Φ(y j(t))
∥∥∥ ≤ {1 + βC1Υ3 − εΥ4}

∥∥∥yi(t) − y j(t)
∥∥∥ , (3.17)
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∥∥∥ ≤ {1 + cΥ5 − ςΥ6}

∥∥∥zi(t) − z j(t)
∥∥∥ , (3.18)

where Υm for m = 1, 2, · · · , 6, are functions obtained from L −1
[

s+γ(1−s)
s L [∗]

]
. Now under the

condition 
{1 − µΥ1 − βC2Υ2} < 1,
{1 + βC1Υ3 − εΥ4} < 1,
{1 + cΥ5 − ςΥ6} < 1.

(3.19)

The operator Φ fulfills the condition of contraction mapping, so the operator Φ must have a fixed point.
Now, we prove that Φ fulfills the theorem (1) conditions. To do so, we assume that

L = (0, 0, 0), l =


{1 − µΥ1 − βC2Υ2} ,

{1 + βC1Υ3 − εΥ4} ,

{1 + cΥ5 − ςΥ6} .

Then all conditions of theorem (1) are satisfied. Hence, Φ is the Picard Φ-stable. �

4. Numerical method

Here we solve the considered model numerically using three step Adam-Bashforth technique. For
the sake of convenience we consider the model (1.3) as

CFDγ
0Λ(t) = Ξ(t,Λ(t)), Λ(0) = Λ0, 0 ≤ t ≤ T1 < ∞, (4.1)

where Λ = (x, y, z) ∈ R3
+ , Λ0 = (x0, y0, z0) are the initial values. Using the definition of CF derivative

the above Eq (4.1) becomes

M(γ)
1 − γ

+

∫ t

0
Λ′(χ)exp

[
−γ

t − χ
1 − γ

]
dχ = Ξ(t,Λ(t)). (4.2)

Now, Eq (4.2) implies that

Λ(t) − Λ(0) =
1 − γ
M(γ)

Ξ(t,Λ(t)) +
γ

M(γ)

∫ t

0
Ξ(χ,Λ(χ))exp

[
−γ

t − χ
1 − γ

]
dχ, (4.3)

so that

Λ(tn+1) − Λ(0) =
1 − γ
M(γ)

Ξ(tn,Λ(tn)) +
γ

M(γ)

∫ tn+1

0
Ξ(χ,Λ(χ))exp

[
−γ

t − χ
1 − γ

]
dχ, (4.4)

also we have

Λ(tn) − Λ(0) =
1 − γ
M(γ)

Ξ(tn−1,Λ(tn−1)) +
γ

M(γ)

∫ tn

0
Ξ(χ,Λ(χ))exp

[
−γ

t − χ
1 − γ

]
dχ, (4.5)

on subtraction of Eq (4.4) from Eq (4.5), we obtain

Λ(tn+1) − Λ(tn) =
1 − γ
M(γ)

[Ξ(tn,Λn) − Ξ(tn−1,Λn−1)]

AIMS Mathematics Volume 7, Issue 3, 4778–4792.
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+
γ

M(γ)

∫ tn+1

tn
Ξ(t,Λ(t))dt, (4.6)

in previous equation, the integral
∫ tn+1

tn
Ξ(t,Λ(t))dt is given by∫ tn+1

tn
Ξ(t,Λ(t))dt =

∫ tn+1

tn

[
Ξ(tn,Λn)

h
(t − tn) −

Ξ(tn−1,Λn−1)
h

(t − tn−1)

+
Ξ(tn−2,Λn−2)

h
(t − tn)

]
=

h
12

[23Ξ(tn,Λn) − 16Ξ(tn−1,Λn−1) + 5Ξ(tn−2,Λn−2)] . (4.7)

Thus,

Λ(tn+1) − Λ(tn) =
1 − γ
M(γ)

[Ξ(tn,Λn) − Ξ(tn−1,Λn−1)]

+
γh

12M(γ)
[23Ξ(tn,Λn) − 16Ξ(tn−1,Λn−1)

+5Ξ(tn−2,Λn−2)]. (4.8)

Equation (4.8) implies that

Λ(tn+1) − Λ(tn) =

(
1 − γ
M(γ)

+
23γh

12M(γ)

)
Ξ(tn,Λn)

−

(
1 − γ
M(γ)

+
16γh

12M(γ)

)
Ξ(tn−1,Λn−1)

+
5γh

12M(γ)
Ξ(tn−2,Λn−2)]. (4.9)

Hence we have,

Λn+1 = Λ(tn) +

(
1 − γ
M(γ)

+
23γh

12M(γ)

)
Ξ(tn,Λn)

−

(
1 − γ
M(γ)

+
16γh

12M(γ)

)
Ξ(tn−1,Λn−1)

+
5γh

12M(γ)
Ξ(tn−2,Λn−2)] + Rγ

n(t), (4.10)

which is the required obtained numerical solution using three step ABM scheme. In Eq (4.10), we have

Rγ
t (t) =

γ

M(γ)

∫ t

0

3
8

Ξ4(χ)h3dχ

||Rγ
t (t)||∞ =

γ

M(γ)

∥∥∥∥∥∥
∫ t

0

3
8

Ξ4(χ)h3

∥∥∥∥∥∥
∞

dχ (4.11)
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≤
3γh3

8M(γ)

∫ t

0
||Ξ4(χ)||∞dχ

≤
3γh3

8M(γ)
tmax(P),

where P = maxχ∈[0,t]||Ξ4(χ)||∞.

5. Numerical simulations and discussion

Now, we use the stated numerical scheme as presented in the previous section to get the approximate
solutions of the considered system as proposed in the current investigation using the fractional Caputo-
Fabrizio operator.

We take I.Cs as (100,0,1) for the simulation in Figures 1–3. In this section, we have presented the
three compartments of the proposed model graphically via Matlab at fractional-order
γ = 0.85, 0.9, 0.95, 1. From the figures, we conclude that when the uninfected cells x(t) going on
decreasing, then the infected CD4+ T-cells y(t) and plasma virion density z(t) is going to increase.
Also, we see that smaller the fractional-order, faster the decay and growth process, and when the
fractional order tends to 1, the fractional-order curve goes to the integer-order curve. Figures 4–5
represent the complex behaviour of the proposed model. We have used the following parameters
values for studying oscillatory and chaotic behaviour

s
′

= 0.0272; µ = 2.00136; β = 0.00027; ε = 3.8; c = 1.5; ζ = 2.9.

The oscillatory and chaos behaviour is presented in the Figures 4 and 5, respectively. Thus fractional-
order model extends the model defined by integer order operator. So from the above discussion, we
reach to decide that mathematical modelling of real phenomena under Caputo-Fabrizio derivative is
better for modelling the infectious diseases.
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Figure 1. Graphical representation of x(t) under Caputo-Fabrizio derivative at different
fractional order.
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Figure 2. Graphical representation of y(t) under Caputo-Fabrizio derivative at different
fractional order.
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Figure 3. Graphical representation of z(t) under Caputo-Fabrizio derivative at different
fractional order.
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Figure 4. Oscillatory behaviour of the different class for different values of γ.
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Figure 5. Chaos behaviour of the model for different γ values.
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6. Conclusions

In this paper, we looked at the Caputo-Fabrizio fractional model of HIV-1 infection and how
antiviral medication therapy affected it. The existence theory of the suggested model was built using a
fixed point technique. We have presented the Picard stability of the suggested model through fixed
point theory. In order to obtain the necessary numerical scheme for the model considered under CF
operator, we have used Adams-Bashforth numerical method. We have depicted the results graphically
to study the dynamics of the different classes for various fractional orders. Through graphical
representation, we have presented the complex behavior of the model for different fractional orders.
In the last, we have studied the limit cycle oscillations and chaos behavior of different compartments
of the suggested model. In future, one can study the HIV model with control strategies under
generalized operators.
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