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Abstract: In this work, we provide some lower bounds for the number of squarly integrable solutions
of some second-order multiparameter differential equations. To obtain the results, we use both Sims
and Sleeman’s ideas and the results are some generalization of the known results. To be more precise,
we firstly construct the Weyl–Sims theory for the singular second-order differential equation with
several spectral parameters. Then, we obtain some results for the several singular second-order
differential equations with several spectral parameters.
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1. Introduction

The theory of multiparameter eigenvalue problems has been an attractive area since
the first fundamental results in multiparameter theory were introduced by Atkinson [1].
Since every physical system contains parameters, many physical and engineering problems
are modeled by systems of differential equations with several spectral parameters as seen
in [2–4]. Moreover, in the literature a huge number of works exist that follow the results
given in [1] (for example, see, [5–23]). Among other works, some papers contain singular
multiparameter problems [24–30]. In particular, in [28] Sleeman considered the following
k−differential equations:

− d2ζr

dx2
r
+

k

∑
s=1
{ρrs(xr)λs + qr(xr)}ζr(xr) = 0, xr ∈ [ar, br), (1)

where 1 ≤ r ≤ k, ar, br are the regular point and singular point, respectively, for the r-th equation
in (1), real valued functions ρrs, qrs are continuous on [ar, br) with det{ρrs(xr)}k

r,s=1 > 0 for
all (x1, . . . , xk) ∈ [a1, b1)× · · · × [ak, bk), and λs are the spectral parameters . He proved
that following inequality holds:

b1∫
a1

· · ·
bk∫

ak

|ψ1ψ2 . . . ψk|2 det{ρrs(xr)}k
r,s=1dx1 · · · dxk < ∞,

where

ψr(xr; λ1, . . . , λk) = ϑr(xr; λ1, . . . , λk) + Φr(xr; λ1, . . . , λk)Mr(λ1, . . . , λk)
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is the solution of (1) such that ϑr and Φr are the solutions of (1) satisfying

ϑr(ar; λ1, . . . , λk) = cos αr, ϑ′r(ar; λ1, . . . , λk) = sin αr,
Φr(ar; λ1, . . . , λk) = sin αr, Φ′r(ar; λ1, . . . , λk) = − cos αr,

αr ∈ [0, π), M(λ1, . . . , λk) is an analytic functions in each λ1, . . . , λk and

k

∑
s=1

Im λkρrs(xr)

is of one sign and nonzero for all xr ∈ [ar, br). This result is the generalization of Weyl’s
result [31]; Weyl produced pioneering work for a second-order singular equation with a
single spectral parameter. Note that Sleeman’s results have been generalized by Uğurlu
in [29] for the singular multiparameter dynamic equations with distributional potentials
Refs. [30,32] for the singular Hamiltonian system of even-order with several spectral pa-
rameters, and Weyl’s results have been generalized by Uğurlu in [33] for the fractional
differential equations.

On the other hand, in 1957, Sims considered the following second-order equation [34]:

− y′′ + q(x)y = λy, x ∈ (a, b), (2)

where a and b are the singular points for (2) and q is a complex-valued function on (a, b),
and it is continuous on the same interval such that

q = q1 + iq2, x ∈ (a, b).

Sims introduced, in contrast to the classical Weyl theory, the notion that there may be
three situations at a singular point:

(i) A limit-point case but only one square-integrable solution,
(ii) A limit-point case but two square-integrable solutions,
(iii) A limit-circle case and two square-integrable solutions.

Note that Weyl considered the second-order differential equation with a real valued
potential function q. Since q is a real valued function, condition (ii) does not exist in the
classical case. Sims’s results have been generalized by Uğurlu in [35] for the fractional
differential equations.

In this paper, our aim is to generalize the results of Sims as well as the results of
Sleeman because Sleeman considered the multiparameter problem with some real valued
potentials and Sims considered the problem with a complex potential. In this study, we
collect these two problems. For this purpose, first of all, we consider a single second-order
differential equation that has a complex-valued potential function with several spectral
parameters. We construct the Weyl–Sims theory for this equation. After constructing the
theory, we use the results for the several singular second-order differential equations having
the complex-valued potential functions with several spectral parameters.

2. Single Second-Order Equation

In this section, we shall consider the following multiparameter differential equation:

− y′′ + q(x)y =

{
n

∑
k=1

λkwk(x)

}
y, x ∈ [a, b), (3)

where a, b are the regular point and singular point, respectively, for (3); λk, k = 1, 2, . . . , n
are spectral parameters; each real valued function wk is continuous on [a, b); and q is a
complex-valued continuous function on [a, b) such that

q(x) = q1(x) + iq2(x), x ∈ [a, b).
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For further calculations, we need the following sets

Λ+ =

{
λ = (λ1, λ2, . . . , λn) ∈ Cn :

(
n

∑
k=1

Im λkwk

)
> 0, x ∈ [a, b)

}
,

and

Λ− =

{
λ = (λ1, λ2, . . . , λn) ∈ Cn :

(
n

∑
k=1

Im λkwk

)
< 0, x ∈ [a, b)

}
.

Throughout the paper, the bold letter parameter λ indicates that it contains n−tuple
complex parameters such that λ = (λ1, λ2, . . . , λn) ∈ Cn. We should also note that the sets
Λ+ and Λ− are not empty.

Lemma 1. If f and g are the solutions of following differential equations

−y′′ + q(x)y =

{
n

∑
k=1

λkwk(x)

}
y

and

−y′′ + q(x)y =

{
n

∑
k=1

µkwk(x)

}
y,

respectively, then Green’s formula can be notated as

∫ c

a

{
n

∑
k=1

(µk − λk)wk

}
f gdx = −2i

∫ c

a
q2 f gdx + [ f , g](a)− [ f , g](c), (4)

where c ∈ (a, b) and

[ f , g](x) = f (x)g′(x)− f ′(x)g(x)

for x ∈ [a, b).

Proof. Using direct calculations, we obtain

c∫
a

{
n

∑
k=1

(µk − λk)wk

}
f gdx =

c∫
a

(
f

{
n

∑
k=1

µkwk

}
g− g

{
n

∑
k=1

λkwk

}
f

)
dx

=

c∫
a

[
f
(
−g′′ + q(x)g

)
− g
(
− f ′′ + q(x) f

)]
dx

=

c∫
a

[
− f g′′ + q(x) f g + f ′′g− q(x) f g

]
dx

= −2i
c∫

a

q2 f gdx +

c∫
a

(
f ′′g− f g′′

)
dx

= −2i
c∫

a

q2 f gdx + [ f , g](a)− [ f , g](c).

Then, the proof is completed.
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Corollary 1. If one chooses µ = λ, g = f , where λ = (λ1, λ2, . . . , λn), in (4), then it is obtained
from (4) that

− 2i
∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
| f |2dx = [ f , f ](a)− [ f , f ](c). (5)

for c ∈ [a, b).

Corollary 2. Let f and g be the solutions of (3) corresponding to the same n−tuple parameter λ.
Then, it is obtained from (4) that

[ f , g](a) = [ f , g](c)

for c ∈ [a, b).

It is obvious that Equation (3) can be written as the following first-order equation:

ŷ′ = A(x, λ)ŷ, x ∈ [a, b) (6)

where

A(x; λ) =

 0 1

q(x)−
n
∑

k=1
λkwk(x) 0

, ŷ(x, λ) =

(
y(x, λ)
y′(x, λ)

)
. (7)

As is well known, (6) has an unique vector solution ŷ for each fixed ξ ∈ [a, b) satisfying

ŷ(ξ, λ) =

(
y(ξ, λ)
y′(ξ, λ)

)
=

(
η1
η2

)
,

where η1, η2 are arbitrary complex numbers, due to the assumptions on q and wk for
k = 1, 2, . . . , n on [a, b). Thus, we can construct a linearly independent set of solutions
y1, y2 of (3) on [a, b). For this purpose, we choose solutions y1and y2 satisfying the
initial conditions

y(k−1)
j (x) = wjk, j, k = 1, 2, x ∈ [a, b)

where the determinant of the matrix
[
wjk

]
does not vanish. Then, a linearly independent set

of solutions y1, y2 is called a fundamental system. Now, we can give the following lemma.

Lemma 2. Every solution of (3) is a lineer combination of a fixed, arbitrarily chosen, fundamental
system of solutions of (3).

Proof. Let y1, y2 constitute a fundamental system of solutions of (3) and ỹ be any solution
of (3). We can choose constants c1, c2 at a fixed point x0 of the interval [a, b) such that{

ỹ = c1y1 + c2y2,
ỹ′ = c1y′1 + c2y′2.

(8)

The determinant of this system is the Wronskian of the fundamental system constructed
by y1, y2 for x = x0 and hence [y1, y2](x0) 6= 0. On the other hand, (8) implies that the
functions ỹ and c1y1 + c2y2 are solutions of the (3) and yield the same initial conditions.
Because of the uniqueness of such a solution,

y ≡ c1y1 + c2y2

on [a, b). Thus, the set of all solutions of (3) constitutes a two-dimensional linear space that
gives the proof .
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3. Nested Circles

In this section, we provide a geometric definition of the fractional transformation
constructed by the solutions of (3) for λ ∈ Λ+ and λ ∈ Λ−. However, first of all, we want
to provide the results for λ ∈ Λ+, and the results for λ ∈ Λ− may then be given similarly.

Let ϕ(x, λ) and ψ(x, λ) be the solutions of (3) satisfying the initial conditions

ϕ(a, λ) = sin α, ψ(a, λ) = cos α

ϕ′(a, λ) = − cos α, ψ′(a, λ) = sin α,

where α is a complex number such that α = α1 + iα2, and y′ should be understood as
d

dx
y.

With the help of Hartog’s theorem on the separate analyticity [36], we may say that ϕ(x, λ),
ψ(x, λ), ϕ′(x, λ), and ψ′(x, λ) are complete functions of the parameters λ1, λ2, . . . , λn. Since

[ϕ, ψ](a) = 1

these solutions are linearly independent on the interval [a, b). For this reason, we may
consider the following solution of (3):

χ(x, λ) = ϕ(x, λ) + mψ(x, λ).

Our aim is to determine the behavior of χ around the singular point b. Therefore, first
of all, we shall impose the following regular boundary condition at a point:

y(c) cos γ + y′(c) sin γ = 0, a < c < b, (9)

where γ is a complex number such that γ = γ1 + iγ2.
For now, suppose that ψ(c, λ) 6= 0 and ψ′(c, λ) 6= 0 temporarily. In order for χ to

satisfy the condition (9), we may write

m = m(c, λ, z) = −
{

ϕ(c, λ)z + ϕ′(c, λ)

ψ(c, λ)z + ψ′(c, λ)

}
, z = cot γ. (10)

For the fixed choice of λ and c, (10) defines a linear fractional transformation from the
complex z−plane to the complex m−plane. The inverse mapping is given by

z = z(c, λ, m) = −
{

ψ′(c, λ)m + ϕ′(c, λ)

ψ(c, λ)m + ϕ(c, λ)

}
. (11)

Since the critical point of transformation (10) is

z = −ψ′(c, λ)

ψ(c, λ)
,

with a direct computation using (5), the imaginary part of this point can be expressed as

Im
[
−ψ′(c, λ)

ψ(c, λ)

]
=

1

|ψ(c, λ)|2

[∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ(x, λ)|2dx− 1

2
sinh 2α2

]
. (12)

Thus, from the well known properties of the linear fractional transformation (10), the
real axis of the z−plane has an image that is a boundary of a circle in the m−plane. Let us
denote this circle corresponding to the point c and parameter λ where λ ∈ Λ+ by Dc(λ).

From (12) one may see that in the case of λ ∈ Λ+, q2 ≤ 0, and α2 ≤ 0, the critical point
of mapping (10) lies in the upper half complex z-plane so that the lower half z-plane maps
onto a circle Dc(λ) in the complex m-plane. Therefore, a point m is in circle Dc(λ) if and
only if

Im z(c, λ, m) < 0



Axioms 2022, 11, 706 6 of 14

and is on the boundary of the circle Dc(λ) if and only if

Im z(c, λ, m) = 0.

Note that, in case of λ ∈ Λ−, q2 ≥ 0 and α2 ≥ 0, this critical point lies in the lower half
of the z−plane so the upper half of z−plane maps onto a circle similarly.

From (11), we have

Im{z(c, λ, m)} = − Im
{

ψ′(c, λ)m + ϕ′(c, λ)

ψ(c, λ)m + ϕ(c, λ)

}
. (13)

By using (5), we obtain

[χ, χ](c) =2i
∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx− i(1 + |m|2)(sinh 2α2) (14)

− 2i Im m cosh 2α2

and it also follows from (13) that

[χ, χ](c) = 2i|χ(c, λ)|2 Im z. (15)

Hence, we can write

|χ(c, λ)|2 Im z =
∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx (16)

− 1
2
(1 + |m|2)(sinh 2α2)− Im m cosh 2α2.

Now, (16) indicates that m is in or on the circle Dc(λ) if and only if

∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx ≤ 1

2
(1 + |m|2) sinh 2α2 + Im m(cosh 2α2). (17)

Moreover, the center of Dc(λ) corresponds the conjugate of critical point of the trans-
formation given in (10). In other words, the center of Dc(λ) is equal to

pc(λ) = m

(
c, λ,−ψ′(c, λ)

ψ(c, λ)

)
= − [ψ, ϕ](c)

[ψ, ψ](c)
. (18)

Since the image of z = 0 in the m−plane is on the boundary of the circle Dc(λ), that is,

m = − ϕ′(c, λ)

ψ′(c, λ)

is a point on the boundary of Dc(λ), then we can introduce the radius rc(λ) of the circle
Dc(λ) as

rc(λ) =

∣∣∣∣∣ [ϕ, ψ](c)[
ψ, ψ

]
(c)

∣∣∣∣∣.
Then, from Corollary 2, since [ϕ, ψ](c) = 1, we can rewrite the radius rc(λ) of the

circle Dc(λ) as

rc(λ) =
1∣∣[ψ, ψ](c)

∣∣
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or alternatively

rc(λ) =

[
2
∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx− sinh 2α2

]−1

. (19)

Now, as we know it well, (10) brings the real axis of the z-plane to the boundary of the
circle Dc(λ) in the m-plane, and therefore the inverse mapping (11) transforms the circle
Dc(λ) into the real axis of z-plane. Thus, its critical point

m0 = − ϕ(c, λ)

ψ(c, λ)

must be on the boundary of Dc(λ). Furthermore, since the points m = − ϕ′(c,λ)
ψ′(c,λ) and

m0 = − ϕ(c,λ)
ψ(c,λ) are on the boundary of the circle Dc(λ), we can write∣∣∣∣− ϕ′(c, λ)

ψ′(c, λ)
+

ϕ(c, λ)

ψ(c, λ)

∣∣∣∣ ≤ 2rc(λ)

and with the help of (19), we obtain

2
∫ c

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx− sinh 2α2 ≤ 2

∣∣ψ′(c, λ)
∣∣|ψ(c, λ)|. (20)

Up to the present, we have continued under the condition that ψ(c, λ) and ψ′(c, λ)
are not equal to zero. Now, we can investigate this situation in detail. If for c ∈ [a, b) there
exists λ′ such that ψ(c, λ′) = 0, then neighborhood N(λ′) of λ′ exists such that ψ(c, λ) 6= 0
for λ 6= λ′ and λ ∈ N(λ′). However, if for λ → λ′, then the right hand side of (20)
approaches to zero, which is impossible due to the fact the left hand side of (20) is exactly
positive because of the restrictions on the λ, q, and α. Similarly, we deduce that ψ′(c, λ) 6= 0.
Hence, the assumptions behind the solution ψ(c, λ) and ψ′(c, λ)can be removed.

Finally, for a < c′ < c < b, if m(c, λ) is in or on Dc(λ), then m(c, λ) is also inside
Dc′(λ) from (17). This means that if c′ < c then, Dc′(λ) contains Dc(λ). Therefore, as c→ b
the circles Dc(λ) converge either to a limit-circle or to a limit-point. In both cases, there is a
point inside all the circles Dc(λ) such that if M(b, λ) is any point on the limit-circle or is a
limit-point, then it follows from (17) that

∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ϕ + Mψ|2dx < ∞.

Then, we may summarize the results as the following Theorem.

Theorem 1. Let [a, b) be a semi-open interval, where a is the regular and b is the singular point,
and complex-valued q(x) and real-valued wk are continuous functions on [a, b) for k = 1, 2, . . . , n.
If M(b, λ) is any point inside the all circles Dc(λ), then

χ(x, λ) = ϕ(x, λ) + M(b, λ)ψ(x, λ).

is a solution of (3) such that

−∞ <
∫ b

a

(
n

∑
k=1

Im λkwk(x)− q2

)
|χ(x, λ)|2dx < ∞,

in the case λ ∈ Λ+, q2 ≤ 0, Im α ≤ 0 or λ ∈ Λ−, q2 ≥ 0, Im α ≥ 0.
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Now, it is obvious that either a limit-circle or limit-point case prevails at x = b. If a
limit-circle situation occurs at x = b, then we obtain∣∣∣∣∣

∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx

∣∣∣∣∣ < ∞

from (19). Thus, the last inequality and previous theorem indicate that two linearly in-
dependent solutions χ(x, λ), ψ(x, λ) of (3) exist and each of them is squarly integrable

in [a, b) with respect to the weight function
(

n
∑

k=1
Im λkwk − q2

)
. If a limit-point case

prevails at x = b, then only one point M(b, λ) exists inside all of the circles Dc(λ).
Hence, only one solution χ(x, λ) is squarly integrable in [a, b) with respect to the weight

function
(

n
∑

k=1
Im λkwk − q2

)
. Here, it should be remarked that from (19), we obtain

ψ(x, λ) /∈ L2(a, b). That is, from (19) we can write

∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx = ∞.

However, it may be that ∫ b

a
|ψ|2dx < ∞.

This situation is a special limit-point case that has no analog in the classical limit-point
and limit-circle theory, and in [34], Sims gave two examples for clarifying this case for
one parameter case. In the next section, we show that the limit-point and limit-circle
theory are independent of the n-tuple parameter λ so that this special case exists for the
multiparameter case.

Briefly, the following cases occur at singular point b.

(I) The limit-point case: there are linearly independent solutions of (3) satisfying∣∣∣∣∣
∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx

∣∣∣∣∣ < ∞

and ∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx = ∞,

∫ b

a
|ψ|2dx = ∞.

(II) The limit-point case: there exist linearly independent solutions of (3) satisfying∣∣∣∣∣
∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx

∣∣∣∣∣ < ∞.

and ∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx = ∞,

∫ b

a
|ψ|2dx < ∞.

(III) The limit-circle case: there exist linearly independent solutions of (3) satisfying∣∣∣∣∣
∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|χ|2dx

∣∣∣∣∣ < ∞

and ∣∣∣∣∣
∫ b

a

(
n

∑
k=1

Im λkwk − q2

)
|ψ|2dx

∣∣∣∣∣ < ∞.
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4. Independence of the Theory from the Parameters

In this section, we will show that the Weyl–Sims theory for the multiparameter single
eigenvalue problem is independent of the n-tuple parameter λ.

Firstly, we shall define a set of real numbers such that

Λ∗ =

{
β = (β1, β2, . . . , βm) :

n

∑
k=1

βkwk > 0, x ∈ [a, b)

}
.

Theorem 2. If for some n-tuple complex number λ′ ∈ Λ+ and every β ∈ Λ∗

∫ b

a

(
n

∑
k=1

βkwk − q2

)∣∣ϕ(x, λ′)
∣∣2dx < ∞

and ∫ b

a

(
n

∑
k=1

βkwk − q2

)∣∣ψ(x, λ′)
∣∣2dx < ∞

then, for all other λ ∈ Λ+ satisfying

Re(λ− λ′), Im(λ− λ′) ∈ Λ∗,

the following inequalities hold:

∫ b

a

(
n

∑
k=1

βkwk − q2

)
|ϕ(x, λ)|2dx < ∞,

∫ b

a

(
n

∑
k=1

βkwk − q2

)
|ψ(x, λ)|2dx < ∞.

Proof. Let us consider the following nonhomogeneous multiparameter differential equation:

− y′′ + q(x)y−
{

n

∑
k=1

λ′kwk

}
y =

{
n

∑
k=1

(λkwk − λ′kwk)

}
y. (21)

Using two linearly independent solutions ϕ(x, λ′) and ψ(x, λ′) of the homogeneous multi-
parameter differential equation

−y′′ + q(x)y−
{

n

∑
k=1

λ′kwk

}
y = 0,

the general solution of (21) can be written as

y(x, λ) = c1(x)ϕ(x, λ′) + c2(x)ψ(x, λ′).

By the help of variation of parameters, we obtain that

c1(x) =
∫ x

a

{
n

∑
k=1

(λk − λ′k)wk

}
y(t)ψ(t, λ′)dt

and

c2(x) =
∫ x

a

{
n

∑
k=1

(λ′k − λk)wk

}
y(t)ϕ(t, λ′)dt.
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Since ψ(x, λ) is a solution of (21), we obtain

ψ(x, λ) =ψ(x, λ′) + ϕ(x, λ′)
∫ x

a

[
n

∑
k=1

(λk − λ′k)wk

]
ψ(t, λ)ψ(t, λ′)dt (22)

− ψ(x, λ′)
∫ x

a

[
n

∑
k=1

(λk − λ′k)wk

]
ψ(t, λ)ϕ(t, λ′)dt.

From the well known inequality

|x1 + x2 + x3|2 ≤ 3
(
|x1|2 + |x2|2 + |x3|2

)
, (23)

we obtain

|ψ(x, λ)|2 ≤ 3
∣∣ψ(x, λ′)

∣∣2 + 3
∣∣ϕ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

(λk − λ′k)wk

]
ψ(t, λ)ψ(t, λ′)dt

∣∣∣∣∣
2

(24)

3
∣∣ψ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

(λk − λ′k)wk

]
ψ(t, λ)ϕ(t, λ′)dt

∣∣∣∣∣
2

.

Let λk − λ′k = βk + iδk for β, δ ∈ Λ∗. Then, it follows from (23) that

|ψ(x, λ)|2 ≤ 3
∣∣ψ(x, λ′)

∣∣2 + 6
∣∣ϕ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

βkwk

]
ψ(t, λ)ψ(t, λ′)dt

∣∣∣∣∣
2

+ 6
∣∣ϕ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

δkwk

]
ψ(t, λ)ψ(t, λ′)dt

∣∣∣∣∣
2

(25)

+ 6
∣∣ψ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

βkwk

]
ψ(t, λ)ϕ(t, λ′)dt

∣∣∣∣∣
2

+ 6
∣∣ψ(x, λ′)

∣∣2∣∣∣∣∣
∫ x

a

[
n

∑
k=1

δkwk

]
ψ(t, λ)ϕ(t, λ′)dt

∣∣∣∣∣
2

.

By the Schwarz inequality, we have

|ψ(x, λ)|2 ≤ 3
∣∣ψ(x, λ′)

∣∣2
+ 6
∣∣ϕ(x, λ′)

∣∣2 ∫ x

a

[
n

∑
k=1

βkwk

]
|ψ(t, λ)|2dt

∫ x

a

[
n

∑
k=1

βkwk

]∣∣ψ(t, λ′)
∣∣2dt

+ 6
∣∣ϕ(x, λ′)

∣∣2 ∫ x

a

[
n

∑
k=1

δkwk

]
|ψ(t, λ)|2dt

∫ x

a

[
n

∑
k=1

δkwk

]∣∣ψ(t, λ′)
∣∣2dt (26)

+ 6
∣∣ψ(x, λ′)

∣∣2 ∫ x

a

[
n

∑
k=1

βkwk

]
|ψ(t, λ)|2dt

∫ x

a

[
n

∑
k=1

βkwk

]∣∣ϕ(t, λ′)
∣∣2dt

+ 6
∣∣ψ(x, λ′)

∣∣2 ∫ x

a

[
n

∑
k=1

δkwk

]
|ψ(t, λ)|2dt

∫ x

a

[
n

∑
k=1

δkwk

]∣∣ϕ(t, λ′)
∣∣2dt.

Let K be the maximum value of the second, fourth, sixth, and eighth integrals in (26) as
x → b and βk + δk = ηk for k = 1, 2, . . . , n. Then, from (26), we find

|ψ(x, λ)|2 ≤ 3
∣∣ψ(x, λ′)

∣∣2 (27)

+6
[∣∣ϕ(x, λ′)

∣∣2 + ∣∣ψ(x, λ′)
∣∣2]K ∫ x

a

[
n

∑
k=1

ηkwk

]
|ψ(t, λ)|2dt.
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For a < c′ < c < b, the multiplication of both sides of (27) by
[

n
∑

k=1
ηkwk − q2

]
and the

integration of both sides from c′ to c implies

∫ c

c′

[
n

∑
k=1

ηkwk − q2

]
|ψ(t, λ)|2dt ≤ 3

∫ c

c′

[
n

∑
k=1

ηkwk − q2

]∣∣ψ(t, λ′)
∣∣2dt (28)

+ 6K
∫ c

c′

[
n

∑
k=1

ηkwk − q2

]{∣∣ϕ(t, λ′)
∣∣2 + ∣∣ψ(t, λ′)

∣∣2} ∫ c

a

[
n

∑
k=1

ηkwk

]
|ψ(t, λ)|2dt.

If we choose c′ sufficiently large so that the inequality

6K
∫ c

c′

[
n

∑
k=1

ηkwk − q2

]{∣∣ϕ(t, λ′)
∣∣2 + ∣∣ψ(t, λ′)

∣∣2} <
1
2

holds then (28) gives

∫ c

c′

[
n

∑
k=1

ηkwk − q2

]
|ψ(t, λ)|2dt ≤ 6

∫ c

c′

[
n

∑
k=1

ηkwk − q2

]∣∣ψ(t, λ′)
∣∣2dt (29)

+
∫ c′

a

[
n

∑
k=1

ηkwk

]
|ψ(t, λ)|2dt.

The right side of (29) is independent of c. So, taking the limit as c→ b, we finally obtain

∫ b

c′

[
n

∑
k=1

ηkwk − q2

]
|ψ(t, λ)|2dt < ∞.

A similar treatment is valid for ϕ(x, λ). This completes the proof.

5. Several Second-Order Equations

In this section, we will generalize the previous results to some several second-order
differential equations. Namely, we will consider the following (n + 1)−equations with
unique n−spectral parameters:

− y′′r (xr) + qr(xr)yr(xr) =

{
n

∑
k=1

λkwrk(xr)

}
yr(xr), xr ∈ [ar, br), (30)

where qr is a complex-valued continuous function such that qr = qr1 + iqr2 , qr2 ≤ 0, and
wrk is a real-valued continuous function on [ar, br); also, ar is the regular point, and br is
the singular point for r−th equation in (30), where r = 1, 2, . . . , n + 1 . We assume that,

det


w11(x1) w12(x1) · · · w1n(x1) −q12
w21(x2) w22(x2) · · · w2n(x1) −q22

...
...

...
...

wn+1,1(xn+1) wn+1,2(xn+1) · · · wn+1,n(xn+1) −qn+1,2

 > 0 (31)

for x = (x1, x2, . . . , xn+1) ∈ I where I is the Cartesian product of the (n + 1)−intervals
[ar, br), r = 1, 2, . . . , n + 1 such that

I = I1 × I2 × ...× In+1

and let

f (x1, x2, . . . , xn+1) =
n+1

∏
k=1

fk(xk), g(x1, x2, . . . , xn+1) =
n+1

∏
k=1

gk(xk)
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for (x1, x2, ..., xn+1) ∈ I. Now, for Hilbert space H, a suitable inner product is given for
functions f , g ∈ H by

〈 f , g〉 =
∫ b1

a1

· · ·
∫ bn

an

n+1

∏
k=1

fk(xk)
n+1

∏
k=1

gk(xk)det

 w11(x1) · · · −q12
...

...
wn+1,1(xn+1) · · · −qn+1,2

dx1...dxn+1. (32)

Theorem 3. If (31) holds and each equation in (30) is in the limit-circle case, that is, each solution
of (30) satisfies the following inequality:∣∣∣∣∫ br

ar
wrk(xr)|yr(xr, λ)|2dxr

∣∣∣∣ < ∞,
∣∣∣∣∫ br

ar
qr2|yr(xr, λ)|2dxr

∣∣∣∣ < ∞, (33)

for some λ ∈ Λ+, qr2 ≤ 0 or λ ∈ Λ−, qr2 ≥ 0 and k = 1, 2, . . . , n, r = 1, 2, . . . , n + 1, then the
inner product 〈y, y〉 is a constant.

Proof. Assume that each equation is in the limit-circle case in (30), i.e., 2(n + 1)-linearly
independent solutions hold (33). From (p. 210, [4]), it can be seen that (32) is equal to

〈y, y〉 = det



b1∫
a1

w11(x1)|y1(x1)|2dx1 · · · −
b1∫

a1

q12(x1)|y1(x1)|2dx1

...
...

bn+1∫
an+1

w(n+1)1(xn+1)|yn+1(xn+1)|2dxn+1 · · · −
bn+1∫

an+1

q(n+1)1(xn+1)|yn+1(xn+1)|2dxn+1


. (34)

Hence, (33) and (34) complete the proof.

In the view of Theorem 3, the next theorem can be given as the main result.

Theorem 4. If the r− th equation in (30) has lr linearly independent solutions satifying (33), for
some λ ∈ Λ+, qr2 ≤ 0 or λ ∈ Λ−, qr2 ≥ 0 and 1 ≤ lr ≤ 2, then linearly independent products
y(x1, x2, . . . , xn+1) of solutions of equation (30) satisfying

〈y, y〉 = const, (35)

are not less than
n+1

∏
p=1

lr.

6. Conclusions and Discussion

In 1957, Sims [34] generalized the results of Weyl [31] by considering the potential
function q(x) as a complex-valued function on the given interval. The most important part
of Sims’s result is that the limit point case may occur even if one of the linearly independent
soutions can be squarly integrable on the given interval. Moreover, Sims gave two examples
relating to this unexpected result. On the other side, in 1972 Sleeman [28] generalized the
results of Weyl by considering several spectral parameters rather than considering one
spectral parameter.

In this work, we have collected these two ideas in one, and hence the results of this
paper are a generalization of both the results of Sims and Sleeman (and of Weyl). Indeed, in
this study, we initially have considered a singular multiparameter second-order differential
equation containing a complex-valued potential. Then, we give a geometric meaning of
the limit point and limit circle situations and show that the theory for multiparameter
problems is independent of the n−tuple complex parameters λ. In the last part, we use the
results that we obtained while constructing the theory for several multiparameter singular
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second-order differential equations that have complex valued potential functions. We shall
also note that the results of this paper can also be a generalization of the results of [29]
when the time scale is considered as a subset of the real line.
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33. Uğurlu, E.; Baleanu, D.; Taş, K. On square integrable solutions of a fractional differential equation. Appl. Math. Comput. 2018, 337,

153–157.
34. Sims, A.R. Secondary conditions for linear differential operators of the second order. J. Math. Mec. 1957, 6, 247–285. [CrossRef]
35. Uğurlu, E.; Taş, K.; Baleanu, D. Fractional differential equation with a complex potential. Filomat 2020, 34, 1731–1737. [CrossRef]
36. Gunning, R.; Rossi, H. Analytic Functions of Several Complex Variables; Prentice-Hall: London, UK, 1965.


