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Abstract In this relativistic consideration, the

energy integral unlike others has been derived in a

weakly relativistic plasma in terms of Sagdeev poten-

tial. Both compressive and rarefactive subsonic soli-

tary waves are found to exist, depending on wave

speeds in various directions of propagation. It is found

that compressive relativistic solitons have potential

depths that are higher than non-relativistic solitons in

all directions of propagation, allowing for the presence

of denser plasma particles in the potential well.

Furthermore, it shows how compressive soliton

amplitude grows as the propagation direction gets

closer to the magnetic field’s direction.

Keywords Sagdeev potential � Solitary waves �
Mach number � Magnetic field � Energy integral

1 Introduction

Several authors have theoretically [1–23] and exper-

imentally [24, 25] studied the existence of solitary

waves under various physical phenomena in magne-

tized or unmagnetized plasma models using the

standard reductive perturbation method. The works

of Korteweg–De Vries (KdV) [26] and Washimi and

Taniuti [27] have had a significant influence on the

research of solitary waves. It is of paramount impor-

tance to include the presence of a magnetic field

affecting a plasma medium that gives rise to different

physical situations. The ratio between the collision and

cyclotron frequencies determines how the magnetic
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field behaves. The behavior of the plasma is much

more complicated with respect to the ion cyclotron

frequency. Ion-acoustic solitons with finite amplitude

and density hump that propagate obliquely to the

external magnetic field have been shown to exist by

Shukla and Yu [28]. The whole set of equations of

motion for plane ion acoustic waves propagating at an

angle to the magnetic field has been solved by Yu et al.

[29] as stationary soliton solutions. The drifting

influences of electrons on fully nonlinear ion-acoustic

waves in a magnetoplasma have been studied by

Kalita et al. [7]. They have observed that the drift

motion of electrons along the magnetic field direction

affects the ion-acoustic solitons. Yinhua and Yu [30]

have investigated fully nonlinear ion-acoustic solitary

waves propagating obliquely to the external magnetic

field. Using Sagdeev’s pseudo-potential method and

the Thomas–Fermi density distribution for electrons,

Chatterjee et al. [31] have investigated ion-acoustic

solitary waves and double layers in a two-component

dense magnetoplasma. Furthermore, many researchers

have studied solitary waves in plasma in several

techniques, which are widely available elsewhere.

Relativistic factors play a significant role in the

formation of solitary waves when particle speeds are

comparable to those of light. In the solar atmosphere

and interplanetary space, for example, highly fast ions

are commonly observed. Many researchers like Chain

and Clemmow [32], Shukla et al. [33], and Arons [34]

have investigated the nonlinear relativistic plasma

waves in laser-plasma interactions and astronomical

models. In a simple model of ion–electron plasma

based on initial streaming, Das and Paul [35] have

studied relativistic solitons. Chatterjee and Roychoud-

hury [36] have used Sagdeev’s pseudo-potential

method with electron inertia to study the influence of

ion temperature in a relativistic plasma. They have

demonstrated that the ion temperature limits the values

of V , the soliton velocity. Using Sagdeev’s pseudo-

potential method in relativistic plasma, Roychoudhury

et al. [37] have investigated the effect of ion and

electron drifts on the presence of solitary waves. In a

collisionless plasma made up of heated ions, Esfand-

yari et al. [38] have explored the influence of ion

temperature and relativistic electron beam density on

ion-acoustic solitons. Small amplitude relativistic

solitons for electron inertia and mild relativistic effect

were observed by Singh et al. [39]. In their investi-

gation, electron inertia is not taken into account, and it

is demonstrated that under constant plasma pressure,

the soliton existence range between electron and ion

speeds contracts. Das and Chatterjee [40] have studied

large-amplitude solitary waves in relativistic plasmas

with finite ion temperatures and electron inertia. In

their investigation, they have noticed that there is a

critical value u0 of u at which ðu0Þ2 ¼ 0, beyond which

the existence of solitary waves ceases to exist. Subject

to a reasonable mathematical condition, Kalita and

Das [41] have looked into higher and smaller-order

relativistic effects in the formation of compressive

solitons with large amplitudes in a defined range u0 �
v0 and rarefactive solitons with small amplitudes in the

small upper range of u0 � v0j j. It is said to be a

reasonable justification for considering electron iner-

tia in plasma that is susceptible to higher-order

relativistic effects. In a warm magnetoplasma con-

taining positive–negative ions and non-thermal elec-

trons, El-Labany et al. [42] have studied the

characteristics of small amplitude nonlinear ion-

acoustic solitary waves by deriving Zakharov–Kuz-

netsov equation. It is shown that the mass and density

ratios of the positive and negative ions as well as the

non-thermal electron parameter have a significant

impact on both compressive and rarefactive ion-

acoustic solitary waves. Also, the variable-coefficient

Zakharov–Kuznetsov equation that governs the two-

dimensional ion-acoustic waves that are obliquely

propagating in an inhomogeneous magnetized two-

ion-temperature dusty plasma was explored by Qu

et al. [43] using symbolic computation. Kalita et al.

[22] have looked into the relativistic compressive

solitons of fast acoustic mode in a magnetized ion-

beam plasma. In a magnetized ion-beam plasma

containing stationary warm ions, positive beam ions,

and the usual electrons, Das [23] has investigated the

formation of ion-acoustic solitary waves. In the

weakly relativistic and magnetized plasma model,

compressive solitons of low and high amplitudes have

been studied by Kalita and Deka [44]. Their study

reported that the increase in the initial flow velocity of

electrons was found to be less effective in increasing

the amplitude of compressed solitons due to mode one

than the one corresponding to mode two. Rehmann

et al. [45] have studied the ion sound waves via the

nonlinear Zakharov–Kuznetsov equation in a magne-

tized plasma with two ionic components by using the

perturbation method. They found that in such plasmas,
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two modes of ion sound waves can propagate at linear

boundaries at fast and slow velocities. A variable-

coefficient derivative nonlinear Schrödinger (vc-

DNLS) equation explaining nonlinear Alfvén waves

in inhomogeneous plasmas was studied byWang et al.

[46] using symbolic computation. They were able to

find multi-solitonic solutions to the vc-DNLS equation

in terms of the double Wronskian. Graphs are used to

evaluate two- and three-solitonic interactions. The

amplitudes and velocities of the solitonic waves are,

respectively, controlled by plasma streaming and an

inhomogeneous magnetic field. Sultana [47] has

explored how non-Maxwellian j-distributed electrons
in a magnetized non-thermal collisional dusty plasma

propagate ion-acoustic solitary waves in an oblique

way.Kamalam and Ghosh [48] have used the Sagdeev

pseudo-potential technique to investigate the ionic

acoustic single wave of a three-component magne-

tized plasma consisting of warm fluid ions and two

electrons at different temperatures in the Boltzmann

distribution. El-Monier and Atteya [49] have investi-

gated the nonlinear propagation of ionic noise in a

collision-free dissipative ion-to-plasma magnetization

system consisting of cold negatively charged non-

relativistic ions and superthermal ions. Ullah et al. [50]

have studied the propagation of ion single sound

waves in an electron–positron plasma by using Tsalli

distributed electrons and Maxwell positrons. They

have found that changes in several numbers of

important plasma characteristics, such as the non-

extensive parameter, temperature ratio, direction

cosine, positron concentration, and magnetic field

intensity, have a considerable impact on the ion-

acoustic solitary waves’ distinctive qualities. In a

homogeneous magnetized plasma for the bidirectional

propagation close to the magneto-acoustic speed, Lan

and Guo[51] have studied the coupled generalized

nonlinear Schrödinger–Boussinesq system. The Hir-

ota method is used to derive the expressions for the

multi-soliton solutions. On the soliton, the effects of

the group velocity, group dispersion coefficient for the

upper hybrid, and magnetic field characteristics are

discussed. Recently, Hassan and Sultana [52] have

looked into the dust-ion-acoustic solitary waves in

magnetized plasma, consisting of inertial ion species,

non-inertial electron species following non-thermal j-
distribution, and immobile dust particles. In their

investigation, they have reported that the basic char-

acteristics of dissipative dust-ion-acoustic solitary

waves and their modes of propagation are observed

to significantly affect the variation of plasma config-

uration parameters as well as the variation of the

superthermal index j in the plasma system under

consideration. Very recently, Nooralishahi and Salem

[53] have studied the fully relativistic two-fluid

hydrodynamic model used to examine the nonlinear

propagation of stationary large-amplitude electromag-

netic solitary waves in a magnetized electron–positron

plasma. For more studies on different wave structures

of nonlinear evolution equations, interested readers

are referred to see [54–62]. The present paper analyzes

the planar weakly relativistic ion-acoustic solitary

waves in a magnetized cold plasma with electron

inertia. In this relativistic consideration, the energy

integral unlike others has been derived in a weakly

relativistic plasma in terms of Sagdeev potential. The

paper is structured as follows: The fundamental

equations for our plasma model and the Sagdeev

potential’s derivation are presented in Sect. 2. In

Sect. 3, the conditions for the existence of solitary

waves are demonstrated. In Sect. 4, computational

results for the presence of nonlinear structures are

explored for various parametric ranges.

2 Governing equations

Amagnetized plasma involving unidirectional weakly

relativistic ions and highly magnetized electrons of

constant temperature Te is considered. Such a plasma

model in the zx-plane is governed by the following

fundamental equations:

oni
ot

þ o

ox
niuixð Þ þ o

oz
niuizð Þ ¼ 0; ð1Þ

o

ot
þ uix

o

ox
þ uiz

o

oz

� �
cixuix ¼ � ou

ox
þ uiy; ð2Þ
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o

ot
þ uix

o

ox
þ uiz

o

oz

� �
uiy ¼ �uix; ð3Þ

o

ot
þ uix

o

ox
þ uiz

o

oz

� �
uiz ¼ � ou

oz
; ð4Þ

for the ions and

one
ot

þ o

oz
neuezð Þ ¼ 0; ð5Þ

o

ot
þ uez

o

oz

� �
uez ¼

1

Q

ou
oz

� 1

ne

one
oz

� �
; ð6Þ

for the electrons, where

cix ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� V2
x

p ¼ 1þ V2
x

2
;Vx ¼

uix
c
;Q ¼ me

mi
;

is the electron-to-ion mass ratio and c is the speed of

light. The authors have normalized the densities by the

equilibrium plasma density n0, time by the inverse of

the ion gyro-frequency Xi, space by the ion gyro-

radius qs ¼ Cs=Xi, speed by Cs½¼ ðTe=miÞ1=2�, and the
potential by Te=e in order to derive the set of Eqs. 1–6.

Magnetized plasmas are anisotropic, i.e., the proper-

ties parallel to the magnetic field are quite different

from those in directions perpendicular to it. Further, in

the perpendicular direction of motion, relativistically

length (so the space) is not contracted (otherwise

doesn’t change) and the proper time of the rest frame

can be practically identical to the time t0 of the moving

frame. Choosing uiy=c and uiz=c to be very small

inherent early beginning of submission to the propa-

gation of solitary waves in one direction with constant

speed will be rather more feasible along which, length

contraction is mathematically justified. So, the com-

ponents of velocity namely uiy=c and uiz=c in c can be

ignored.

We take a frame moving along with the wave given

by

n ¼ kxxþ kzz�Mt; ð7Þ

for a stationary solution where

M ¼ Mach number ¼ V

Cs

¼ pulse speed

ion sound speed

� �
;

kx and kz are the direction cosines such that

k2x þ k2z ¼ 1. We can use the moving co-ordinate n to

write from (7)

o

ox
¼ kx

o

on
;
o

oz
¼ kz

o

on
;
o

ot
¼ �M

o

on
:

Introducing the new co-ordinate n defined in (7),

and using uix ¼ uiz ¼ 0, at ni ¼ 1 as nj j ! 1 after

integration, Eq. 1 reduces to

kxuix þ kzuiz ¼ M 1� 1

ni

� �
: ð8Þ

Using (7) and (8), Eqs. 2–4 can be simplified as

M

ni

o

on
cixuixð Þ ¼ kx

ou
on

� uiy; ð9Þ

M

ni

ouiy
on

¼ uix; ð10Þ

M

ni

ouiz
on

¼ kz
ou
on

: ð11Þ

Again making use of (7) in (5) and (6) and

integrating once, we get

uez ¼
M

kz
1� 1

ne

� �
: ð12Þ

In acquiring Eq. 12, uez ¼ 0, at ne ¼ 1 as nj j ! 1
has been used.

Employing the co-ordinate n and using (12), Eq. 6

can be once integrated to give

ne ¼ e
uþA 1� 1

n2e

� �
;A ¼ QM2

2k2z
; ð13Þ

under the boundary conditions u ¼ 0, at ne ¼ 1 as

nj j ! 1.

Making use of (13) and ni ¼ ne ¼ n, Eq. 11 can be

integrated once to yield

uiz ¼
kz
M

n� 1ð Þ 1� 2A

n

� �
: ð14Þ

With the use of (14), from (8) we can get

uix ¼
M

kz
n� 1ð Þ Q

2A
1� 2A

n

� �� �
: ð15Þ

Putting the value of uix from (15) into (9) uiy can be

determined as

uiy ¼ f nð Þ 1
n

dn

dn
; ð16Þ

where f nð Þ ¼ A1

n4 þ
A2

n3 þ
A3

n2 þ A4 þ A5nþ A6n
2 with
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A1 ¼ � 3M4L3H3

2c2
;

A2 ¼ �2A1 þ B;

A3 ¼ � D� A1 þ 6Bþ E þ Gð Þ;

A4 ¼ H þ 2Bþ 3E þ A6;

A5 ¼ �2 Bþ A6ð Þ;

A6 ¼ �
3k6z H

3

2c2M2
;

where B ¼ 3M2k2z L
2H2

c2
, D ¼ M2HL, E ¼ 3k4z LH

3

2c2
, G ¼ 2A

H ,

H ¼ 1
kx
, and L ¼ 1þ Q.

In deriving (16), we have used Eq. 13. With the

values of uix and uiy from (15) and (16) respectively,

one can obtain from (10) the following expression

d

dn
f nð Þ 1

n

dn

dn

� �
¼ H n� 1ð Þ L� Q

2A
n

� �
: ð17Þ

Multiplying both sides of (17) by the term in the

parenthesis, it can be integrated to recover the

following energy integral for the classical particles

with the Sagdeev potential w

1

2

dn

dn

� �2

þw n;M; kzð Þ ¼ 0; ð18Þ

where

w n;M; kzð Þ ¼ g nð Þh nð Þ; ð19Þ

with

g nð Þ ¼ n2

f nð Þf g2
; ð20Þ

and

h nð Þ ¼ �H
A1L

4

1

n4
� 1

� �
� 1

3
Lþ Q

2A

� �
A1 � A2L

� �	
1

n3
� 1

� �

� 1

2
Lþ Q

2A

� �
A2 � A3L� A1Q

2A

� �
1

n2
� 1

� �

� Lþ Q

2A

� �
A3 �

A2Q

2A

� �
1

n
� 1

� �
� A4Lþ A3Q

2A

� �
log n

þ Lþ Q

2A

� �
A4 � A5L

� �
n� 1ð Þ þ 1

2
Lþ Q

2A

� �
A5 � A6L� A4Q

2A

� �
n2 � 1

 �

þ 1

3
Lþ Q

2A

� �
A6 �

A5Q

2A

� �
n3 � 1

 �

�A6Q

8A
n4 � 1

 ��

;

ð21Þ

and the boundary condition dn
dn

¼ 0 at n ¼ 1 has been

used.

3 Conditions for the existence of solitary waves

By exploring the behavior of w nð Þ near n ¼ 1 and

n ¼ N, where N is the maximum value of n, i.e., the

amplitude of the solitary wave pulse, the necessary

conditions for the existence of localized solitary waves

can be retrieved. We need to set w Nð Þ ¼ 0 give the

amplitude ‘‘N’’ of the solitary wave pulse for the

nonlinear dispersion relation such that

A1L

4

1

N4
� 1

� �
� 1

3
Lþ Q

2A

� �
A1 � A2L

� �
1

N3
� 1

� �
� 1

2
Lþ Q

2A

� �
A2 � A3L� A1Q

2A

� �
1

N2
� 1

� �

� Lþ Q

2A

� �
A3 �

A2Q

2A

� �
1

N
� 1

� �
� A4Lþ A3Q

2A

� �
logN

þ Lþ Q

2A

� �
A4 � A5L

� �
N � 1ð Þ þ 1

2
Lþ Q

2A

� �
A5 � A6L� A4Q

2A

� �
N2 � 1

 �

þ 1

3
Lþ Q

2A

� �
A6 �

A5Q

2A

� �
N3 � 1

 �

� A6Q

8A
N4 � 1

 �

¼ 0:

ð22Þ

Furthermore, the conditions for the existence of

solitary waves are

w 1ð Þ ¼ w Nð Þ ¼ w0 1ð Þ ¼ 0; ð23Þ

and

w nð Þ\0; ð24Þ

between n ¼ 1 and n ¼ N.

Now, to arrive at the mathematical conditions, we

consider

h0 nð Þ ¼ �H �A1L

n5
þ Lþ Q

2A

� �
A1 � A2L

� �	
1

n4
þ Lþ Q

2A

� �
A2 � A3L� A1Q

2A

� �
1

n3

þ Lþ Q

2A

� �
A3 �

A2Q

2A

� �
1

n2
� LA4 þ

A3Q

2A

� �
1

n
þ Lþ Q

2A

� �
A4 � A5L

� �

þ Lþ Q

2A

� �
A5 � A6L� A4Q

2A

� �
nþ Lþ Q

2A

� �
A6 �

A5Q

2A

� �
n2 � A6Q

2A
n3
�
;

ð25Þ

and

h00 nð Þ ¼ �H
5A1L

n6
� 4 Lþ Q

2A

� �
A1 � A2L

� �	
1

n5

� 3 Lþ Q

2A

� �
A2 � A3L� A1Q

2A

� �
1

n4
� Lþ Q

2A

� �
A3 �

A2Q

2A

� �
1

n3

þ LA4 þ
A3Q

2A

� �
1

n2
þ Lþ Q

2A

� �
A5 � A6L� A4Q

2A

� �

þ 2 Lþ Q

2A

� �
A6 �

A5Q

2A

� �
n� 3A6Q

2A
n2
�
;

ð26Þ

where prime denotes the differentiation with respect to

n.

It is observed from Eqs. 21, 25, and 26 that at n ¼ 1

h 1ð Þ ¼ 0; h0 1ð Þ ¼ 0;

and
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h00 1ð Þ ¼ 2 L� Q

2A

� �
J þ Q

2A

� �
AH2

Q
; ð27Þ

with

J ¼ Qþ k2z :

With the above values and Eq. 20 at n ¼ 1, we get

w 1ð Þ ¼ 0; w0 1ð Þ ¼ 0;

and

w00 1ð Þ ¼ Q 2AL� Qð Þ
2A 2AJ � Qð Þ : ð28Þ

The nonlinear dispersion relation (22) is deduced

by settingw Nð Þ ¼ g Nð Þh Nð Þ ¼ 0 for which h Nð Þ ¼ 0,

since g Nð Þ 6¼ 0 so that

h0 Nð Þ ¼ � N � 1ð ÞH L

N
� Q

2A

� �
3H3 N � 1ð Þ2

2c2
1

N4

Q

2A
N2 � L

� �"
Nk2z � LM2

 �2

þ
H N2 �M2ð Þ � 2A
 �

N2

�
;

and

w0 Nð Þ ¼ c2QN5 N � 1ð Þ NQ � 2ALð Þ
AH2 3k2z N � 1ð Þ2 QN2 � 2ALð Þ QN

2A � L

 �

þ 2c2k2xN
2 N2 �M2ð ÞQ� 2QAf g

h i :

ð29Þ

The set of conditions (23) is satisfied because of

(28) and (22). The second set of conditions (24), w nð Þ
is expanded in Taylor’s series near n � 1 and n � N to

give

w n � 1ð Þ ¼ w 1ð Þ þ n� 1ð Þw0 1ð Þ þ n� 1ð Þ2

2!
w00 1ð Þ

þ � � � ;

and

w n � Nð Þ ¼ w Nð Þ þ n� Nð Þw0 1ð Þ

þ n� Nð Þ2

2!
w00 Nð Þ þ � � � :

With the help of (28), (22), and (29), these can be

expressed as

w n � 1ð Þ ¼ n� 1ð Þ2Q 2AL� Qð Þ
4AM2 2AJ � Qð Þ ; ð30Þ

which is reducible from the works of Kalita et al.

[7]exactly for v0e ¼ 0 in non-relativistic cases. As there

is no initial streaming in this consideration, therefore,

at the equilibrium stage where n ¼ 1, there is no

relativistic effect and so the above condition is

justified and

w n � Nð Þ ¼
c2Q n� Nð ÞN5 N � 1ð Þ NQ� 2ALð Þ

AH2 3k2z N � 1ð Þ2 QN2 � 2ALð Þ QN
2A � L


 �
þ 2c2k2xN

2 N2 �M2ð ÞQ� 2QAf g
h i ;

ð31Þ

From (30) and (31), the following conditions finally

are acquired for w nð Þ\0 between n ¼ 1 and n ¼ N to

represent solitary waves:

near n ¼ 1;Qþ k2z\
k2z
M2

\1þ Q; ð32Þ

Fig. 1 Variation in the amplitude with kz of the subsonic

compressive soliton at various wave speeds M ¼
0:75 Blueð Þ; 0:80 Redð Þ; 0 :85 Yellowð Þ when c ¼ 300
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near n ¼ N; 1[M�N; M� kz; when N\1;

ð33Þ

andN[
M2

kz
; M� kz when N[ 1: ð34Þ

4 Results and discussion

In the current model of magnetized weakly relativistic

plasma under consideration, both compressive

N[ 1ð Þ and rarefactive N\1ð Þ subsonic M\1ð Þ
solitary waves are found to exist, depending on wave

speeds in various directions of propagation. The

amplitude of the compressive soliton is found to

diminish rapidly (Fig. 1) with kz for all soliton speeds

M ¼ 0:75 Blueð Þ; 0:80 Redð Þ and 0.85 Yellowð Þ. It is
worthwhile to mention that, in the vicinity where the

values of the direction of wave propagation kz tend to

attain the upper limit of subsonic soliton speeds

kz ! Mð Þ, the relativistic compressive solitons appear

to move almost with constant amplitudes. On the other

hand, they attain various high amplitudes for small

kz\M (Fig. 1). It is essential to report that the

potential depths of compressive relativistic solitons

(Fig. 2) increases with the decrease in kz. Further, it

demonstrates the increase in compressive soliton

amplitude as the propagation direction approaches

the direction of the magnetic field for kz ¼
0:30 Blueð Þ; 0:33 Redð Þ and 0.36 Yellowð Þ and M ¼
0:70. Unlike compressive solitons, the depths of

potential wells of rarefactive relativistic solitons

(Fig. 3a) for M ¼ 0:40 and (Fig. 3b) for M ¼ 0:60

are found to decrease with mach number M as it

increases for kz ¼ 0:10 Blueð Þ; 0:15 Pinkð Þ and 0.20

Fig. 2 The reflection of the potential wells characterized by

wðnÞ of the energy integral shows the amplitudes and

corresponding depths of the relativistic compressive solitons

for kz ¼ 0:30 Blueð Þ; 0:33 Redð Þ; 0 :36 Yellowð Þ when c ¼
300 and M ¼ 0:70

Fig. 3 The reflection of the potential wells characterized by

wðnÞ of the energy integral shows the amplitudes and

corresponding depths of the relativistic compressive solitons

for kz ¼ 0:10 Blueð Þ; 0 :15 Pinkð Þ; and 0:20 Yellowð Þ when

c ¼ 300 and M ¼ 0:40 (a), M ¼ 0:60 (b)
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Yellowð Þ. This reveals that the plasma particles

(lighter) moving with relativistic speeds are not

constrained to be in deeper potential wells in case of

relativistic but rarefactive solitons ascertaining sub-

mission to relativistic effects. The rarefactive soliton

widths being dependent on potential depths are

observed to decrease with the mach number M

(Fig. 3a, b) as it increases slowly. Additionally, the

potential depths of relativistic rarefactive solitons are

seen to decrease with kz for fixed higher values of

M ¼ 0:75(Fig. 4). Otherwise, as the direction of

propagation deviates from that of the magnetic field,

the potential depths of rarefactive solitons tend to be

smaller. Interestingly, the amplitudes of the compres-

sive solitons reflect a uniform increase (Fig. 5a) with

subsonic wave speed M for all kz ¼ 0:20 Yellowð Þ;
0:30 Redð Þ and 0.40 Blueð Þ. Besides, amplitudes of the

rarefactive solitons which appear to exist far away

from the direction of the magnetic field (Fig. 5b), i.e.,

for all (smaller) kz ¼ 0:05 Yellowð Þ; 0:10 Redð Þ
and 0.15 Blueð Þ are observed to decrease almost

linearly with M. But, the amplitudes of compressive

solitons grow nonlinearly withM and at the increasing

difference at the step-up increase in kz (Fig. 5a). On

the contrary, those of rarefactive solitons grow almost

linearly with M maintaining an almost regular differ-

ence at the step-up increase in kz except for smaller kz.

The higher and nearly constant amplitudes of the

rarefactive solitons are found to decrease slowly

initially (Fig. 6) for small kz for all M ¼
0:70 Blueð Þ; 0:80 Pinkð Þ and 0.90 Yellowð Þ which

gradually increases with kz. Besides, the higher is the

wave speed, the higher is the corresponding rarefac-

tive soliton amplitude.

Fig. 4 The reflection of the potential wells characterized by

wðnÞ of the energy integral shows the amplitudes and

corresponding depths of the relativistic compressive solitons

for kz ¼ 0:10 Yellowð Þ; 0:20 Redð Þ; 0 :30 Blueð Þ when c ¼
300 and M ¼ 0:75

Fig. 5 Variation of subsonic compressive soliton amplitude (a) and rarefactive soliton amplitude (b) with M for different

kz ¼ 0:20 Yellowð Þ; 0:30 Redð Þ; 0 :40 Blueð Þ(a) and kz ¼ 0:05 Yellowð Þ;0:10 Redð Þ;0:15 Blueð Þ(b) when c ¼ 300
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The paper can be extended for future work by

taking into account the relativistic effects on electrons

but ions are non-relativistic.
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