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Abstract: This paper deals with unsteady flow of fractional Casson fluid in the existence of
bioconvection. The governing equations are modeled with fractional derivative which is transformed
into dimensionless form by using dimensionless variables. The analytical solution is attained by
applying Laplace transform technique. Some graphs are made for involved parameters. As a result, it is
found that temperature, bioconvection are maximum away from the plate for large time and vice versa
and showing dual behavior in their boundary layers respectively. Further recent literature is recovered
from the present results and obtained good agreement.
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1. Introduction

Fractional calculus is the section of mathematics which deals with the analysis and applications of
non-local differentiation and integration [1]. In many sections of engineering and science, fractional
calculus and the applications of fractional calculus are now regarded as an important platform for
accomplished calculations to create new strengths for complex non-local systems [2–6]. Butt et al. [7]
accomplished solutions of semi analytical for the mass and heat transfer of a fractional MHD Jeffery
fluid beyond an incalculable oscillating vertical plate by the Caputo Fabrizio fractional operator.
Aman et al. [8] utilized fractional derivatives to seek the transfer of mass and heat of nanofluids
(sodium alginate (SA) carrier fluid with graphene nanoparticles). Ali et al. [9] calculated the
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electrically conducted blended convection stream of summed up Jeffrey nanoliquid in a pivoted liquid
cross an endless wavering plate soaked in a permeable medium through Atangana-Baleanu fractional
approach. Khan et al. [10] used Caputo-Fabrizio fractional operator for the problem of generalized
Maxwell fluid heat transfer above an incalculable perpendicular plate. Imran et al. [11, 12] used
Caputo-fractional derivative to analyze the different problems related to fluid flow. Saad et al. [13] put
forward approximations for model of a fractional cubic isothermal auto-catalytic chemical system by
applying Caputo (C), Caputo-Fabrizio (CF) and Atangana-Baleanu fractional derivatives. In (2017),
Shiekh et al. [14] evaluated the solutions of Jeffrey fluid with Caputo-Fabrizio and Atangana-Baleanu
fractional derivative with the benefit of Laplace transform method. Ali et al. [15] analyzed the heat
transfer of generalized Jeffery nanofluid in a rotating frame. Ahmad et al. [16] calculated the
outcomes of Caputo and Caputo-Fabrizio for the mass and heat transmission of fractional Jeffrey fluid
flow on incalculable perpendicular plate in motion aggressively at different temperature. For further
study on fractional operators these references can be consulted [17–29].

In 2020, Baleanu et al. [30] suggested new fractional operator Constant Proportional Caputo
(CPC) which is the mixture of Caputo derivative and Riemann-Liouville integral. Inspired by it, to
contrast the new fractional approach with Caputo-Fabrizio (CF) and Caputo (C) fractional operators is
of massive interest. In the existing literature there is no such type of comparison with new Constant
Proportional Caputo (CPC). By introducing dimensionless variables, the dominant equations are
turned into the position of non-dimensional equations. The classic model of Casson fluid is turned
into a fractional model of form α. The current problem is determined by Constant Proportional
Caputo (CPC) fractional operator. The exact solutions for concentrations, temperatures and velocity
are attained with the technique of Laplace transform. The equivalent ratios of skin, heat friction and
mass are also evaluated. We have drawn a contrast approach using MathCad software among the
solutions of fractional models of (C) and (CPC) fractional derivatives graphically.

The event of bioconvection is one more extraordinary field which comprises of various natural
applications. The convective motion of a matter because of gradient of density at tiny level is named
as bioconvection. This flimsiness in thickness inclination happened because of aggregate swimming
of microorganisms. This wonder generally happens at the uppermost level of fluid because of which
the fluid in that particular district evolves into denser. Flimsiness in stream framework additionally
happens because of the isolation in thickness of the lower and upper level of fluid. There are various
clinical and organic cycles that require this actual marvel, for example, bio-energizes, chemicals,
miniature framework, natural tissues, microbes and bio-innovation etc. The bioconvection measure is
ordered into various classifications, for example, gyrotactic microorganism, chemotaxis and geotactic
microorganisms. This order depends on the directional developments of different microorganisms.
Kuznetsov [31, 32] explored the bioconvection by utilizing different kinds of nano particles.
Mallikarjuna et al. [33] examined the consistent bio-convective flow for a nanofluid with gyrotactic
microorganism over an upward chamber and changed the displayed issue into dimensionless structure
by utilizing dimensionless factors and afterward have tackled resultant conditions in mathematical
structure by limited contrast strategy. Uddin et al. [34] examined mathematically the numerical model
to analysis the effects of speed slip of second request past a flat penetrable plate. Chebyshev strategy
utilized in this examination for rough arrangement of issue. The viewer can additionally concentrate
about the bioconvection liquid stream with various calculations and flow conditions in
references [35–39].
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Therefore, bioconvection related studies are carried out with classical models for different
geometries, like plate sheet, cylinder, regular and irregular surfaces as discussed in the above
literature. There is a gap in the existing literature with fractional approach of bioconvection. In 2021,
Imran et al. [40] published the fractional bioconvection effect for viscous fluid over a vertical
geometry (see Figure 1) and discussed the effect of fractional parameter and bioconvection number on
the fluid flow with integral transform approach. In their work, the Caputo fractional model was
obtained using Fourier and Ficks’s Laws for energy and diffusion equation and got good response. In
the current work, we extended [40] for non-Newtonian fluid with fractional modeling through
generalized laws of heat and mass transfer by new fractional operator which is a linear combination of
two fractional operators. Analytical solutions are obtained via Laplace transform method and some
graphical results for different flow parameters drawn to see physical behavior. Furthermore, it is
shown that newly applied fractional operator is stronger in decaying nature than the Caputo one.

Figure 1. Geometry of the problem.

2. Mathematical formulation

Consider a turbulent heat flood of a thick liquid by a level area in a xy-coordinate framework
arranged at y = 0. First and foremost at t = 0, both dish and fluid are at rest with mention
concentration of microorganisms N∞ and reference surface temperature T∞. Ultimately after a few
time t = 0+, dish starts motion at consistent speed and concentration of microorganisms of dish Nw

expand at surface temperature Tw. As length is incalculable, so y and t are the two functions of every
physical quantity. First of all we make constitutive fractional model for bioconvection equations and
energy balance equations then address them by Laplace transform technique, trailed with velocity
field. The momentum equation to a thick liquid having bioconvection expression as [41–44].

ρut(y, t) = µ(1 +
1
λ

)uyy(y, t) + g[ρβT (T − T∞) − γ(ρm − ρ)(N − N∞)]. (2.1)

The thermal balance equation given by [41–44]

(ρCp)Tt(y, t) = −qy(y, t). (2.2)
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The fractional thermal flux equation of heat conduction by applying Fourier’s principle became

q(y, t) = −k CPCDβ
t Ty(y, t). (2.3)

The diffusion balance equation given by [41–44]

Nt(y, t) = −Jy(y, t). (2.4)

The fractional bioconvection concentration equation given by [41–44]

J(y, t) = −Dn
CPCDγ

t Ny(y, t). (2.5)

Based on the conditions,

u(y, 0) =0, u(0, t) = u0H(t), u(y, t)→ 0 as y→ ∞, t > 0 y ≥ 0, (2.6)
T (y, 0) =T∞, T (0, t) = Tw, T (y, t)→ T∞ as y→ ∞, t > 0, y ≥ 0, (2.7)
N(y, 0) =N∞, N(0, t) = Nw, N(y, t)→ N∞ as y→ ∞. t > 0 y ≥ 0. (2.8)

Introducing the following dimensionless variables into Eqs (2.1)–(2.5)

y∗ =
u0y
ν
, u∗ =

u
u0
, t∗ =

tu2
0

ν
, θ =

T − T∞
Tw − T∞

,

N∗ =
N − N∞
Nw − N∞

, q∗ =
q
q0
, J∗ =

J
J0
. (2.9)

We have the following dimensionless problem (ignoring *)

ut(y, t) = Auyy(y, t) + Gr[θ(y, t) − RaN(y, t)]. (2.10)

The dimensionless thermal balance equation given by

θt(y, t) = −B qy(y, t). (2.11)

The dimensionless thermal flux equation of heat conduction by applying Fourier’s principle became

q(y, t) = −C CPCDβ
t [θy(y, t)]. 0 < β ≤ 1. (2.12)

The dimensionless diffusion balance equation is

Nt(y, t) = −EJy(y, t). (2.13)

The dimensionless bioconvection concentration equation is

J(y, t) = −F CPCDγ
t [Ny(y, t)], 0 < γ ≤ 1, (2.14)

with dimensionless conditions

u(y, 0) = 0, u(0, t) = H(t), u(y, t)→ 0 as y→ ∞, (2.15)
θ(y, 0) = 0, θ(0, t) = 1, θ(y, t)→ 0 as y→ ∞, (2.16)
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N(y, 0) = 0, N(0, t) = 1, N(y, t)→ 0 as y→ ∞. (2.17)

where

Lb =
ν

Dn
,

A = 1 +
1
λ
,

B =
q0ν

µCpu0(Tw − T∞)
,

C =
ku0(Tw − T∞)

q0ν
,

E =
J0

u0(Nw − N∞)
,

F =
Dn(Nw − N∞)u0

J0ν
,

Pr =
µCp

k
,

Gr =
gνβT (Tw − T∞)

u3
0

,

Ra =
γ(ρm − ρ)(Nw − N∞)
βT (Tw − T∞)ρ

. (2.18)

Using Eq (2.12) in Eq (2.11) and Eq (2.14) in Eq (2.13), final forms of dimensionless thermal balance
equation and bioconvection concentration equation become respectively,

θt(y, t) =
1
Pr

CPC

Dβ
t θyy(y, t). (2.19)

Nt(y, t) =
1

Lb

CPC

Dγ
t Nyy(y, t). (2.20)

2.1. Heat equation

Taking Laplace transform on Eq (2.19), we have

sθ̄(y, s) =
1
Pr

[
k1(β)

s
+ k0(β)

]
sβθ̄yy(y, s). (2.21)

Also apply Laplace on Eq (2.16)

θ̄(y, 0) = 0, θ̄(0, s) =
1
s
, θ̄(y, s)→ 0 as y→ ∞. (2.22)

Using Eq (2.22) in Eq (2.21), the general solution of temperature profile becomes

θ̄(y, s) =
1
s

exp

−y

√√
Prs1−β[

k1(β)
s + k0(β)

] . (2.23)
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The Eq (2.23) is in exponential form is very complicated so it is hard to find the inverse formula
with this form. Therefore, we used the series form of exponential function and expressed in more
suitable form to obtain inverse analytically.

θ̄(y, s) =
1
s

+

∞∑
k=1

∞∑
l=0

(Pr)
k
2 (−y)k (−1)l [k1(β)

]l
Γ( k

2 + l)

k!l!
[
k0(β)

] k
2 +l s1−(1−β) k

2 +lΓ( k
2 )

. (2.24)

Taking Laplace inverse on the Eq (2.24), we get

θ(y, t) = 1 +

∞∑
k=1

∞∑
l=0

(Pr)
k
2 (−y)k (−1)l [k1(β)

]l t−(1−β) k
2 +lΓ( k

2 + l)

k!l!
[
k0(β)

] k
2 +l

Γ(1 − (1 − β) k
2 + l)Γ( k

2 )
. (2.25)

2.2. Bioconvection equation

Taking laplace transform on Eq (2.20), we get

sN̄(y, s) =
1

Lb

[
k1(γ)

s
+ k0(γ)

]
sγN̄yy(y, s). (2.26)

Also apply Laplace on Eq (2.17)

N̄(y, 0) = 0, N̄(0, s) =
1
s
, N̄(y, s)→ 0 as y→ ∞. (2.27)

Using Eq (2.27) in Eq (2.26), the general solution of Bioconvection profile becomes

N̄(y, s) =
1
s

exp

−y

√
Lb s1−γ

[ k1(γ)
s + k0(γ)]

 . (2.28)

The Eq (2.28) can be compose in suitable form,

N̄(y, s) =
1
s

+

∞∑
m=1

∞∑
n=0

(Lb)
m
2 (−y)m (−1)n [

k1(γ)
]n

Γ(m
2 + n)

m!n!
[
k0(γ)

]m
2 +n s1−(1−γ) m

2 +nΓ(m
2 )

. (2.29)

Taking Laplace inverse on Eq (2.29), we get

N(y, t) = 1 +

∞∑
m=1

∞∑
n=0

(Lb)
m
2 (−y)m (−1)n [

k1(γ)
]n t−(1−γ) m

2 +nΓ(m
2 + n)

m!n!
[
k0(γ)

]m
2 +n

Γ(1 − (1 − γ)m
2 + n)Γ(m

2 )
. (2.30)

2.3. Momentum equation

Taking Laplace transform on Eq (2.10), we have

sū(y, s) = Aūyy(y, s) + Gr[θ̄(y, s) − RaN̄(y, s)]. (2.31)

Also apply Laplace on Eq (2.15)

ū(y, 0) = 0, ū(0, s) =
1
s
, ū(y, s)→ 0 as y→ ∞. (2.32)
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Using Eq (2.32) in Eq (2.31), the general solution of Momentum profile becomes

ū(y, s) =

1
s

+
Gr

As[ Pr s1−β

[ k1(β)
s +k0(β)]

− s]
−

GrRa

As[ Lb s1−γ

[ k1(γ)
s +k0(γ)]

− s]

 e−y
√

s
A

−
Gre−y

√
Pr s1−β[ k1(β)

s +k0(β)]−1

As[ Pr s1−β

[ k1(β)
s +k0(β)]

− s]
+

GrRae−y
√

Lb s1−γ[ k1(γ)
s +k0(γ)]−1

As[ Lb s1−γ

[ k1(γ)
s +k0(γ)]

− s]
. (2.33)

The Eq (2.33) can be written in suitable form

ū(y, s) =
1
s

+
1
s

∞∑
k=1

[−y
√

s]k

(
√

A)kk!

−

∞∑
k=0

∞∑
l=0

∞∑
p=0

Gr [−y]k [Pr]p [k1(β)]p Γ(p + 1)

k! p!(A)1+ k
2 sp+2−βl− k

2 [k0(β)]l Γ(p + 1 − l)

+

∞∑
k=0

∞∑
l=0

∞∑
p=0

GrRa [−y]k [Lb]p [k1(γ)]p Γ(p + 1)

k! p!(A)1+ k
2 sp+2−γl− k

2 [k0(γ)]l Γ(p + 1 − l)

+

∞∑
k=0

∞∑
l=0

∞∑
p=0

∞∑
m=0

Gr [−y]k [Pr]m+ k
2 [k1(β)]l+p

Ak!sβk− k
2 +βm+l+p+2 [k0(β)]

k
2 m+l+p

−

∞∑
k=0

∞∑
l=0

∞∑
p=0

∞∑
m=0

GrRa [−y]k [Lb]m+ k
2 [k1(γ)]l+p

Ak!sγk− k
2 +γm+l+p+2 [k0(γ)]

k
2 m+l+p

. (2.34)

Taking Laplace inverse on Eq (2.34), we get final expression

u(y, t) =1 +

∞∑
k=1

[−y
√

t]k

(A)
k
2 k!

−

∞∑
k=0

∞∑
l=0

∞∑
p=0

Gr [−y]k [Pr]p tp+1−βl k
2 [k1(β)]p Γ(p + 1)

k!p!(A)1+ k
2 [k0(β)]l Γ(p + 1 − l) Γ(p + 2 − βl − k

2 )

+

∞∑
k=0

∞∑
l=0

∞∑
p=0

GrRa [−y]k [Lb]ptp+1−γl k
2 [k1(γ)]p Γ(p + 1)

k!p!(A)1+ k
2 [k0(γ)]l Γ(p + 1 − l) Γ(p + 2 − γl − k

2 )

+

∞∑
k=0

∞∑
l=0

∞∑
p=0

∞∑
m=0

Gr [−y]k [Pr]m+ k
2 tβk− k

2 +βm+l+p+1 [k1(β)]l+p

Ak![k0(β)]
k
2 m+l+p Γ(βk − k

2 + pm + l + p + 2)

−

∞∑
k=0

∞∑
l=0

∞∑
p=0

∞∑
m=0

GrRa [−y]k [Lb]m+ k
2 tγk− k

2 +γm+l+p+1 [k1(γ)]l+p

Ak! [k0(γ)]
k
2 m+l+p Γ(γk − k

2 + pm + l + p + 2)
. (2.35)

3. Graphical results and discussion

Figures 2 and 3 are sketched to see the effect of fractional parameter γ for both large and small value
of time in bioconvection field. Since the power law fractional operator has been used. As the fractional
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operator exhibits the memory of the function at the present time. It is found in Figures 2 and 3 that
by increasing the values of fractional parameter and taking time t=2.5, the profile of bioconvection
reduces. The concentration near the plate is maximum while decreasing in main stream region and
finally asymptotically approaches to zero as y → 0. This fact also justify the boundary condition as
well.

Impact of fractional parameter β on temperature can be seen in Figures 4 and 5 and observed that for
small and large values of time. For large time t of different values of fractional parameter, it is observed
from Figure 4 that temperature is decreasing function near the plate for great values of β. This rapid
decay in temperature is due to increase in thermal boundary layer for increasing β, while Figure 5
depicts for small time for different fractional parameter and demonstrates that temperature shows the
opposite behavior for varying fractional parameter values. Temperature increases away from the plate
in the main stream region and finally decay for greater values of y and then asymptotically approaches
to zero as y goes to infinity. This is how fractional parameter shows dual behavior for temperature for
smaller and larger values of time. The effect of fractional parameters on velocity field is presented in
Figure 6. The fluid velocity rises as we raise the values of fractional parameters. This can be physically
deliberated as when fractional parameters are raised, the momentum boundary layer became thickest
as a result the velocity profiles increased. When λ → ∞ casson fluid problem model becomes viscous
fluid problem. It can be seen in Figure 7. It coincides with Imran et al. [40].

Figure 8 is designed to see the effect of Gr on the velocity field. It is realized that with high values
of Gr, the velocity faster. Since Gr is related to buoyancy forces which rise the natural convection, so
the velocity rises in speed. Figure 9 is planned to see the impact of Pr on velocity field. Since Pr is
the dimensionless number that tests the comparative width of a boundary layer of thermal conductivity
and momentum. So by increasing values of Pr, thermal conductivity is decreased, the viscosity of the
fluid is enriched and, lastly, a decay in velocity is detected. It is also noted that the boundary layer
width reduces. Figure 10 displays the result of the bioconvection Rayleigh number Ra on the velocity
field. From figure, It is clear that the fluid velocity declines while rising the values of bioconvection
Rayleigh number Ra. This is because of that, for higher values of Ra, the buoyancy impact from the
movement of microorganisms falls.

Figure 2. The result of fractional parameter γ on Bioconvection Distribution for large time.
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Figure 3. The result of fractional parameter γ on Bioconvection Distribution for small time.

Figure 4. The result of fractional parameter β on Temperature Distribution for large time.

Figure 5. The result of fractional parameter β on Temperature Distribution for small time.

AIMS Mathematics Volume 7, Issue 5, 8112–8126.



8121

Figure 6. The effect of fractional parameters β and γ on Velocity Distribution.

Figure 7. Comparison between our results when (λ→ ∞) and Imran et al. [40].

Figure 8. The effect of Gr on Velocity Distribution.
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Figure 9. The effect of Pr on Velocity Distribution.

Figure 10. The effect of Ra on Velocity Distribution.

4. Conclusions

In this work, the unsteady fractional bioconvection for Casson fluid flow for vertical surface has
been studied. The governing equations are modeled with fractional derivative and then transformed into
dimensionless form by using dimensionless variables. The analytical solution is attained by applying
Laplace transform technique. The physical effects of different parameters are explained graphically.
Some key points are obtained as follow:

(1) Thermal, diffusion and momentum boundary layers can be controlled with variable values of
fractional parameter and time respectively.

(2) Enhancement in temperature, concentration and velocity can be achieved with small values of
time.

(3) The presence of bioconvection number Ra is responsible for decline of momentum boundary
layer.

(4) A good agreement of the present results and the recent literature is obtained for the validation.

AIMS Mathematics Volume 7, Issue 5, 8112–8126.
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Nomenclature

Symbol Name Symbol Name
(C) Caputo (CF) Caputo-Fabrizio

(ABC) Atangana-Baleanu (CPC) Constant proportional Caputo
ρ density of fluid (kgm−3) µ dynamic viscosity (kgm−1s−1)
k thermal conductivity (Wm−2K−1) g gravitational acceleration
βT thermal expansion coefficient u velocity field (ms−1)
Cp specific heat ( jkg−1K−1) Dn thermal diffusivity
T temperature (K) T∞ ambient temperature (K)
N bioconvection N∞ constant bioconvection
Tw temperature at wall (K) Nw concentration of microorganisms of dish
t Time (s) β , γ Fractional parameters

Pr Prandtl number (Dimensionless) Lb Lewis number (Dimensionless)
Gr Thermal Grashof number (Dimensionless) Ra Rayleigh number (Dimensionless)
λ Casson fluid parameter
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