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Abstract
Purpose Surgical skill assessment using computerized methods is considered to be a promising direction in objective per-
formance evaluation and expert training. In a typical architecture for computerized skill assessment, a classification system
is asked to assign a query action to a predefined category that determines the surgical skill level. Since such systems are still
trained by manual, potentially inconsistent annotations, an attempt to categorize the skill level can be biased by potentially
scarce or skew training data.
Methods We approach the skill assessment problem as a pairwise ranking task where we compare two input actions to
identify better surgical performance. We propose a model that takes two kinematic motion data acquired from robot-assisted
surgery sensors and report the probability of a query sample having a better skill than a reference one. The model is an
attention-enhanced Siamese Long Short-Term Memory Network fed by piecewise aggregate approximation of kinematic
data.
Results The proposed model can achieve higher accuracy than existing models for pairwise ranking in a common dataset. It
can also outperform existing regression models when applied in their experimental setup. The model is further shown to be
accurate in individual progress monitoring with a new dataset, which will serve as a strong baseline.
Conclusion This relative assessment approach may overcome the limitations of having consistent annotations to define skill
levels and provide a more interpretable means for objective skill assessment. Moreover, the model allows monitoring the skill
development of individuals by comparing two activities at different time points.
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Introduction

Assessment of surgical skillsmay have threemain objectives:
(1) choosing appropriate surgeons for a specific operation,
(2) examining current performance of candidate surgeons
before credentialing, and (3) monitoring the progress of sur-
geon’s skills during training activities. These assessment
activities are usually performed manually in an operation
room under supervision and feedback of expert surgeons.
Manual assessment of surgical skills by individuals may
lead to misinterpretations of the skill performance and hence
lead to suboptimal training and organization of the surgical
activities. Some structured methods such as Objective Struc-
tured Assessment of Technical Skills (OSATS [1]) have been
employed to minimize the effect of the subjective nature of
expert intervention. However, the process needs improve-
ments to increase its efficiency since the application of these
techniques still require significant effort of multiple experts
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Table 1 Methods for computerized assessment of surgical skills

References Data type Task Dataset

Fard et al. [4] Kinematic Classification JIGSAWS

Fawas et al. [7] Kinematic Classification JIGSAWS

Wang and Fey [6] Kinematic Classification JIGSAWS

Zia and Essa [5] Kinematic Regression JIGSAWS

Dougthy et al. [15] Video Ranking JIGSAWS

Fawas et al. [7] Kinematic Regression JIGSAWS

Funke et al. [9] Video Classification JIGSAWS

Nguyen et al. [10] Kinematic Classification JIGSAWS

Li et al. [16] Video Ranking JIGSAWS

Ogul et al. [17] Kinematic Ranking JIGSAWS

Zhang et al. [8] Kinematic Classification JIGSAWS

Kelly et al. [12] Kinematic Classification In-house

Lavanchy et al.
[13]

Video Classification In-house

Perez-Escamirosa
et al. [14]

Video Classification In-house

This study Kinematic Ranking
Regression
Monitoring

JIGSAWS,
ROSMA

over a long time period [2]. Considering the fact that evalu-
ation of the candidates by senior surgeons has certain cost,
there is an increasing need for alternative or complementary
computerized assessment systems.

We have recently witnessed a significant attempt to com-
puterize surgical skill assessment using machine learning
algorithms [3]. Robot-assisted surgery helps this effort by
providing data in different forms, such as kinematic sensor
measurements derived from robot arms and video recording
of a surgical action performed by an operator. An overview
of recent methods for computerized skill assessment using
machine learning is given in Table 1.

In one of the earliest studies, kinematic data collected
during robot-assisted surgery were used to predict the exper-
tise level of the surgeon [4]. A set of hand-crafted features
were extracted from surgery action and fed into three dif-
ferent supervised classifiers (k-Nearest Neighbour, Support
Vector Machine (SVM) and Linear Regression) for classi-
fication of surgeons into either “expert”, “intermediate” or
“novice” levels. The authors employed several kinematic
features including task completion time, path length, depth
perception, speed, motion smoothness, curvature, turning
angle and tortuosity to build the model. In a similar work
[5], the authors used different time and frequency domain
features of kinematic data, which were obtained through
sequential motion texture, discrete Fourier transform, dis-
crete cosine transform and approximate entropy analysis to
train a linear SVM model. In addition to classification, i.e.

assigning objects into predefined skill labels, they also con-
sidered to predict the level of skills by running the SVM in
a regression setup. Wang and Fey [6] proposed a deep learn-
ing architecture based on Convolutional Neural Networks
(CNN) that can automatically extract relevant features and
classify the expertise level using a fully-connected layer at the
end. Similar architectures were used by Fawas et al. [7] and
Zhang et al. [8] with slight modifications in layer organiza-
tions. Funke et al. [9] usedvideo recordings of surgery actions
instead ofmotion kinematics to feed a 3DCNNwith the same
objective (ternary classification). CNN was combined with
Long Short-TermMemory (LSTM)model to analyze kinetic
data for classification [10]. These studies reported very high
classification accuracy, up to 100% for some surgery actions,
in a public benchmark dataset for human gesture and skill
assessment from surgical activity, called JIGSAWS [11]. The
performance of conventional machine learningmethods with
hand-crafted features was recently re-evaluated in a larger
in-house dataset [14], where they determined that an average
accuracy of 91.5% can be achieved in binary classification of
skill. The LSTM model was shown to be accurate in binary
skill classification (“expert” or “novice”) from kinematic sig-
nals in a private dataset [12]. The ability of CNN applied on
video recordings was further assessed in another study with
an in-house dataset [13]. However, they reported that the
accuracy diminished from 86 to 70% when they increased
the number of skill categories from two to five.

The major problem with these performance assessment
systems is their limited ability to predict a fixed number
of predefined, possibly inconsistent, categories for skill lev-
els. As reported by Lavanchy et al. [13], they are unable
to model skill levels between these predefined categories.
Recalling the three main objectives for surgical skill assess-
ment, discussed at the beginning of the text, i.e. (1) choosing
appropriate surgeon, (2) examining current performance of
surgeons, and (3) monitoring the progress of a surgeon,
the classification approach may support partially the second
objective. However, it fails to provide an accurate solution for
first and third tasks since the number of categories represent-
ing skill levels is not sufficient to model precise comparison
of actions. Regression can be considered as a possible solu-
tion in general. However, in small dataset scenarios, where
continuous labels representing skill levels are too sparse, it
is not easy to provide generalizable models for exact value
predictions. Two previous approaches for this [5, 7] indeed
reported very low correlations between predicted and actual
skill levels.

The skill assessment problem was recently considered as
a task of learning to rank video recordings [15, 16] instead of
assigning them into predefined labels. These studies aimed
to build generic models with wide applicability of skill deter-
mination in any domain, but algorithms were also tested for
surgical skill assessment with the JIGSAW dataset. First, the
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study introduced a two-stream Temporal Segment Network
to capture both the type and quality of actions [16]. Sec-
ond, the study integrated an attention pooling and temporal
aggregation mechanism to a two-stream CNN model [16].
Skill assessments through video recordings have two main
limitations. First, video data processing is time and resource
inefficient, which makes it difficult to run the algorithms in
conventional personal computers. Second, video can record
the actions in two dimensions, if only one camera is used.
This is unfortunate since tracking of trajectories and veloci-
ties can only be measured in two dimensions and important
information of surgical skills is lost, if the third dimension is
lacking.

It has been shown in many studies that the use of motion
characteristics obtained from kinematic sensors is promising
to be used in medical practice. In the earlier study of Lin
et al., [21], it was shown that the tool motion of an expe-
rienced surgeon has more clearly defined features than that
of less experienced surgeon while performing the same task
using da Vinci Surgical System. Fard et al. [4] showed that
the kinematic data from the same system is able to provide
direct measures of motions, such as path length, depth per-
ception, speed, motion smoothness, curvature, turning angle
and tortuosity, which are highly representative for modeling
surgeon’s ability. According to a recent systematic litera-
ture review by Castillo-Sagura et al., [22] tool motion data
has been used in 59 of 101 papers identified for objective
assessment of surgical skills. Common indicators used in
these studies are organized into five types, position, veloc-
ity, acceleration, orientation and force. Experimental findings
by many studies have shown that all these indicators can be
captured by kinematic sensors [23], Table 1). It is even pos-
sible to evaluate the smooth motion that is normally violated
by jerky motion, tremor, and hesitant motion by incorporat-
ing the effect of motion in both time and frequency domains
[24].

In our earlier study, we offered to use three-dimensional
kinematic data instead of two dimensional motion data from
one camera video recording setup to develop a model for
rank-based assessment of skills for robot-assisted surgery
to overcome current limitations [17]. The preliminary ver-
sion of the model was based on a Siamese LSTM network
fed by two multi-variate time-series kinematic datasets to be
compared. The model does not use any direct features, but
instead, it uses raw motion signals to extract deep features to
represent pairwise ranks.

In this study, we extend our previous work [17] in three
ways. First, the model is significantly enhanced by adapting
an attention mechanism to the LSTM, and a processing step,
which calculates the Piecewise Aggregate Approximation
(PAA) of input kinematic data to ease parameter optimization
of the whole Siamese network. We show that these enhance-
ments significantly improve the prediction accuracy. Second,

we offer an approach that uses pairwise ranks of a query
action against a set of reference actions as features to train a
regression model. This allows the pairwise ranking model to
be turned into an exact skill prediction model when needed.
Third, we demonstrate that our model can serve as solution
for the third objective of skill assessment, i.e. monitoring of
surgeon’s own progress. To the best of our knowledge, this is
the first study that reports an empirical result in that respect.

The newmodel was first tested on the JIGSAWSdataset to
compare it with previous methods. According to the results,
our model can significantly improve the state-of-the-art in
both ranking and regression tasks for computerized surgi-
cal skill assessments. Further, the model was evaluated for
monitoring tasks in a larger and more recent dataset, called
ROSMA [18]. The results show that our model can achieve
reasonably good accuracy.

Methods

Pairwise rankingmodel

The surgical skill assessment problem is considered as a pair-
wise comparison task. We compare a query surgical action
(m) with a reference action (n) to infer if the query is per-
formed better than the reference. Semantically, the reference
may refer to a previous action of the same surgeon tomonitor
the skill improvement, or to an action performed by another
surgeon tomake a skill comparison for better assignment to a
surgery. While the model is formally the same, it can be used
in any semantic model based on how the model parameters
are trained from available data.

The kinematic data of two actions with lengthK and L are
denoted by xm � xm1 xm2 . . . xmK and xn=xn1 x

n
2 . . . xnL , respec-

tively, xmi refers to a set of kinematics measurements at time
i. A kinematic measurement can be position, angular veloc-
ity, gripper angle or any other motion-specific identifier of a
particular hand at a given time point.

Rank-based assessment can be defined as determining
which surgical action is performed with better skill. The out-
put of the model is referred by pmn, which is interpreted as
the probability of the query surgical action being performed
better than the reference;

pmn �

⎧
⎪⎨

⎪⎩

1 m per f orms better than n
0.5 m and n show equal per f ormance
0 n per f orms better than m

(1)

Next, the goal is to train a model that minimizes the prob-
abilistic loss in a set of samples annotated by experts. The
model assumes that the annotations of the exact skill levels
are not provided but all pairs are labeled by their pairwise
rank for their surgical skills by experts.
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Fig.1 General framework for
pairwise ranking of surgery
actions

The general framework that we introduce is based on a
Siamese network of attention-enhanced LSTM integrated
with a probabilistic ranking layer. The framework involves
an essential pre-processing step for kinematic input based on
PAA. (Fig. 1).

Piecewise aggregation of kinematic data

The action model based on attention-enhanced LSTM has
an excessive number of parameters to be optimized in train-
ing phase (See 2.3). On the other hand, the kinematic data
in our problem has a high dimensionality as opposed to the
small number of samples in available datasets. This will lead
to slow and insufficient learning of the model parameters in
the proposed framework. To overcome this issue, we offer a
pre-processing step based on PAA to reduce the dimension-
ality of the input signal while preserving the content that is
representative for the skill level. PAA approximates a one-
dimensional time-series kinematic signal x of length p into
a of arbitrary length q < p, where each ai is calculated by;

ai � q
p

∑
(

p
q

)
i

j� p
q (i−1)+1

x j (2)

This approximation results with the reduction of the
dimensionality of the kinematic signal by splitting it into
equal-sized segmentswhich are calculated by taking the aver-
age values in each segment. We apply PAA for each motion
variable independently to get a smoother multi-variate signal
at the input of the Siamese network.

Modeling action: attention-enhanced LSTM

Both query and reference actions are pre-processed using
PAA and given into different inputs of Siamese network.
The pre-processed kinematic data, given in the form ofmulti-
variate time-series, is used to feed an LSTM network at each

stream:

ht � LST M(ht − 1, at ) (3)

where at and ht are the input vectors at time t, where the
superscript defining the stream is ignored. The LSTMmodel
is parameterized by output, input and forget gates, controlling
the information flow within the recursive operation. Given it
represents input gate, ft represents forget gate and ot repre-
sents the output gate at time point t, the following equations
formally describe the LSTM function:

it � σ
(
Wiat +Uiht−1 + bi

)
(4)

ft � σ
(
W f at +U f ht−1 + b f

)
(5)

ot � σ (Woat +Uoht−1 + bo) (6)

c̃t � tanh(Wcat +Ucht−1 + bc) (7)

ct � σ (i◦t c̃t + f ◦
t ct−1) (8)

ht � o◦
t tanh(ct ) (9)

Here, ct is cell state and c̃t represents a candidate for cell
state at t. Wx , Ux and bx are weights and biases for gate x,
respectively. Finally, σ refers to sigmoid function. At every
time step t, LSTM outputs a hidden vector ht that reflects the
skill representation of the kinematicmotion at time point t. In
our application,weused abidirectional versionofLSTM[20]
to allow the modeling of two-way temporal dependencies in
actions.

The LSTM layer is enhanced by an attention mechanism,
which helps maximizing the contribution of the relevant
encoding context vectors and minimize those of irrelevant
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vectors while building the decoding context [25]. The atten-
tion layer that we implement uses an attention function to
assign weight to each hidden state produced by the LSTM
layer. The weighted distribution of hidden states is used as a
new representation of input signals.We calculate an attention
function for each hidden state ht , t � 1,…,T , as follows;

ut � tanh(Wshi + b) (10)

whereWs is an attention hidden weight matrix and b is a bias
parameter. From this function, softmax weights are calcu-
lated by;

αt � exp(ut )
∑T

t ′�1 exp(ut ′)
(11)

These are used to produce a context vector c, which will
be forwarded to the next layer:

c �
∑T

t�1
htαt (12)

The attention-enhanced LSTM layer is followed by a fully
connected layer fed by the vector of skill representation, cm

for any of the input m. This layer transforms skill represen-
tations of query and reference actions into scalars, sm and sn,
to make them explicitly comparable.

Ranking loss

We adapt a probabilistic loss function for model learning,
which was originally introduced to learn how to rank text
objects using a gradient descent approach [19]. A probabilis-
tic rank layer is built such that skill equivalence is taken into
account. We denote the posterior probability distribution Pij

� P(i>j), where › refers to the skill superiority of i to j and let
Pi j be the desired target values for those posteriors, such that
Pi j ε {1,0.5,0}. The goal is then to minimize the distance
between these two entities. We use a cross entropy cost func-
tion, Cij to measure the closeness between two probability
distributions, given by,

Ci j � −Pi j oi j + log(1 + eoi j ) (13)

where oij � (si – sj), i.e. is the difference between rank orders
of i and j, Then, the Siamese network parameters are inferred
by minimizing this loss for all (i, j) trial pairs in the training
data.

Results and discussion

Data

The performance of the entire model was evaluated in two
different publicly available surgery data sets obtained from
the da Vinci robot systems. They can provide both three-
dimensional kinematic data and stereo video of surgery tasks.
The kinematic data contain variables of both master and
slave’s left and right manipulators. The kinematic data for
each sample is considered as a multi-variate time series,
in which each variable corresponds to a different motion-
specific parameter.

JIGSAW[11], is a commonbenchmark dataset in the field.
It has surgical data collected from eight subjects with differ-
ent skill levels performing three different surgical tasks. The
tasks are ‘throw suturing’, ‘needle passing’, and ‘knot tying’
performed on benchtop training phantoms. The data consist
of 76 motion variables collected at 30 Hz, including tooltip
positions and orientation, linear and rotational velocities, and
gripper angle. A trial is a part of the data set that corresponds
to one subject performingone instance of a specific task.Each
subject is categorized by a fixed expertise level but each trial
may have a different skill score. This score is annotated using
the global rating score.

ROSMA [18] was recently released to facilitate the
research in the field. It contains more samples and longer
actions compared with JIGSAWS. Twelve subjects operated
the da Vinci Research Kit to perform three different surgery
tasks: post and sleeve, pea on a peg and wire chaser. The
twelve subjects attempted each of the surgical task 4–6 dif-
ferent times to a total of 207 trials. The obtained dataset
includes all the kinematic and dynamic information provided
by the da Vinci robot (both master and slave side). A board
of human experts defined an objective performance scale by
introducing penalty points for each surgery task. Then, each
trial (subject + task)was given a score based on penalty points
and completion time in seconds.

Using JIGSAW and ROSMA data, we performed exper-
iments in three different evaluation setups for (1) pairwise
ranking of different surgeons, (2) regression to predict the
exact skill level, and (3) monitoring of individual skill. For
setups 1 and 3, we identified pairwise ranking labels from
the exact scores, which were not used in any stage of the
proposed system later. Therefore, the model mimics the
approach where all assessments were performed in a pair-
wise manner.

Evaluation 1: ranking

We aim first to evaluate our framework in a common setup to
justify our own model parameters and to benchmark against
current state-of-the-art for pairwise ranking. To this end, we
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Table 2 Conditions for correct predictions of pairwise ranking

Ranking type pmn Ground truth

Ternary ≥ 0.5 + ε m > n

≥ 0.5 − ε and < 0.5 + ε m ≡ n

< 0.5 − ε m < n

Binary ≥ 0.5 m > n

< 0.5 m < n

Table 3 Results of pairwise ranking with the present framework

Surgery type Ternary ranking
(including skill
equivalence)

Binary ranking
(excluding skill
equivalence)

Acc Acc

Knot tying 79.2 83.65

Needle passing 78.87 82.48

Suturing 69.29 72.89

AVG 75.8 79.67

built an experimental setup that performed a fourfold cross
validation to evaluate the prediction performance. In this
setup, the pairs between 3/4 of the surgery actions were used
for training and the remaining pairs were used for testing.
As suggested by [15], the folds were organized such that the
test samples included both the pairs where neither action has
been used in a pair for training and the pairs where the other
action was used for training in a different pairing. This guar-
antees that all possible pairs were tested after four folds of an
experiment. The model performance is discerned using pair-
wise ranking accuracy, which is the percentage of correctly
ordered pairs, produced by each testing fold. This scheme
reports two different accuracy results for the cases where the
skill equivalence is considered andwhere it is not.When skill
equivalence is considered, the accuracy gives the evaluation
of ternary ranking performance. Otherwise, it evaluates the
binary ranking. Table 2 lists the conditions of correct order-
ing of a pair (m,n) in binary and ternary cases. We used ε �
0.01 in our evaluations.

We applied our model for each surgery task separately to
rank surgery actions by their skills. We used the following
hyper-parameters for the learning step by a stochastic gradi-
ent descent algorithm: a learning rate of 0.001, a batch size
of 2 and a unit size of 64 with single hidden layer. Table 3
discerns the accuracy for each task for ternary and binary
ranking.

Figure 2 shows Receiver Operating Characteristic (ROC)
curve for the proposed model when applied for binary pair-
wise ranking. The ROC curve depicts the performance of the
model is also discerned when the attention layer is removed.

The figure shows that the attention enhancement has a signif-
icant contribution for the prediction performance. Reported
ranking accuracy decreased to 74.64%when attention mech-
anism is eliminated. The contribution PAA step is also shown
in the figure. The PAA can boost the prediction accuracy
around 74%.

Although kinematic data is a multi-variate signal with so
many sensory measurements, it involves twomain character-
istic channels. One represents the changes in the position of
the arms and the other refers to varying velocity over time.
To understand the contribution of these two characteristics,
we run binary ranking experiments with positional features
and velocity features separately. The experiments revealed
that the binary ranking accuracies with positional character-
istics are 77.33%, 74.99% and 71.55% for knot tying, needle
passing and suturing, respectively. With velocity character-
istics only, the model can achieve the accuracies of 71.95%,
67.88% and 66.84% for the same tasks. According to the
results, positional features contribute more on ranking per-
formance for all tasks, however, the integration of velocity
features improves the final accuracy.

The present model was compared with three most rele-
vant studies in the literature. Two of them used video data
for skill ranking and tested their methods in the same dataset.
The third study is our own preliminary model on kinematic
data presented in [17]. Video-based methods work for only
binary ranking cases since their loss function did not sup-
port the evaluation of equivalence in skills. They did not give
accuracies separately for each task, but rather reported over-
all performance in surgery dataset. To make a comparison
with these methods we ran our model with a subset of the
original data in which the equally rated pairs were removed.
We calculated the average of accuracies achieved with three
surgery types.

The results are shown in Table 4. Our model can sig-
nificantly outperform both video-based methods and the
kinematic-based method in terms of pairwise ranking accu-
racy. Moreover, the present model built upon kinematic data
reduces the computational resource requirements compared
to approaches which use video recordings. Doughty et al.
[15] reported that average running time to train a single fold
is 18 h with NVIDIA TITANX GPU, whereas learning a
fold in our model is conducted in less than an hour with a
conventional CPU.

Table 5 shows the results of the same architecture on
ROSMAdataset. This performance is also consistentwith the
results of pairwise rankings that we obtained in first dataset,
which therefore constitutes a validation of our model in an
independent dataset.
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Fig. 2 ROC curves for binary
ranking for surgical skill
assessment for a knot tying,
b needle passing, c suturing
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Fig. 3 Scatter plots for predicted
skill scores vs actual scores for
the tasks of a knot tying,
b needle passing, and c suturing

Table 4 Results of pairwise ranking excluding skill equivalence

Method Action data Surgery type Accuracy
(%)

Doughty et al.
[15]

Video – 70.1

Li et al. [16] Video – 73.1

Ogul et al. [17] Kinematic Knot tying 79.6

Needle
passing

77.5

Suturing 63.5

Average 73.5

Present study Kinematic Knot tying 83.7

Needle
passing

82.5

Suturing 72.9

Average 79.7

Evaluation 2: regression

We argue that the results of pairwise rankings can be used
for prediction of the exact score of surgical skill. To do this,

Table 5 Results of pairwise ranking with present framework on
ROSMA

Action Acc

Wire chaser 75.6

Post and sleeve 75.1

Pee on a peg 74.9

AVG 75.2

we offer a method which could translate a list of pairwise
ranks into an exact score of skill level. The conventional way
of regression involves extracting a number of features from
input signals to represent the sample in a machine learning
model. Instead, we use an empirical representation where
each feature refers to the pairwise rank between the query
sample and another sample from a reference list. A pairwise
rank here refers to the probability of the query action being
performed better than the corresponding sample in a refer-
ence list. Figure 3 shows the results of exact value predictions
as the comparison of predicted scores against actual scores
for each task.
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Table 6 Comparison of
regression models for surgical
skill assessment in SCC

Method Knot tying Needle passing Suturing

Zia and Essa [5] 0.66 0.45 0.59

Fawas et al. [7] 0.65 0.57 0.60

Present method
(with actual ranks)

0.99 0.99 0.99

Present method
(with predicted ranks)

0.71 0.65 0.59

In the regression setup, the performance of predictionswas
evaluated using Spearman’s Correlation Coefficient (SCC)
between actual and predicted values of skill levels, as sug-
gested by [5, 7], two previous studies that adopted the idea of
using regression for surgical skill assessment. We followed
the same procedure to benchmark our method against these
methods in the same dataset. SCC is a nonparametric metric
that evaluates how well the relationship between two dis-
tributions can be described by a monotonic function. It is

calculated by 1− 6
∑

di
n(n2−1)

, where di is the difference between
the ranks of actual and predicted scores and n is the num-
ber of samples. Tenfold cross-validation was performed to
measure the performance. The results are given in Table 6.
This experiment validates that the pairwise ranking model
could be turned into a regression model with increased per-
formance. Pearson Correlation Coefficient were calculated
as 0.74, 0.65 and 0.53 for knot tying, needle passing and
suturing tasks, respectively.

The same framework was run with known pairwise ranks,
instead of predicted ranks, to justify the idea that the ranks
are appropriate features. As titled by “Present method (with
actual ranks)” in the table, a regression performance can be
achieved up to 0.99 in SCC with our model when we know
the actual pairwise ranks.

Evaluation 3: monitoring

Our last objective is to demonstrate that the pairwise ranking
model can be used for measuring the progress of a candidate
surgeon during training activities. This demonstration is done
using the ROSMA dataset, in which different trials are avail-
able from the same surgeon on the same surgery task. Instead
of a typical k-fold cross-validation, we performed a leave-
user-out (LUO) procedure for testing. In this procedure, the
trials of one user (surgeon) are left out for prediction,while all
other pairs of the remaining trials on the same surgery task
are used for training. This was repeated 12 times for each
surgeon independently. Final, accuracy was determined by
averaging the pairwise ranking accuracy of these folds. We
used the following hyper-parameters for the learning step by
a stochastic gradient descent algorithm: a learning rate of
0.001, a batch size of 2 and a unit size of 64 with single

Table 7 Performance of our method in individual progress monitoring

Action Ranking accuracy (%)

Present method

Wire chaser 73.9

Post and sleeve 66.7

Pee on a peg 69.4

Average 70.0

hidden layer. According to Table 7, our model achieved 70%
pairwise ranking accuracy.

Conclusion

A novel framework for objective skill assessment for robot-
assisted surgery using kinematic data was introduced, that
shall be used for choosing, credentialing and monitoring of
surgeons. The framework including an attention-enhanced
Siamese network with PAA, and was based on pairwise
ranking, instead of classification or regression. The model
provides a more interpretable and reliable view of skill
assessment. The experimental results justify that this model
can achieve better accuracy than the state-of-the-art methods
in both ranking and regression setups for surgical skill assess-
ment. Relative assessment approach offered in this studymay
help to overcome the limitations caused by inconsistencies
in subjective skill grading scales that are used to train such
machine-learning-based systems. Compared to video-based
solutions, the use of kinematic data reduces the demands on
computational power and is therefore amore applicable alter-
native for the practical implementation in a hospital setting.

To our knowledge, this is the first study that has considered
and experimented the task of individual progress monitor-
ing for surgical skills from a computational perspective. We
describe how our model can be used in this context and val-
idate it empirically in a recent dataset. The empirical results
are promising; these results will serve as a strong baseline
for future studies in monitoring task.

One of the limitations of the current study is the fact that
reported pairwise rankings may violate triangular consis-
tency, which will result in an unidentifiable full ranking of
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all actions. Although this information is not always requested
in real—life surgeon trainings, considering the consistency
in full ranking in the loss function may improve the pre-
diction accuracy of the model. This is left for future work.
The need for further validation of the ROSMA dataset with
deeper statistical analysis challenges another future study.
Another limitation is related to the kinematic data. Although
kinematic data has an advantage over video data in capturing
three-dimensional motion information, kinematic data does
not contain contextual and semantic information such as the
smoothness and strength of the movement, and the interac-
tion between tools and tissue. Therefore, it may be a future
direction to integrate video and kinematic data for more
accurate ranking predictions with the expense of increasing
computational costs. As a result, the assessment of surgical
skill needs further investigation to perform in an objective
way. Current progress in kinematic sensor data analysis is
considered as a powerful complementary tool to manual
assessment. It is reasonable to suggest that assessing surgical
skill requires multiple simultaneous assessments, including
machine-learning-based decision support systems as offered
in the present study.

Acknowledgements Burçin Buket Oğul was financially supported
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