ADOPTING RUP (RATIONAL UNIFIED PROCESS)
ON A
SOFTWARE DEVELOPMENT PROJECT

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
CANKAYA UNIVERSITY

BY

TUFAN TAS

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
THE DEPARTMENT OF COMPUTER ENGINEERING

SEPTEMBER 2009

Title of the Thesis : Adopting RUP (Rational Unified Process) on a Software
Development Project

Submitted by Tufan TAS

Approval of the Graduate School of Natural and Applied Sciences, Cankaya

University

Prof. Dr. Yahya K. BAYKAL
Acting Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Mehmet R. TOLUN
Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully
adequate, in scope and quality, as a thesis for the degree of Master of Science.

ﬁ\w@,\mc SN

Prof. Dr. g >a AKTAS Prof. Dr. Mehmet R. TOLUN
Co-Supervisor Supervisor
Examination Date : 03.09.2009

Examining Committee Members

/*L/ e W_\
\tthAv\)\\kQC

Prof. Dr. Mehmet R. TOLUN (Cankaya Univ.)

Prof. Dr. Ziya AKTAS (Bag;kent Umv)

Asst. Prof. Dr. Abdiil Kadir GORUR (Cankaya Univ.)

Instructor Dr. Ali Riza ASKUN (Cankaya Univ.) \ ,A, g)

STATEMENT OF NON PLAGIARISM

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare that,
as required by these rules and conduct, I have fully cited and referenced all material
and results that are not original to this work.

Name, Last Name : Tufan TAS

i

Signature : e

Date : 03/09/2009

ABSTRACT

ADOPTING RUP (RATIONAL UNIFIED PROCESS)
ON A
SOFTWARE DEVELOPMENT PROJECT

TAS, Tufan
M.Sc., Department of Computer Engineering
Supervisor: Prof. Dr. Mehmet R. TOLUN
Co-Supervisor: Prof. Dr. Ziya AKTAS

September 2009, 218 pages

This thesis analyzes the process of applying Rational Unified Process (RUP)
successfully on a software development project step by step. Many software
development projects today have a tendency to fail on some level. Even though they
may not fail entirely, they might be completed with schedule delays, budget overrun
or with poor quality that do not meet the requirements of customers because of poor
management and lack of necessary documentation of the project. Applying RUP
avoids these major problems in a project by developing set of work products which
depict the essentials of the system from requirements to detailed design before the
system could be implemented. However, software development teams have an
overall attitude that RUP becomes less agile and too rigid as the size of projects get
smaller. The thesis will also try to prove that this opinion is not true by using tools
Rational Method Composer (RMC) and Rational Software Modeler (RSM) to

successfully complete the project.

0z

RUP YONTEMININ
BIiR YAZILIM GELISTIRME PROJESI
UZERINDE UYGULANMASI

TAS, Tufan
Yiiksek Lisans, Bilgisayar Miihendisligi Anabilim Dal1
Tez Yoneticisi: Prof. Dr. Mehmet R. TOLUN
Ortak Tez Yoneticisi: Prof. Dr. Ziya AKTAS

Eyliil 2009, 218 sayfa

Bu tez Rational Unified Process (RUP) yonteminin bir yazilim gelistirme projesinde
basariyla uygulanma siirecini adim adim incelemistir. Gliniimiizde birgok yazilim
gelistirme projesi bazi diizeylerde basarisiz olma egilimindedir. Projeler tamamen
basarisiz olmasa bile, projenin kotii yonetimi ve gerekli dokiimantasyonun eksik
olmas1 nedeniyle takvim gecikmeleriyle, biitge asimiyla ya da miisterilerin
gereksinimlerini karsilamayan diisiik kalitede yazilim firlinleri gortilmektedir. Bir
projede, sistemin uygulanmasindan dnce gereksinimlerden detayli tasarimina kadar
esaslarim1 gosteren bir seri is iirlinii gelistirilerek RUP’nin uygulanmasi ile bu tiir
sorunlarin olusumu engellenir. Bununla birlikte, yazilim gelistirme gruplarinin proje
boyutlar kii¢lildiikge RUP’nin daha az ¢evik ve ¢ok kat1 bir hal aldigina dair genel
bir kan1 vardir. Bu calisma, basariyla bir projeyi tamamlamak i¢in Rational Method
Composer (RMC) ve Rational Software Modeler (RSM) araclarint kullanarak bu

goriisiin de dogru olmadigini kanitlamaya ¢alismistir.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Prof. Dr. Mehmet R.
TOLUN and co-supervisor Prof. Dr. Ziya AKTAS for their guidance, advices,
criticism, encouragements, and insight throughout the research. Thanks are also
extended to Dr. Alan Brown, Mrs. Jale Akyel and Mr. Erkan Ozkan, all IBM
members, for their encouragement and support they provided to co-supervisor Prof.
Dr. Ziya Aktas during the supervision of the Thesis. The last, but not the least,
support of IBM Turkey by providing Rational Method Composer (RMC), Rational
Software Modeler (RSM) and Rational Rose software packages during the thesis is
also acknowledged.

Vi

TABLE OF CONTENTS

STATEMENT OF NON PLAGIARISMooiiiiiiieieeseeeee e il

ABSTRACT ...ttt ettt ettt et e st et e e saeenteenseeneeseeneas v

(0 /78RR \%

ACKNOWLEDGEMENTS ...ttt sttt vi

TABLE OF CONTENTS ..ottt ettt vii

LIST OF TABLESottt sttt e st xi

LIST OF FIGURES ...ttt xiii
CHAPTERS:

1. INTRODUCTION ...ttt ettt e s eneas 1

1.1 Background of the Problem...........cccoociiiiiiiiiiiiiniieieeececeeee 1

1.2 Statement of the Problem..........c.cooceiviiiiiiiiiniiniieecceeee 3

1.3 Objective of the StUAYcoovieiiiiiiieieeieeee e 3

1.4 Organization of the Studyccccevviieiiiiiie e 4

2. UNIFIED MODELING LANGUAGE (UML) ...cccveiiiiiiieieeeeeee e 5

2.1 Modeling PrincCiples........cccvieeeiieeriieeciieecete ettt 5

2.2 What 1S UMLY? oo 6

2.3 UML 2.0 ottt st 7

2.4 UML DIQ@IamScecuieruieiiieniieeiieniieeieesieeeteeseeesseenseesseesseesseesseasnseens 8

2.4.1 Class DIia@ram.........cccceeecuieeeiiieeiiieeciee ettt ereeeeaee e 8

2.4.2 Object DIagram........ccceeecuieeriieeeiieeeieeeeeee e e eeeeeeeeeeaee e 10

2.4.3 Composite Structure Diagramccceceeeevcieeeiieeeiieesieeeenneen. 10

2.4.4 Deployment Diagram..........c.cccceeeruienieeiiienieeiienieeieenee e 11

2.4.5 Component Diagram...........ccceecveeviierieeiiienieeieeneeeieesee e eeees 12

Vii

2.4.6 Package Diagram.........ccccceeveuieeeiieeiiieeiee e 13

2.4.7 Activity DIagramccccvveeeiieeniie e e 14

2.4.8 Use Case DIagramcccceeeuierieiiiienieeiienieeieesee e 15
2.4.9 State Machine Diagramcccecceeviieiiienieeiieenieeieeie e 16
2.4.10 Interaction Overview Diagramcccccevvveeviienieecieeneeeneennen. 18
2.4.11 Sequence DIagramccccceeecueeeeiieeniieenieeeeiee e e eeeeevee e 19
2.4.12 Communication Diagram...........cccceeeveeeviieeriieeenieeeieeeieee e 20
2.4.13 Timing DIagram.......cccccccuveeeiieeiiieeiiie e eeeee e eeeeevee e 21

2.5 The Concept View of @ SYStemcccevieeiiiiniiiiiieiiieiieeie e 22
3. RATIONAL UNIFIED PROCESS (RUP) ..c..coviriiiiiiiiienieeeceeeee 24
3.1 Overview of the Rational Unified Processcccccecvvevveriieneenneenen. 24
3.2 RUP LIECYCIE oottt 27
3.2.1 Inception Phase.........cccoeiiiiiiieiieeciieeee e 27

3.2.2 Elaboration Phasecccoooiiiiiiiiiiiiniieeceeeceeeeeeen 28

3.2.3 Construction Phaseccccevieviniiniiniiiinicccecce 29

3.2.4 Transition Phase.........coceveriiinieneniiinieecesceeeeeee e 31

3.3 RUP DiSCIPINES.....cocuiieiieiieeiiieiieeie ettt 32
3.3.1 Business Modeling Discipling...........cccceevevieeriieecieeecieeeieens 32

3.3.2 Requirements DiSCIPIINE.........cccceevvurieriiieeriieeiee e 33

3.3.3 Analysis and Design Discipling.........ccccceevevieeriieenieeeiieeninenns 34

3.3.4 Implementation Discipline...........cccccceevviienieniienieniieieeeenen. 34

3.3.5 Test DISCIPHNEcccvieriiieiieiieeiiece ettt 35

3.3.6 Deployment DiSCIPIINeccceeviieriiiniieiieeieeieeeieeee e 35

3.3.7 Project Management Discipling..........ccceeeeveeevveeenieeeiieennnens 36

3.3.8 Configuration and Change Management Discipline................. 37

3.3.9 Environment DiSCIPIING..........ccoveeeiiieiiiieeniie e 37

3.4 TIteration in Rational Unified Process.........ccccceevuierieniienieniienieeieenee. 38

viii

4. IBM RATIONAL TOOLS ...t 40

4.1 GENETAL.c.eiiiieee e 40
4.2 IBM Rational Method Composer (RMC).........ccceerireviienireniieniieiene 41
4.2.1 Purpose and Capabilities...........ccceoeeriiinieniieniienieeie e 42

4.2.2 Key Terminology and Conceptsccceevuerirerieerieenienieeneenne. 43

4.3 IBM Rational Software Modeler (RSM)ccccevviiiviiiiviiiieieeeieeee 53
4.3.1 Features and Benefits.........cocceeruieiieniiiniiniiieieeeeeee 54

4.3.2 Capabiliti€scceeveeeiiiieiie ettt 60

5. CASE STUDY .ottt ettt st sttt s 62
5.1 Existing Information SyStemccceeeeriierieniiienieeieeieceeee e 62

5.2 EXIStiNg Problemccccoeiuiiiiiiiiiiiieieceeece e 64

5.3 Solution to the Problem ..., 65

6. APPLICATION ..ottt sttt e 66
6.1 Selecting RUP......c.oiiiiiieeeeee et 66

6.2 Project INTHATIONcccuveeiieiieciieiie ettt 66

6.3 RMC Preparationc.eecueeeieeriieeieeiieeie e eteeiee e eiee e eieeseneeneas 67

6.4 RSM Preparationcceeceeeieeriieeieeniieeieesieeeeeeee e eieesereeaeeseveeneas 78

7. INCEPTION PHASE ...ttt 85
7.1 Inception Iteration Iccccovieiiiiiiiiiieie e 88

7.2 Lifecycle Objectives MIleStONecc.eeeeveeeriieeriiieeiieeeieeeeieeeeieeens 112

8. ELABORATION PHASE ..ottt 114
8.1 Elaboration Iteration El.........ccccooiiiiiiiiniiniiiiiiiicieeeeceee 114

8.2 Elaboration Iteration E2..........cccccooiiiiiiiniiniiiiiicieeeeee 161

8.3 Lifecycle Architecture Milestonecccceeeuveeviveeniieenieeeiee e 172

9. CONSTRUCTION PHASEoiiiieeeeeeee et 174
9.1 Construction Ierations.........cccueriuierieriiieiie e 175

9.2 Initial Operational Capability Milestonec.cceceveeverieneeniennnene 181

10. TRANSITION PHASEooiiiiiiiieeeeeee e 186

10.1 Transition Iterations..........cceovieiiiieiiiiiienieeeeee e 186

10.2 Product Release MileStonecocevvereerienieneenienieniieieeeesieeieeine 190

11. SUMMARY AND CONCLUSIONS ..ottt 192

1.1 SUMMATYeiiiiiiiiiie ettt ettt et e s e e e sabee e 192

11.2 CONCIUSIONS. ..cuiiiiiiiiiieiie ettt 195

REFERENCES ...ttt sttt ettt ettt st nes R1
APPENDICES:

A. RUP DISCIPLINE WORKFLOWSoooiiiiiiiiiiniteieceeeeeeeeeee e Al

B. INCEPTION PHASE WORK PRODUCTS.......ccciiiiiirienieieeereeeee Al0

C. ELABORATION PHASE WORK PRODUCTS (C.I & C.II)coceuveneenee. All

D. CONSTRUCTION PHASE WORK PRODUCTS (D.I & D.I1 & D.III) A14
E. TRANSITION PHASE WORK PRODUCTS (E1 & E.II) ..cccoeevinrencnnnee Al7
F. IBM RATIONAL TOOL PLUG-INS ... Al8

LIST OF TABLES

TABLES

Table 7.1 Risks for Iteration I1.........ccccoiiiiiiiiiiiie e 90
Table 7.2 Project ROIES.....cccuuiiiiiieeiieeee ettt e 95
Table 7.3 Tteration I1 OVEIVIEW.....c..cooviiiiriiriiniieiieiesieete ettt 97
Table 7.4 Problem Statement.cocerieriieiiinienieieeiesteeee e 100
Table 7.5 Product Position Statement...........c.ccecuevieriirienienienienieeeiesieeeeeee e 100
Table 7.6 Middleware Layer..........cccveeviieiiiiecieeciie et 107
Table 7.7 Team Member ROLEScccooiiiiiiiiiiiiiiieeeeeee e 108
Table 7.8 Iteration E1 OVETVIEWcocuiiiiiiiiiiiiiiiieieeieete e 111
Table 7.9 Inception Iteration I1 Work Productsccceceeviriieniininiinienciicnne 113
Table 8.1 ROIES ..ottt 118
Table 8.2 BUILA Set.....cocuiiiiiiiiiiieieeeee e 120
Table 8.3 Risks for Iteration E2..........cccooiiiiiiiiiiiieeeeceeee 122
Table 8.4 Iteration E1 OVETVIEWcocueiiiiiiiiiiiiiieieeieeeeeeee e 124
Table 8.5 FIoW Of EVENTS.....ccuiiiiiiiiiee e 131
Table 8.6 Test Case for Use Case LOZINc.ceevieiiieiieeiiieieeiieieceee e 152
Table 8.7 Test Case Result 0f LOZINoooiieiieiiiiiieiecieeecee e 154
Table 8.8 Test Case Login Execution Results...........cccccceeviiiiiiniiiiiieniiiiieieee 155
Table 8.9 Iteration E2 OVETVIEWccceiiiiiiiiiiiiiiieieeieee e 159
Table 8.10 Elaboration Iteration E1 Work Productscccccoiiiiiiiniiiiiinine. 160
Table 8.11 Flow of Events for Insert USercocceevieiieeniiniiiieiieeieieeeee 162
Table 8.12 Test Case Result of Insert USeTcoceeveriiniiniiniieniineiieneeieeeeeenee 171
Table 8.13 Elaboration Iteration E2 Work Productsccccceevieiiiieniiniiiinieeinn, 173

Xi

Table 9.1 Construction Iteration C1 Work Productscooveeuumeeeeeeeeeeeeeeeeeeeeeeen. 183

Table 9.2 Construction Iteration C2 Work Productsccccceeviiiiiiniiniiinicnen. 184
Table 9.3 Construction Iteration C3 Work Productsccccceeviieiiieniiiciienieeien. 185
Table 10.1 Transition Iteration T1 Work Products...........cccceeeieviiiiiiniiiiienieeien, 191
Table 10.2 Transition Iteration T2 Work Products............cccoeevieriiiiiiiniiiiiiieieeine 191
Table 11.1 Volume of Work Products...........coocueiiiiiiiiiiiiiceeeeee 197

xii

LIST OF FIGURES

FIGURES

Figure 2.1 Class DIagramcccueeecuiieiiieeiiieeciiee ettt e sveeeiveeesreessaeesnee s 9
Figure 2.2 Object DIagramc..coccuieiiiieeiiie ettt e s e 10
Figure 2.3 Composite Structure Diagram.............cccueevuveriieniienieeniieeieeieeeie e 11
Figure 2.4 Deployment Diagramcccocceeeiiiiienieeniieeieeiieeie et 12
Figure 2.5 Component DIiagramcccocceeeiieiiienieeniieeieeieeete e eiee e ens 13
Figure 2.6 Package DIagram..........ccceeeeiiiiiiieeiiieeciee et 13
Figure 2.7 Activity DIa@ram..........ccceeiiiiiiiiie ettt 14
Figure 2.8 Use Case DIagramc.cceouiieiiieeiiieeiieeeieeeeiee et eeevee e 16
Figure 2.9 State Machine Diagram...........cccoccueeviieiiieniieiiieiieeie et 17
Figure 2.10 Interaction Overview Diagram..........cccceeeeviieiiieniienieniieiieeee e 18
Figure 2.11 Sequence Diagram...........ccccoevieiiieiieniieiiieeie ettt 20
Figure 2.12 Communication DIagramccccceeeiiieeiiiieeiiieeniie e eeeee e 21
Figure 2.13 Timing Diagramccccueeiiiiiiiieeiiie et eciee et e e eeae e saee e 22
Figure 3.1 Overall Architecture of RUP.........cccovviviiiiiiiieeecece e 26
Figure 3.2 The Iterative Development Process of RUPccooeeiiiiiniiiinicncnne. 39
Figure 4.1 RMC Main WindOoWcccciiiiiiiiiiiieie ettt 43
Figure 4.2 Process Content Librarycccoecveeiieriieiiienieeiieeieeieeeee et 45
Figure 4.3 Out-of-the-box Delivery Processescccoevvvieeiiieniieeciie e 46
Figure 4.4 Capability Patternsccccecvuiieiiieeiiieeieece e 48
Figure 4.5 Separation of Method Content and Processccccceeevveeniieenieeseneeennee. 50
Figure 4.6 The Key Concepts of a Successful Methodcccoevieiiiiiiiiniiinnienin, 50
Figure 4.7 Core Method Content CONCEPLScveerurieriierieeiieeieeiie e eiee e eieeeieeens 51

xiii

Figure 4.8 Project Specific Method Contentccccocvveeciiienciieeniie e 52

Figure 4.9 RSM Main WindOWc.ccooiiiiiiiieiiieeieeeieeeetee et 55
Figure 4.10 Freeform Diagramcccevieviiiiniiniinienieececteece e 56
Figure 4.11 TOpIic DIagram.........coueeiuiriiniiriinienieeieeeseee et 57
Figure 4.12 Browse Diagrami.........cccoeoierieriiriinieniieienieeieete sttt 59
Figure 5.1 Cankaya University Library S€rvicescccceevirerciieeniieeeniieceiee e 63
Figure 5.2 Organizational StrucCtureccceevvieeiiieeiiieeeeecee e 64
Figure 6.1 Creating Method PIug-in.........coccviiiiiiiiiiieeee e 68
Figure 6.2 Method Plug-in Wizard............cccoooiiiiiiiiiiniiiieccceeeeeeee 69
Figure 6.3 Method CONtent.........cceevuiiieriiiiiriiniieieecseeeee e 70
Figure 6.4 Creating Method Configurationccceeveveriiinienieicnieneeeeeee, 71
Figure 6.5 Creating New Method Configuration...........ccceceveeeeiveenieeenieeceiee e 72
Figure 6.6 RUP Discipline Workflows...........ccccuveeiiieiiiieriiiecieecee e 73
Figure 6.7 Creating Capability Patterns.cccueeeviieeiiieeieecee e 74
Figure 6.8 Defining Capability Patternscccceveevieriiniiniiniinicicecceeecee, 75
Figure 6.9 Creating Delivery ProCess........cccevuirierieriienienienienieieeeseeie e 76
Figure 6.10 Defining Delivery PrOCESScoccevieviirieriiniiiienieieeieseee e 77
Figure 6.11 RUP Phases for the Projectcccveeiiieeiiieeciiececeeeeeee e 78
Figure 6.12 Creating Model Projectcccvvveiiieeiiieeieeeeecee et 79
Figure 6.13 Model Project Wizard Step 1cccveeiiieeiiieeiieeeeee e 80
Figure 6.14 Model Project Wizard Step 2coceevuiriinieninienieiccieneeeeeeeeee 81
Figure 6.15 Model Project Wizard Step 3coouieiiiiiiiiiieieeieeeeee e 82
Figure 6.16 Initial Project SCTeENcoveviiiiiniiniiiieniieiececeeee e 83
Figure 6.17 Creating UML EI€mMENtscccceevvieeiiieeiiieeiieeeiee e 84
Figure 6.18 Explorer View of Creating UML Elementscccccccceeeviieeiieeneneeennee. 84
Figure 7.1 Inception Phasecoocuiiiiiiiiiiieceeeeeee e 85
Figure 7.2 Open RMC Process BrOWSET.......c.c.ovieiiriiniiniinienieiccicseeieee e 86
Figure 7.3 RMC Process BIOWSETcoueviiriiriieiiiiieniieieciesiteieee e 87

Xiv

Figure 7.4 Selected Work Product............ooocviieiiieeiiieeieeeeeeee e 88

Figure 7.5 Inception Phase Activity Diagramc.ccccccveeciieniiiienieeeciie e 89
Figure 7.6 Conceive New Project Tasks........cccoveeviriierieninienieeeieeeneeeseeeeen 89
Figure 7.7 CONSIIAINES.......cceiiiiiiiieeiieriieeiteeie et eee et eae et eseteeteesabeesbeessneeseesnseens 91
Figure 7.8 Project Phase Plan........cccocoviiiiiiiiiiiiiiiceecceeeeeee 91
Figure 7.9 Problems and Recommendationsccccceeeviiienciieeniee e 92
Figure 7.10 Prepare Project Environments Sub-Activities.........cccevvveeriieerveesenreennee. 92
Figure 7.11 Prepare Environment for Project Task.........ccccveevcivienciiiiniiecieeeieee 92
Figure 7.12 Overview of the Development Processcoccevvevievienienenneneeneenne. 93
Figure 7.13 Create Project Configuration Management Environments Task............ 93
Figure 7.14 Project REPOSILOTYcocuiriiriiiriiiieniieiecesiteie ettt 94
Figure 7.15 Prepare Environment for an Iteration Task.........c.cccovvvviviiieiniiencneennee. 94
Figure 7.16 Define Project Plans Sub-AcCtiVILYccceeciieeiiiieniieeiie e 94
Figure 7.17 Plan the Project Taskscccceeiiieiiiieiiieeieeceeecee e 95
Figure 7.18 Project Phase Planccccoviiiiiiiiiiiiiiiiceeceee e 96
Figure 7.19 Monitor and Control Project Tasksccoceevervieniiniiiinieniienieeene, 96
Figure 7.20 Gantt Chart for Inception Phaseccccovieviiiiniiniiiiiieneceeee, 98
Figure 7.21 Responsibilities for Iteration I1..........ccccoeeiiieeiiiiniiieieeee e 99
Figure 7.22 Status of Team Members..........ccceecveeeiiieeiiiecieecee e 99
Figure 7.23 Manage the Scope of the System Tasks.........cccceevviiievciieeniiieeiieeeieeens 100
Figure 7.24 Use Case LiSt.....c.coiiiiiiiniiiiiieieeieetesie et 101
Figure 7.25 Product FUNCHONS.ccciiiiiiiiiiiieieniiesieesteeee e 102
Figure 7.26 Define the System Tasksc.cccoeeviirieniiiiniiniceneeeeseeeee 102
Figure 7.27 Definitions for Iteration I1ccccoeeiiiiiiiiiiiiieeee e 103
Figure 7.28 Actors of the SyStemcccueveiiiiiiiiecicce e 104
Figure 7.29 Use Case DIiagram...........ccccueeeiiieeiiieeiiiieeiieeeieeeseeeesveeeveesvaeesneeens 104
Figure 7.30 Usability ReqUIr€MEeNtsc.cccveeiieriieiiieiieeiieieeeieeee e 105
Figure 7.31 Perform Architectural Synthesis TasK.........cccccoceevirieninneniencnienene 105

XV

Figure 7.32 Deployment Model...........cccoiiiiiiiiiiieiieceeceeeeee e 106

Figure 7.33 Define Evaluation Mission Taskscccccceevviiieiiiiieniieeniee e 107
Figure 7.34 Test Strat@@IESeevuveriieriieeiieiie et eiee et eieeeteetee e eteesateeaeesnneeneees 108
Figure 7.35 Manage Iteration Taskscceccueeiiierieiiienieniieeeeieeee e 108
Figure 7.36 Work Order Reports for Iteration I1cccoeevieriiniiiinieniieieeeeee, 109
Figure 7.37 Objectives Reached for Iteration Icccoooivieiiiiiiiiiiiieee e, 110
Figure 7.38 Plan for Next Iteration Tasksccccecvvieeiiiinciiieniiiccee e 111
Figure 8.1 Elaboration Phase...........c.cceviiiiiiiieiiiecieecie e 114
Figure 8.2 Elaboration Phase Activity Diagram...........ccccceeevvenieniienieniienieeeeenen. 115
Figure 8.3 Prepare Environment for an Iteration Task..........ccccoceviriiniineniennne 115
Figure 8.4 Change Request FOIMcoccuiiiiiiiiiiiiiiiiieieceeeee e 116
Figure 8.5 Revise and Complete Project Plans Sub-Activities.........cccecueeeeveercnnennns 117
Figure 8.6 Plan the Project Tasksccccuveiiiieiiiieiieceeeeeeee e 117
Figure 8.7 BUAZELvieeeiieee ettt 119
Figure 8.8 Plan the Integration TasK...........ccceeviieniiiiiiinieiiieeccce e 119
Figure 8.9 Ongoing Management and Support Sub-Activitiesc.cceceeveeruenneene 120
Figure 8.10 Manage Iteration Taskscceccueeviierieniiienieniieeecieeee e 120
Figure 8.11 Work Order Reports for Iteration E1cccccoovvieiiiiiiniiiiiiecieeeeens 121
Figure 8.12 Objectives Reached for Iteration E2ccccooiieiiiiiniiiiiiiieeee, 123
Figure 8.13 Monitor and Control Project Tasksccccueevvuiieiciiieniieeiieeciee e 123
Figure 8.14 Responsibilities for Iteration E2...........cccccooviiiiiiiniiniiinieieeeeeee, 124
Figure 8.15 Technical Progressccocceeiieiiieiiieniieeieeiieceeeeeee et 125
Figure 8.16 Manage Changing Requirements Tasksccccceverienernieniineciieneenn 126
Figure 8.17 Use Case DIiagram...........ccccueeeiiieeiieeeiiiieeiieecieeeseeeesveessveesnneesnee e 127
Figure 8.18 Manage Change Requests Taskscccceeeuiveiciiieiciiiiniieeiee e 127
Figure 8.19 Change Request SeCtiONScc.eeevviieiiieeiiiieeiieeeiee e 128
Figure 8.20 Support Environment During an Iteration TasK.........c.ccocevceenerviennene 129
Figure 8.21 Project Management DiSCIPlINgccceoveevieiiieniieiiieniecieeeeeeeeneen 130

XVi

Figure 8.22 Refine the System Definition Taskccccoevviieniiiiniiiiniecieeee, 130

Figure 8.23 Librarian and Server Modules for E1.........cccccooviiiiiiiiiiiiicieeeees 132
Figure 8.24 INtETTaceseevuiieiieiieeie ettt ettt ettt et 132
Figure 8.25 Define a Candidate Architecture Tasks.......c.cccoceevevieniniinieneeniennn 133
Figure 8.26 Logical View of the Systemcceeieiiiiinieniiiiniieiieeeceeeeeeeen 133
Figure 8.27 Analysis Classes for Iteration E1ccccccooiiiiiiiiiiieeceeee, 134
Figure 8.28 Use Case Diagram for LOgIn.........ccceeciierciiieniiiieciie e 135
Figure 8.29 Communication Diagram for Login..........ccccceeveeeviienciiieniieeiee e 135
Figure 8.30 Sequence Diagram for LOZINcccoeviiiiienieniieiieeieeeece e 136
Figure 8.31 Refine the Architecture Tasks........cccooceevviienieiiienieeiieieceeeee e, 137
Figure 8.32 Presentation Layer Design Classes for Iteration E1...........cccccceoenen 138
Figure 8.33 Design Class View for Iteration El.........cccccoovoiiiiiiiiiiiiiiiecieeeees 139
Figure 8.34 System Access — Overview (Level 1) ..ooooviiciieiiiiiiieeiecieeee, 140
Figure 8.35 Implementation Model Package..........ccccoecuvveeiiieniiiiiniiieiee e, 140
Figure 8.36 Develop Components Sub-ACHVItIESceceeriieriieniieriieeieeieeeveeneeen 141
Figure 8.37 Analyze Behavior Tasks........c.ccccevviieriiiiiinieiiieeecceeee e 141
Figure 8.38 Object Diagram for Use Case Loginccccevevienieniienieniieieeieenen. 142
Figure 8.39 Navigation Map for Iteration E1ccccoooiiiiiiiiiiiieeeeeee, 142
Figure 8.40 User Interface Prototype for Iteration El........cccccoiiiiiiiiiiiiiiiens 143
Figure 8.41 Design Components Taskscccccueeeviiiriiiieniiiieniie e 144
Figure 8.42 Design the Database Tasks.........ccoecveruieriiinieiiieiecieeee e 145
Figure 8.43 Database Tables for Iteration E1..........cccccooviiiiiiiniiniiiieeiieieeeeee, 145
Figure 8.44 Implement Components Taskscccceecuierieniienieniienieeieeieeeeeeeeen 146
Figure 8.45 Build for Iteration E1ccccoooiiiiiiiiiieeeeeee e 146
Figure 8.46 Integrate and Test SUb-ACHIVITIEScccueeeiiiieeiiieeciie et 147
Figure 8.47 Verify Test Approach Task........cccccueeeiiieviiiiiiieeieeceeee e 147
Figure 8.48 Integrate and Validate Build Sub-Activitiesccceveevierieneeniennene 148
Figure 8.49 Integrate each Subsystem Tasks...........cccceevieriiieniinciiiniiciieeeeeeee, 148

XVii

Figure 8.50 Unit Test for Iteration E1ccoooviiiiiiiiiieeee e 149

Figure 8.51 Unit Test Result of checkSessionTest...........cccveeeviiieriiieniiieeiee s 150
Figure 8.52 Integrate the System Taskcccceverieniiiiniiiniiieeeeee 150
Figure 8.53 Validate Build Stability Taskccccoceviiininiiniiiiinececciee 151
Figure 8.54 Test and Evaluate Sub-AcCtiVitiescoceeveriiniiiienieniiiecieeeeene 151
Figure 8.55 Test and Evaluate Tasks.........cccceeiiiieiiieiiieecieeeceeeeee e 152
Figure 8.56 Defect REPOTLccccviieeiiieiie ettt 156
Figure 8.57 Requirements-based Test Coverage for Iteration E1ccccne.. 157
Figure 8.58 Achieve Acceptable Mission Task.........ccccevvieniiiiniininiiniincicnne 157
Figure 8.59 Improve Test ASSets Taskcoceevuerieriiiiinieniiieiieeeeeseeeee e 158
Figure 8.60 Plan for Next Iteration Tasksccccceceviiviriininienieneeeieecene 158
Figure 8.61 Analysis Classes for Iteration E2ccccooiiiiiiiiiiiiniiicieeeee, 163
Figure 8.62 Analysis Classes for Overall Systemccccceeevviiierciieeniieeciieeeieeens 164
Figure 8.63 Sequence Diagram for Insert USErccccvvveviiieriiieeniieeiee e 165
Figure 8.64 Communication Diagram for Insert User...........cccceveveveriienienenniennnn 166
Figure 8.65 Design Classes for Iteration E2........cccccocoeviviiniiiiniiniiecciee 167
Figure 8.66 Design Classes for Overall Systemccccocvevervenieninienienecienene 168
Figure 8.67 Navigation Map for Iteration E2ccccooiiiiiiiiiiiiiieeeeeeeee, 168
Figure 8.68 User Interface Prototype for Iteration E2...........cccoveeviiiiniiiiiiieinns 169
Figure 8.69 Database Tables for Iteration E2..........ccccccvviviiiiiiiiiniiieee e, 169
Figure 9.1 Construction Phase...........coceviiiiiiiiiiieniiiecceeeee e 174
Figure 9.2 Construction Phase Activity Diagram..........cccoeevevieeciienieniiienieeeeenen. 175
Figure 9.3 Elaboration and Construction Phase Activity Diagrams........................ 176
Figure 9.4 Design Class of CourseData............ccceeeeuiieeiieeiiieeniie e 178
Figure 9.5 CourseData Class Implementation..............cceeeeuvieriiieeniieenieeceiee e 179
Figure 9.6 CourseData Method Implementationcccceeeeeiiieriieeriieeeiieeeiieens 180
Figure 10.1 Transition Phaseccoceiviiiiiiiiiiieniiecceceeeeee e 186
Figure 10.2 Transition Phase Activity Diagram.........c.ccccceeevieniinciienieniieieeeeenen, 187

XViii

Figure 10.3 Construction and Transition Phase Activity Diagrams

Xix

CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

An important part of a software development project is documentation.
Documentation is a process of making a record of information related to the
corresponding process being documented. Documentation involves recording
information such as functional and technical requirements, standards, design and
implementation procedures, testing process and results, operation procedures,
support arrangements related to the software and the data used by the software.
Documentation is not just a process of recording the information; it also includes the
process of making the information available in such a form that the targeted users of
the documentation can benefit from it. It is important to remember that
documentation is an ongoing process until the software becomes completely

available and being used.

Over many years of software development effort, project teams have understood that
the most beneficial way to obtain maximum success is about well documentation of
the project. We know that each phase in a software development life cycle should
have its generic document. Probably the most common problems encountered on a
software development project are related to how much and what type of

documentation should exist during the development of the required system.

Most programmers tend to forget about the documentation when they need to start
with a new software development project. Unless the software managers or
customers insist to have the documentation, the documentation will not exist at all.
On the other hand we also know that forcing software engineers to produce
documents, many times they produce related documents after they finish the coding
and make the system available. This kind of attitude collide the structure of a
reasonable software development. Especially for programmers, creation in coding and
implementation is much more exciting than documenting their systems. As a result, we
obtain documentations with low qualities which cause really serious problems during

development and maintenance of the system.

On the other hand, documentation standard is important to be enforced in all
software projects because its purpose is to communicate only necessary and critical
information, not to communicate all information. However, most organizations do
not employ any documentation standard. Thus programmers who produce the
documentation do not follow any formal guidelines and this causes many different

formats in the code to be produced.

Also, comprehension of an existing software system is the most expensive task during
the software maintenance process because it includes reading documents, scanning its
source codes and understanding the change to be made. Maintenance is one of the areas
that software engineers spend their time. However this task becomes most costly and
laborious activity because of the lack of needed documentations. Due to the lack of
information about the existing system, engineers waste their time to understand the

system.

Nowadays, most of the large and medium sized projects are managed and developed
successfully by the help of a software engineering process called Rational Unified
Process (RUP) that is the widely used methodology on software development. The
Rational Unified Process provides a disciplined approach to assigning tasks and
responsibilities within a development organization so it ensures the production of
high quality software that meets the needs of its end-users, within a predictable
schedule and budget. The Rational Unified Process is supported by tools, which
automate large parts of the process. They are used to create and maintain the various

artifacts of the software engineering process such as visual modeling, programming,

testing and many other documentation that are necessary for the project. By using
RUP almost all possible problems mentioned in this section are solved for the large
sized projects. However, according to a number of software engineers, RUP cannot
be agile and it is too rigid for small projects. Because of this, RUP is not considered
as an option within teams which causes many management and development
problems. So many small projects still have the mentioned problems because of the
lack of their necessary documentation work. In these situations some of these
projects cannot be concluded or made successfully available. It is dramatic to note
here that this misconception is harmful and RUP may be adopted for agile systems

as well.

1.2 Statement of the Problem

This research is intended to deal with the problems as discussed in Section 1.1 that
are related to software development projects. Project team members cannot find a
case study that represents how RUP can be applied on a small project successfully.
A sample project that resolves these issues would prove that small projects can also
be managed using RUP. So our main goal is to adopt RUP methodology on a small
software development project. Case problem to be developed may be defined as the

automation of existing manual reservation system of Cankaya University Library.

1.3 Objective of the Study

The objectives of the study may be listed as follows:

e To define a case problem as a small sized project;

e To define project lifecycle on determined small sized software development
project by applying RUP methodology;

e To represent all activities step by step performed based on RUP approach;

e To represent all necessary work products and perform a proper
documentation,;

e To produce working software on time that fits the captured requirements

during the development of software project.

1.4 Organization of the Study

This thesis is organized into eleven chapters namely, Chapter 1: Introduction,
Chapter 2: Unified Modeling Language (UML), Chapter 3: Rational Unified
Process (RUP), Chapter 4: IBM Rational Tools, Chapter 5: Case Study, Chapter
6: Application, Chapter 7: Inception Phase, Chapter 8: Elaboration Phase,
Chapter 9: Construction Phase, Chapter 10: Transition Phase, Chapter 11:

Summary and Conclusions.

Chapter 1 is the introduction of the study and consists of the background of the
problem, a statement of the problem that is being focused in this study and objective
of the study. Chapter 2 offers literature review concerning with Unified Modeling
Language emphasizing the importance of its version 2.0. All UML 2.0 diagrams are
reviewed with small samples. Chapter 3 offers literature review concerning with
Rational Unified Process. RUP lifecycles and disciplines are reviewed emphasizing
the importance of iterations. Chapter 4 offers fundamental information about IBM
tools that are used in software development project by focusing on their capabilities
and features. Also their key concepts are elaborated. Chapter 5 defines a case study
problem with its existing problem and solution to that problem which will be used
for the software development project. Chapter 6 introduces the preparation of the
environment and related IBM tools briefly for software development. Chapter 7
describes the adaptation of inception phase to the software development project step
by step. Chapter 8 describes the adaptation of elaboration phase to the software
development project step by step. Chapter 9 describes the adaptation of construction
phase to the software development project step by step. Chapter 10 describes the
adaptation of transition phase to the software development project step by step.

Chapter 11 provides the summary of the thesis and includes the conclusions.

CHAPTER 2

UNIFIED MODELING LANGUAGE (UML)

2.1 Modeling Principles

Professionals such as business analysts, engineers, scientists and others who build
complex structures or systems are first creating models of what they build [e.g.
Cernosek and Naiburg, 2004]. Some of these models are physical and some of them
are less tangible. As stated by Booch, Rumbaugh and Jacobson [2005], the use of
modeling has a rich history in all the engineering disciplines. That experience
suggests four basic principles of modeling:

e The choice of what models to create has a profound influence on how a

problem is attacked and how a solution is shaped.

e Every model may be expressed at different levels of precision.

e The best models are connected to reality.

e No single model is sufficient. Every nontrivial system is best approached

through a small set of nearly independent models.

While developing software, developers need a better understanding of what they are
building, and modeling is an effective approach to do that. By modeling software,
developers can understand the system better and gain some advantages on
development. As stated by Cernosek and Naiburg [2004] some of the benefits and

the importance of modeling are listed as follows:

e Create and communicate software designs before committing additional
resources.

e Trace the design back to the requirements, helping to ensure that they are
building the right system.

e Practice iterative development, in which models and other higher levels of

abstraction facilitate quick and frequent changes.

2.2 Whatis UML?

UML stands for Unified Modeling Language which is a family of graphical tools. It
is important to understand that UML is a standard language that is used to write
software blueprints [Pilone and Pitman, 2005]. Since UML is defined as a language,
it has both syntax and semantics as all languages have. When you model a potential
problem or a solution in UML, there are some rules regarding how the elements can
be put together, how the interaction between them can be created and what it means

when they are organized in a certain way.

When UML is applied to software, it attempts to bridge the gap between the original
idea for a piece of software and its implementation. The UML may be used for
visualization, specification, architecture design, construction, simulation, testing and
documentation of the artifacts of software intensive systems. UML was originally
developed with the idea of promoting communication and productivity among the
developers of object-oriented systems. The most powerful characteristic of UML is

that it makes inroads into every type of system and software development.

The most important concept about UML is that it is not a methodology, so it does
not require any formal work products. As a relevant methodology one may refer to
RUP (Rational Unified Process) as to be described later in the thesis. UML provides
several types of diagrams that, when used within a given methodology, increase the
ease of understanding of the problem domain and its proposed solution of an
application under development [Bell, 2003]. Each model comprises one or more
diagrams with supporting documentation and descriptions. The number and size of
these diagrams and documentation depends on complexity of systems that is to be

developed.

2.3 UML 2.0

The first version of UML, UML 1.0, allowed people to communicate designs
unambiguously, convey the essence of a design, and even capture and map
functional requirements to their software solutions. Versions of UML 1.x were
designed as a unified language for humans. When it became important for models to
be shared between machines specifically between Computer Aided Systems
Engineering (Case) tools or Computer Aided Software Engineering (CASE) tools,
UML 1.x was again found wanting. Underlying notation rules and meta-model of
UML 1.x were not formally defined enough to enable machine-to-machine sharing
of models [Hamilton and Miles, 2006]. This necessity emerged the revision of
present versions. Each revision of UML tried to recover the problems identified
within the previous versions. Today UML 2.0 is the most cleanest and compact

version.

UML 2.0 is familiar to people who were already using UML 1.x. Many of the
original diagrams and associated notations have been retained and extended in UML
2.0. With Version 2.0, UML has evolved to support the new challenges that software
and system modelers face today. As stated by Selic [2005], the new developments in

UML 2.0 are listed as follows:

e A significantly increased degree of precision in the definition of the language
to support the higher levels of automation required for model driven
development (MDD).

e An improved language organization which is characterized by a modularity
that not only makes the language more approachable to new users, but also
facilitates inter working between tools.

e Significant improvements in the ability to model large-scale software
systems that new hierarchical capabilities were added to the language to
support software modeling at arbitrary levels of complexity.

e Improved support for domain-specific specialization to allow simpler and
more precise refinements of the base language.

e Opverall consolidation, rationalization, and clarifications of various modeling

concepts which is resulted in a simplified and more consistent language.

7

2.4 UML Diagrams

UML allows people to develop several different types of visual diagrams which
represent various aspects of a system. UML categorizes its diagrams into two as
structural diagrams and behavioral diagrams:

e Structural Diagrams: Used to show the building blocks of your system.
Class diagram, object diagram, composite structure diagram, deployment
diagram, component diagram and package diagram are structural diagrams.

¢ Behavioral Diagrams: Used to show how your system responds to requests
or otherwise evolves over time. Activity diagram, use case diagram and state

machine diagram are behavioral diagrams.

In addition to Structural Diagrams and Behavioral Diagrams there is a third group of
diagrams that are called Interaction Diagrams.
e Interaction Diagrams: Actually a type of behavioral diagram which are
used to depict the exchange of messages within collaboration en route to
accomplishing its goal. Interaction overview diagram, sequence diagram,

communication diagram and timing diagram are interaction diagrams.

This group of diagrams are explained briefly and exemplified by an airline

reservation system [e.g. IBM Rational University, 2004] in the next sections.

2.4.1 Class Diagram

Class diagrams are the most common diagrams used in modeling object-oriented
systems. A class diagram shows the existence of classes and their relationships
between them in the logical design of a system [Fowler, 2003]. It gives you a static
picture of the pieces in the system and of the relationships between them. Class
diagrams also show the properties and operations of a class and the constraints that
apply to the way objects are connected. Developers use class diagrams to actually
develop the classes. Analysts use class diagrams to show the details of the system

[Boggs and Boggs, 2002].

Class diagrams are the backbone of the UML [Fowler, 2003], so you will use them

all the time. The trouble with class diagrams is that they are so rich; they can be

overwhelming to use. The biggest danger with class diagrams is that you can focus

exclusively on structure and ignore behavior. As an example, Figure 2.1 depicts a

class diagram related to flight reservation.

Q Person

[Eg lastMame : String
[Eg firstMName : String

Q Passenger 1 " Q Reservation
Eg accountMumber : Integer [Eg reservaticnMumber : Integer
- passenger - reservation
=] Flight =l Seat
[Eg airline : 5tring Eg row : Integer
Eg flightMumber : Integer
§% update ()

Figure 2.1 Class Diagram

Classes are shown as rectangle boxes with three compartments. First part contains

the name of the class; second part contains attributes which are details of class and

third part contains operations which are features of classes that specify how to

invoke a particular behavior.

Relationships between classes are listed as follows:

Dependency: Weakest relationship between classes. One class uses, or has
knowledge of, another class. Read as “...uses a...”.

Association: Stronger than dependencies. Specifying objects of one thing are
connected to objects of another. Read as “...has a...”.

Aggregation: Stronger version of association. A special form of association
that models a whole-part relationship between the whole and its parts.
Composition: Strong relationship between classes. Composition is a form of
aggregation, with strong ownership and coincident lifetime as part of the
whole.

Generalization: The target of the relationship is a general, or less specific,
version of the source class or interface. Read as “...is a...”.

9

2.4.2 Object Diagram

Object Diagrams provide a snapshot of system execution at a point in time using
objects and links [IBM Rational University, 2004]. It models the instances of things
contained in class diagrams. An object diagram is a variant of a class diagram and
basically uses the same notation with the difference being that the object diagram
shows a set of instances and not actual classes. Object diagrams can be used to show
an example configuration of objects. As an example Figure 2.2 depicts an object

diagram related to flight reservation.

Object diagrams use notation which is almost identical to class diagrams, but they
present the objects and their relationships at a particular point in time. Objects are
shown with a rectangle. Within object diagrams, the title is underlined to show that
it is an instance of a class. Links between objects on an object diagram show that the

two objects can communicate with each other.

Q customer : WebClient

Q agency : AirlineReservation

- flights : FlightDatabase

Figure 2.2 Object Diagram

2.4.3 Composite Structure Diagram

One of the most significant new features in UML 2 is the ability to hierarchically

decompose a class into an internal structure [Fowler, 2003]. This allows you to take

10

a complex object and break it down into parts that provide to understand and

manage complex systems much easier.

Composite structure diagrams are used to depict the internal structure of a classifier
such as a class, component, or use case, including the interaction points of the
classifier to other parts of the system [Ambler, 2005b]. They are also used to explore
how a collection of cooperating instances achieves a specific task or set of tasks and
describe a design or architectural pattern or strategy. As an example Figure 2.3

depicts a composite structure diagram related to flight reservation.

Internal structures show the parts contained by a class and the relationships between
the parts. Ports show how a class is used on your system with ports. A port may
appear either on a contained part representing a port on that part, or on the boundary
of the class diagram, representing a port on the represented classifier itself.
Collaborations show design patterns in software that is being developed and, more

generally, objects cooperating to achieve a goal.

Q TicketServer

agency : AirflineReservation flights : FlightDatabase

Cl\
/

Figure 2.3 Composite Structure Diagram

2.4.4 Deployment Diagram

Deployment diagrams are used to model the physical aspects of an object-oriented
system. Deployment diagrams show a system’s physical layout, revealing which
pieces of software run on what pieces of hardware [Ambler, 2005b]. Software
elements are typically manifested using artifacts and are mapped to the hardware or

software environment that will host them which are called nodes.

11

The Deployment diagram is used by the project manager, users, architect, and
deployment staff to understand the physical layout of the system and where the
various subsystems will reside [Boggs and Boggs, 2002]. As an example Figure 2.4

depicts a deployment diagram related to flight reservation.

Scanner

=deploy= sexecutables

% ticketRead
l__zllucatiunh"lude ICketheaoer

Figure 2.4 Deployment Diagram

Deployment diagrams use nodes to represent hardware in your system. Physical
software files are modeled with an artifact. An artifact is deployed to a node, which
means that the artifact is installed on the node. An artifact manifests the component
if an artifact is the physical actualization of a component. An artifact can manifest

not just components but any packageable element, such as packages and classes.

2.4.5 Component Diagram

Component diagrams are used to show a physical view of the model, as well as the
software components in the system and the relationships between them [Ambler,
2005b]. Component diagrams are used when the system is divided into components
and to show their interrelationships through interfaces or the breakdown of
components into a lower-level structure. Development can be changed quickly when
a component-based architecture is used. Because of switching components readily,

or modified, without compromising overall system integrity.

Component diagrams are used by whoever is responsible for compiling the system.
The diagrams will tell this individual in what order the components need to be
compiled [Boggs and Boggs, 2002]. The diagrams will also show what run time
components will be created as a result of the compilation. As an example Figure 2.5

depicts a component diagram related to flight reservation.

12

sComponents
= | AirlineReservation

=Components
= | FlightDatabase

wLISEx

Figure 2.5 Component Diagram

A component is drawn as a rectangle with the <<component>> stereotype and an
optional tabbed rectangle icon. A provided interface of a component is an interface
that the component realizes. Other components and classes interact with a
component through its provided interfaces. A provided interface of a component
describes the services provided by the component. A required interface of a
component is an interface that the component needs to function. A required interface

declares the services that a component will need.

2.4.6 Package Diagram

A package is used to take any construct in the UML and group its elements together
into higher level units [Fowler, 2003]. Most common use of a package diagram is to
group classes. Nearly all UML elements can be grouped into packages, including
packages themselves. Each package has a name that scopes each element in the
package. Package diagrams describe the hierarchical organization of model
elements. Package diagrams extremely useful on larger scale systems to get a picture
of the dependencies between major elements of a system. As an example Figure 2.6

depicts a package diagram related to flight reservation.

£ Airline Reservation System

= Agent =] AirlineFlightCheck

Figure 2.6 Package Diagram

13

Packages organize UML elements, such as classes, and the contents of a package
can be drawn inside the package or outside the package. If the contents of a package
are drawn outside of it then they are attached by a line to the package. Elements in a
package may have public or private visibility. Elements with public visibility are
accessible outside the package. Elements with private visibility are available only to

other elements inside the package.

2.4.7 Activity Diagram

Activity diagrams are specialization of state machine diagrams which focus on the
execution and flow of the behavior of a system. Activity diagrams apply much more
than just software modeling [Pilone and Pitman, 2005] that they play roles in many
other areas. They may be used in business modeling to show the business workflows
or may be used in requirements gathering to illustrate the flow of events through a
use case. These diagrams define where the workflow starts and ends, what activities
occur during the workflow, and in what order the activities occur. Activity diagrams
capture activities that are made up of smaller actions. Activity diagrams are used to
model the dynamic aspects of a system. They also support and encourage parallel
behavior that is a critical point to understand the system behavior. Figure 2.7 depicts

an activity diagram for part of an airline reservation system.

5 activity

&9 Enter Departure Airport 9 Select Flight

&9 Departure Airport &9 Alternatives

[found 1 = flights]

&9 Lookup City

[found 1 flights]

[found O flights]

Figure 2.7 Activity Diagram
14

In activity diagrams there are initial and final nodes. Actions are located between
these nodes. Actions are active steps in the completion of a process. Decisions are
used when you want to execute a different sequence of actions depending on a
condition. Decisions are drawn as diamond-shaped nodes with one incoming edge

and multiple outgoing edges.

2.4.8 Use Case Diagram

A use case diagram describes a system’s functional requirements in terms of use
cases and the persons or things invoking the functionality referred as actors. The
most important role of a use case diagram is to communicate the system’s behavior
to the end user [IBM Rational University, 2004] so the model must be easy to
understand. Sometimes business use case diagrams could be used before modeling
use case diagrams. Business Use Case diagrams are used to represent the
functionality provided by an organization as a whole [Boggs and Boggs, 2002].
Business use case diagrams are not concerned with what is automated, but use case

diagrams focus on just the automated processes.

A use case diagram is a valuable tool to help understand the functional requirements
of a system. Use case diagrams are important for visualizing, specifying, and
documenting the behavior of an element. A big danger of use cases is that people
make them too complicated and get stuck. As an example Figure 2.8 depicts a use

case diagram to describe the flight reservation for a customer.

Major concepts in use case diagrams are defined as follows:

e Actor: Anyone or anything that interacts with the system being built that is
external to the system. It represents a coherent set of roles that one plays
when interacting with use cases. External entities, actors that are depicted in
the figure can also be depicted using simple stick figures.

e Use case: Describes a sequence of events, performed by the system that
yields an observable result of value to a particular actor. It illustrates how an

actor might use the system. An ellipse shape is used.

15

e System Boundary: Includes all use cases and excludes actors. It is useful
when determining the scope and assignment of responsibilities when

designing a system, subsystem or component.

Flight Reservation System

Search for Flights SelectSeat
Customer cesttends
Make Reservation Book Flight
Seat Selection sincludes
Bank

Make Credit Card Payment

Figure 2.8 Use Case Diagram

A common problem with use cases is that by focusing and the interaction between a
user and the system, you can neglect situations in which a change to a business
process may be the best way to deal with the problem [Fowler, 2003]. It causes the
terms appear as system use case which is an interaction with the software and

business use case which discusses how a business responds to an event.

2.4.9 State Machine Diagram

State machine diagrams show the behavior of a system. State machine diagrams
provide a way to model the various states in which an object can exist. State
machine diagrams can be used to model the behavior of a class, subsystem, or entire
application [Pilone and Pitman, 2005]. It is typically used to model the discrete

stages of an object’s lifetime.

16

State machine diagrams are not created for every class since they are used only for
very complex classes. If an object of the class can exist in several states, and
behaves very differently in each of the states, you may want to create a state

machine diagram for it to understand the behavior of the class in more details.

State machine diagrams are good at describing the behavior of an object across
several use cases. State machine diagrams are not very good at describing behavior
that involves a number of objects collaborating [Fowler, 2003]. As an example

Figure 2.9 depicts a state machine diagram as part of an airline reservation system.

(* state machine AirlineReservation

&9 Ready dateAndDestination &9 Wait Selection

selectedFlight

E9Wait Payment @ Approve and Confirm : AirlineReservation

done
pay

aborted

Figure 2.9 State Machine Diagram

A state diagram consists of states, drawn as rounded cornered rectangles, and
transitions, drawn as arrows connecting the states. A transition represents a change
of state, or how to get from one state to the next. A state is active when entered
through a transition, and it becomes inactive when exited through a transition. State
diagrams usually have an initial state and a final state, marking the start and end

points of the state machine.

17

2.4.10 Interaction Overview Diagram

The purpose of the interaction overview diagram is to visualize the different options
that exist for a given interaction [IBM Rational University, 2004]. Interaction
overview diagrams represent interactions using a simplification of the activity
diagram notation. Interaction overview diagrams can help you visualize the overall
flow of control through a diagram; however, they do not show detailed message

information.

Interaction overview diagrams are used to overview the flow of control within a
business process, overview the detailed logic of a software process and connect
several diagrams together. As an example Figure 2.10 depicts an interaction

overview diagram related to flight reservation.

'] sd ReserveFlights

WebClient: AirlineReservation: FlightDatabase:

1: approveFlight
1.1: approveFlight

1.2: confirmFlight
2: confirmFlight

3rinvoice

[reserve] 4 pay

5: receipt

'] sd ReserveFlights

WebClient: AirlineReservation: FlightDatabase:
[change] =" ===-____

1: dateAndDestination

1.1:changeTicket

1.2: newDate

2: newDate

Figure 2.10 Interaction Overview Diagram

18

Individual interactions are placed on an interaction overview diagram as though they
were actions as on an activity diagram (see Section 2.4.7). Similar to an activity
diagram, the interaction overview begins with an initial node and ends with a final
node. Control flows between these two nodes and passes through each of the

interactions in between.

2.4.11 Sequence Diagram

A sequence diagram captures the behavior of a single scenario [Fowler, 2003]. The
diagram shows a number of example objects and the messages that are passed
between these objects within a use case. It shows the flow of functionality through a
use case. Sequence diagrams are used to look at the behavior of several objects

within a single use case.

A sequence diagram is an interaction diagram that emphasizes the time ordering of
messages. Objects are arranged in a chronological timing order. It shows the objects
participating in the interaction by their “lifelines” and the messages that they send to
each other. The most important characteristic of a sequence diagram is using time

ordering between objects.

Sequence diagrams are particularly important to designers because they clarify the
roles of objects in a flow and provide basic information for determining class
responsibilities and interfaces. As an example Figure 2.11 depicts a sequence

diagram related to flight reservation.

A sequence diagram is made up of a collection of participants. Time runs down the
page on a sequence diagram in keeping with the participant lifeline. Time on a
sequence diagram is all about ordering, not duration. When a message is passed to a
participant the receiving participant is said to be active. Also participants do not
necessarily live for the entire duration of the interaction of a sequence diagram.
Participants can be created and destroyed according to the messages that are being
passed. UML 2.0 provides sequence fragments that are used for managing complex

interactions.

19

| sd ReserveFlights

WebClient: AirlineReservation: FlightDatabase:

1. dateAndDestination

2: flightList

3: selectedFlight

[reserve] 1: approveFlight
1.1: approveFlight

)) 1.2: confirmFlight
2t confirmFlight

3rinvoice

4: pay

5 receipt

Figure 2.11 Sequence Diagram

2.4.12 Communication Diagram

Communication diagrams show exactly the same information as the sequence
diagrams [Boggs and Boggs, 2002] with no time ordering. A communication
diagram is an interaction diagram that emphasizes the structural organization of the
objects that send and receive messages. Communication diagrams show the same
information as the sequence diagrams however, they are used in different areas as
quality assurance engineers and system architects look at these diagrams to see the

distribution of processing between objects.

The main question with communication diagrams is when to use them rather than
sequence diagrams. A rational approach [Fowler, 2003] says that sequence diagrams

are better when you want to emphasize the sequence of calls and that

20

communication diagrams are better when you want to emphasize the links. As an

example Figure 2.12 depicts a communication diagram related to flight reservation.

Communication diagrams are much simpler than sequence diagrams that are made
up of participants and links. Messages are passed along the link between participants

without any time ordering between them.

£ | comm Reservation

4: pay

1: approveFlight

WebClient: AirlineReservation:

2: confirmFlight

3iinvoice)
1.1: approveFlight

5 receipt
1.2: confirmFlight

FlightDatabase:

Figure 2.12 Communication Diagram

2.4.13 Timing Diagram

Timing diagram is a new addition to UML. Timing diagrams are a special
representation of interactions that focus on the timing of events over the life of
objects [Pilone and Pitman, 2005]. Timing diagrams are most often used with
real-time or embedded systems. A timing diagram is useful for showing the
interaction of objects and the timing constraints between state changes for those
objects along a precise timing axis. As an example Figure 2.13 depicts a timing

diagram related to flight reservation.

The names of the main participants involved in an interaction are written vertically
on the left hand side of a timing diagram. During an interaction, a participant can

exist in any number of states. A participant is said to be in a particular state when it

21

receives a message. States are written horizontally on a timing diagram and next to

the participant that they are associated with.

timing ReserveFlights /

: FlightDatabase Idle >< Confirming

: Airline
Reservation Ready ><Wait Selection><Wait Approval><Wait Conformation

Figure 2.13 Timing Diagram

2.5 The Concept View of a System

The concept view of a system helps modelers to convey the correct information
depending on goals. In modeling 4+1 views of a system is used. The 4+1 notation
represents four distinct views of a system and one overview of how everything fits
together. These four views are design, deployment, implementation and process

view. The four distinct views of a system are brought together with a use case view.

The design view describes the representation of the problem domain and how the
software will be built to address it. The design view typically does not address how

the system will be implemented or executed [Pilone and Pitman, 2005].

The deployment view captures how a system is configured, installed, and executed.
The deployment view captures how the physical layout of the hardware
communicates to execute the system, and can be used to show failover, redundancy,

and network topology [Pilone and Pitman, 2005].

The implementation view emphasizes the components, files, and resources used by
a system. Typically the implementation view focuses on the configuration

management of a system [Pilone and Pitman, 2005].

22

The process view of a system is intended to capture concurrency, performance, and

scalability information [Pilone and Pitman, 2005].

The use case view of a system contains the use cases that describe the behavior of
the system as seen by its end users, analysts, and testers. This view does not really
specify the organization of a software system. Rather, it exists to specify the forces
that shape the architecture of the system that is to be developed [Booch, Rumbaugh
and Jacobson, 2005].

23

CHAPTER 3

RATIONAL UNIFIED PROCESS (RUP)

3.1 Overview of the Rational Unified Process

The Rational Unified Process (RUP) is a software engineering process and a process
framework for successful iterative-incremental software development [Shuja and
Krebs, 2008]. It provides a disciplined approach to assigning tasks and
responsibilities within a development organization. The main goal of this disciplined
approach is to ensure the production of high quality software that meets the needs of

its end users, within a predictable schedule and budget.

The Rational Unified Process captures many of the best practices in modern
software development in a form that is suitable for a wide range of projects and
organizations [Kruchten, 2003]. It describes how to effectively deploy best practices
which are as follows:

e Adapt the process;

e Balance competing stakeholder priorities;

e (Collaborate across teams;

e Demonstrate value iteratively;

e Elevate the level of abstraction;

e Focus continually on quality.

The Rational Unified Process recognizes that the traditional waterfall approach can

be inefficient. Because the traditional waterfall approach brings key team members

24

idle for extended time periods [Ambler, 2005b]. Many feel that the waterfall

approach also introduces a lot of risk because it performs testing and integration

activities at the end of the project lifecycle. Problems found at this stage are very

expensive to fix that causes team to turn back to development.

By contrast, RUP represents an iterative approach that is superior to the traditional

waterfall approach for a number of reasons as follows [Kruchten, 2003]:

RUP lets you take into account changing requirements which despite the best
efforts of all project managers are still a reality on just about every project;
Instead of performing integration one at a time at the end, elements are
integrated progressively;

Risks are usually discovered or addressed during integration. With the
iterative approach, you can mitigate risks earlier which reduce the cost and
effort on development;

Iterative development provides management with a means of making tactical
changes to the product. It allows you to release a product within the early
iterations with reduced functionality to counter a move by a competitor, or to
adopt another vendor for a given technology;

Iteration facilitates reuse. It is easier to identify common parts as they are
partially designed or implemented than to recognize them during planning;
Errors can be corrected over several iterations which causes a more robust
architecture. Performance bottlenecks are discovered at a time when they can
still be addressed;

Developers can learn along the way, and their various abilities and
specialties are more fully employed during the entire lifecycle. Testers start
testing, technical personnel begin their work early in the product, not at the
end of the project lifecycle;

The development process itself can be improved and refined along the way.
There is an assessment at the end of each iteration that examines the status of
the project and also analyzes alteration in the organization and in the process

to make it perform better in the next iteration.

The Rational Unified Process enhances team productivity, by providing every team

member with easy access to a knowledge base with guidelines, templates and tool

25

mentors for all critical development activities. The Rational Unified Process
activities create and maintain models. Rather than focusing on the production of
large amount of paper documents, the Rational Unified Process emphasizes the
development and maintenance of models. The most important advantage of Rational
Unified Process is being a configurable process. We know that no single process is
suitable for all software development. The Rational Unified Process fits small
development teams as well as large development organizations with its highly

flexible configurable processes.

Figure 3.1 illustrates the overall architecture of RUP [e.g. IBM, 2007b]. This figure
which is also called hump chart contains information about phases, iterations,

milestones, disciplines, their interrelationships, and the lifecycle concept of RUP.

N Phases
Disciplines . . . ' . —
Inception ! Elaboration . Construction Transition
W Susness Modeing | e — i
[] Requirements i ?’“‘-—»___i_____i_______i—___i_ |
[T Analysis & Design | ﬂ%u’—‘————____ :
[| Implementation __:_______——: = : “I-h».______ .
B Test : | : : ' - i
—————:_-"-'"-"_‘_. - . _—1___
W e L ——
Configuration & | | : ; | ;
W Change Management —— R
B Project Management : | ' | | |
B Environment | | i i i ' i
e A, ; i
Initial ' E1_|__E2 ! €1 . _C2 | G T1 | T2
nitia H ¥ n_L A
Major Lifecycle Lifecycle Initial Operational Product
Milestones Objective Architecture Capability Release

Figure 3.1 Overall Architecture of RUP

The horizontal axis represents time and shows the lifecycle aspects of the process. It
represents the dynamic aspect of the process as it is enacted, and it is expressed in
terms of cycles, phases, iterations, and milestones. The vertical axis represents core
process disciplines, which group activities logically by nature. It represents the static
aspect of the process as it is expressed in terms of process components, activities,

disciplines, artifacts, and roles.

26

3.2 RUP Lifecycle

The RUP has four sequential phases which are Inception, Elaboration, Construction,
and Transition. Each of them plays a central role in managing iterative and
incremental development projects using RUP. Each phase concludes with a major
milestone, as shown in Figure 3.1. Number of iterations within a phase depends on

the size of projects.

3.2.1 Inception Phase

Inception phase defines the scope of the project and develops the business case for
the system [Hunt, 2003]. It also establishes the feasibility of the system that is to be
built. The overriding goal of the inception phase is to achieve concurrence among all
stakeholders on the lifecycle objectives for the project. All high level requirements
models are developed within this phase. The inception phase plays the most critical
role in the project. Inception phase objectives can be listed as follows:

e Establish the project’s scope and boundary conditions;

e Estimate the potential risks which is a critical issue for the project;

e [Estimate the overall cost and schedule for the project that is not detailed;

e Prepare the support environment for the project;

e Identify the critical use cases of the system;

e Exhibit one candidate architecture;

e Produce detailed estimates for the Elaboration phase.

The inception phase is concluded by the lifecycle objective milestone. At this point,
the lifecycle objectives of the project are examined and decided either to proceed
with the project or to cancel it. The evaluation criteria for the inception phase are
[Gornik, 2001]:

e Stakeholder concurrence on scope definition, cost and schedule estimates;

e Requirements understanding as evidenced by the fidelity of the primary use

cases;
e Credibility of the cost and schedule estimates, priorities, risks, and

development process;

27

Depth and breadth of any architectural prototype that was developed;

Actual expenditures versus planned expenditures.

The state of several essential work products at the inception phase milestone are

given below [IBM Redbooks, 2007]:

Vision e Business Case

Risk List e Software Development Plan
Iteration Plan e Development Process
Development Infrastructure e Glossary

Use-Case Model

3.2.2 Elaboration Phase

Elaboration phase captures the functional requirements of the system [Hunt, 2003].

It should also specify any non-functional requirements to ensure that they are taken

into account. The main goal of the elaboration phase is to baseline the architecture of

the system to provide a stable basis for the design and implementation effort in the

Construction phase. This is the initial phase that the architecture is proved by

creating an architectural prototype. Elaboration phase objectives can be listed as

follows:

Stabilize the architecture and requirements;

Establish a supportive environment;

Mitigate risks to determine project cost and schedule;

Address all architecturally significant risks;

Establish a baseline architecture that will be used for the entire project;
Produce an evolutionary prototype;

Optionally throw away prototypes can be produced to mitigate specific risks
such as design tradeoffs component reuse, and product feasibility;
Demonstrate that the baseline architecture will support the requirements of

the system at a reasonable cost and in a reasonable time.

The elaboration phase is concluded by the lifecycle architecture milestone. At this

point, the detailed system objectives and scope, the choice of architecture, and the

28

resolution of the major risks are examined. The main evaluation criteria for the

elaboration phase involve the answers to following questions [Gornik, 2001]:

Is the vision of the product stable?

Is the architecture stable?

Does the executable demonstration show that the major risk elements have

been addressed and credibly resolved?

Is the plan for the construction phase sufficiently detailed and accurate? Is it

backed up with a credible basis of estimates?

Do all stakeholders agree that the current vision can be achieved if the

current plan is executed to develop the complete system, in the context of the

current architecture?

Is the actual resource expenditure versus planned expenditure acceptable?

The state of several essential work products at the elaboration phase milestone are

given below [IBM Redbooks, 2007]:

Prototypes

Development Process
Development Infrastructure
Implementation Model
Software Development Plan
Supplementary Specifications
Test Suite

Test Cases

Risk List

Development Infrastructure
Design Model

Vision

Iteration Plan

Use-Case Model

Test Plan

Test Scripts

3.2.3 Construction Phase

Construction phase concentrates on completing the analysis of the system,

performing the majority of the design and the implementation of the system [Hunt,

2003]. All remaining requirements are identified and the system is developed based

on the baselines created in elaboration phase. Construction phase objectives can be

listed as follows:

Minimize development costs through optimization of resource utilization by
avoiding unnecessary rework and by achieving a degree of parallelism in the
work of development teams;

Achieve adequate quality as rapidly as is practical,

Complete the analysis, design, development, and testing of all required
functionality;

Decide if the software and the users are ready for the deployment of the
solution;

Achieve useful executable versions as rapidly as practical;

Iteratively and incrementally develop a complete product that is ready to

transition to its user community.

The construction phase is concluded by the initial operational capability milestone.

At this point, we decide if the software, the sites, and the users are ready to go

operational, without exposing the project to high risks. The evaluation criteria for

the construction phase involve answering the following questions [Gornik, 2001]:

Is this product release stable and mature enough to be deployed in the user
community?

Are all stakeholders ready for the transition into the user community?

Are the actual resource expenditures versus planned expenditures still

acceptable?

The state of several essential work products at the construction phase milestone are

given below [IBM Redbooks, 2007]:

Deployment Plan e Implementation Model
Test Suit e User Support Material
Risk List e [teration Plan

Design Model e Development Process
Development Infrastructure e Data Model

Test Plan e Test Cases

Test Scripts

30

3.2.4 Transition Phase

The Transition phase moves the system into the user’s environment [Hunt, 2003].
The overall goal of the Transition phase is to ensure that software is available for its
users. In some systems testing should be performed within this phase. Transition
phase objectives can be listed as follows:
e Validate the new system against user expectations;
e Train the end users and maintainers;
e Roll out the product to marketing, distribution, and sales teams;
e Fine tune the product by engaging in bug fixing and creating performance
and usability enhancements;
e Conclude the assessment of the deployment baseline against the complete
vision and the acceptance criteria for the product;
e Achieve user self supportability;
e Achieve stakeholder concurrence that deployment baselines are complete

and are consistent with the evaluation criteria of the vision.

The transition phase is concluded by the product release milestone. At this point, the
objectives are examined to ensure if they were met, and if we should start another
development cycle. The evaluation criteria for the transition phase involve the
answers to these questions [Gornik, 2001]:

e Is the user satisfied about the system?

e Are the actual resources expenditures versus planned expenditures still

acceptable?

The state of several essential work products completed at the transition phase

milestone are given below [IBM Redbooks, 2007]:

e The Product Build e User Support Material

e Implementation Elements e Deployment Unit

31

3.3 RUP Disciplines

In RUP, a discipline is defined as a categorization of activities based on similarity of
concerns and cooperation of work effort. A discipline is a collection of activities that
are related to a major area of concern within the overall project. There are total nine
disciplines defined in RUP, six of which are core disciplines and three core

supporting disciplines.

The core disciplines in RUP are divided into six:
e Business Modeling
e Requirements
e Analysis and Design
¢ Implementation
e Test

e Deployment

Three core supporting disciplines:
e Project Management
e Configuration and Change Management

e Environment

3.3.1 Business Modeling Discipline

One of the major problems with most business engineering efforts is that the
software engineering and the business engineering community do not communicate
properly with each other [Gornik, 2001]. This problem causes that the output from
business engineering is not being used properly as input to the software development

effort, and vice versa.

First of all the aim of business modeling is to establish a better understanding and
communication channel between business engineering and software engineering.
This is required to come up with proper requirements for software systems to be
built for the business at hand. Understanding the business is an important aspect
which means software engineers must understand the structure and the dynamics of

the target organization, the current problems in the organization and possible

32

improvements. A common understanding of the target organization between
customers, end users and developers has to be developed. Business modeling
explains how to describe a vision of the organization in which the system will be
deployed and then how to use this vision as a basis to outline the process, roles and

responsibilities.

Activities of the business modeling discipline include [Ambler, 2005b]:
e Assess the current status of the organization;
e Describe the current business processes, roles, and responsibilities;
e Identify and evaluate potential strategies for reengineering the business
processes;

e Develop a domain model which reflects the subset of the business.

3.3.2 Requirements Discipline

The goal of the requirements discipline is to describe what the system should do and
allows the developers and the customers to agree on that description [Gornik,
2005b]. This discipline explains how to elicit stakeholder requirements and
transform them into a set of requirements work products that scope the system to be
built and provide detailed requirements for what the system must do. Capturing

requirements have a critical importance for the system runs effectively.

The requirements discipline attempts to express the systems requirements in terms of
use cases [Hunt, 2003]. The use cases function as a unifying thread throughout the
system’s development cycle. During requirements, analysis and design, and test

disciplines the same use case model is used.

Activities of the requirements discipline include [Ambler, 2005b]:
e Analyze the problem;
o Work closely with project stakeholders to understand their needs;
e Define and manage the scope of the system;
e Refine the system definition by describing business rules, the user interface,
and non-functional requirements via appropriate modeling techniques;

e Manage changing requirements as they are identified throughout a project.

33

3.3.3 Analysis and Design Discipline

The major goal of the analysis and design discipline is to translate the requirements
which are obtained in requirements discipline into a specification describing how to
implement the system [Kruchten, 2003]. The architecture and design of the software
system is created within this discipline. The goal of analysis and design discipline is
to show how the system will be realized. The aim is to build a system that performs
tasks and functions specified in the use case descriptions and fulfill all its

requirements.

Requirements have to be understood and transformed into a system design by
selecting the best implementation strategy. Early in the project a robust architecture
has to be established so that we can design a system that is easy to understand, build,

and evolve.

Activities of the analysis and design discipline include [Ambler, 2005b]:
e Define a candidate architecture for the system;
e Construct an architectural proof-of-concept to validate the candidate
architecture;
e Understand the requirements for the system,;
e Analyze the behavior by designing the user interface, and database;

e Design of components, services, and modules.

3.3.4 Implementation Discipline

The implementation discipline is concerned with implementing the design produced
by the design discipline [Hunt, 2003]. The system is realized through
implementation of components. The Rational Unified Process describes how you
reuse existing components, or implement new components with well defined
responsibility, making the system easier to maintain, and increasing the possibilities
to reuse. Implementation discipline deals with any implementation issues that have
been left as too specific during the design discipline. It is important to remember that

developer is responsible for unit testing in implementation discipline.

34

Activities of the implementation discipline include [Ambler, 2005b]:
e Structure the implementation model;
e Understand and evolve the design model;
e Write program source code which is organized into layers;
e Implement components, services, and modules;
e Unit test the source code;

e Integrate the code into subsystems and a deployable build.

3.3.5 Test Discipline

The aim of the test discipline is to ensure that the system provides the required
functionality [Hunt, 2003]. Test discipline acts as a service provider to the other
disciplines. The Rational Unified Process proposes an iterative approach, which
means that you test throughout the project. This allows you to find defects as early
as possible, which radically reduces the cost of fixing the defect. Detecting and
recovering errors at the early stages of development has a critical importance and

one of the main ideas in RUP.

Test discipline has a difference than other disciplines which finds and exposes
weaknesses in the software product. Test discipline is performed to find what is
missing, incorrect, or inconsistent that not focuses on consistency and completeness

as other disciplines does.

Activities of the test discipline include [Ambler, 2005b]:
e Define and plan testing efforts;
e Develop test cases and test scripts;
e Organize test suites to run test cases in a specified order;
e Run tests and evaluate;

e Report defects.

3.3.6 Deployment Discipline

The major goal of the deployment discipline is to successfully produce product
releases, and deliver the software to its end users [Kruchten, 2003]. System

deployment is a critical aspect of the software development lifecycle because if the

35

software cannot get into the hands of the end users then it has no value even if it is
successfully developed. Deployment activities are mostly centered on the transition
phase, many of the activities need to be included in earlier phases to prepare for
deployment at the end of the construction phase. The effort on these activities

mostly depends on the size of the project.

Activities of the deployment discipline include [Ambler, 2005b]:
e Plan the deployment by developing deployment plan;
e Develop support and operations material;
e Create deployment packages;
e Manage acceptance testing efforts;
e Perform alpha/beta testing of the product;
e Deploy software to installation sites;

e Train end users.

3.3.7 Project Management Discipline

Software project management is managing risk and overcoming constraints to
deliver a product that meets the needs of the customers and the end users [Kruchten,
2003]. Project planning in the RUP occurs at two levels. There is a coarse-grained
phase plan which describes the entire project, and a series of fine-grained or iteration
plans which describe the iterations. Project management discipline does not attempt
to cover all aspects of project such as managing people and budgets. A difficulty on
project management is that it requires specific skills to deal with problems such as
risk management, planning and scheduling of the project, motivating and developing

the project staff and so on.

Activities of the project management discipline include [Ambler, Nalbone and
Vizdos, 2005]:

e Conceive a new project;

e Manage project staff;

e Enhance the relationship with external teams and resources;

e Risk management;

e Estimating, scheduling, and planning of the project;

36

e Manage an iteration and plan the remainder of iteration;

e Close out a phase or project.

3.3.8 Configuration and Change Management Discipline

The major goal of the configuration and change management discipline is to track
and maintain the integrity of evolving project assets [Kruchten, 2003]. Controlling
the numerous artifacts produced by the project staff is described within the

configuration and change management discipline [Gornik, 2001].

The configuration and change management discipline provides guidelines for
managing multiple variants of evolving software systems, tracking which versions
are used in given software builds, performing builds of individual programs or entire
releases according to user-defined version specifications, and enforcing site specific

development policies.

Activities of the configuration and change management discipline include [Ambler,
Nalbone and Vizdos, 2005]:

e Manage change requests;

e Plan configuration and change control;

e Set up the configuration management environment;

e Monitor and report configuration status;

e Change and deliver configuration items;

e Manage baselines and releases.

3.3.9 Environment Discipline

The purpose of the environment discipline is to provide the software development
organization with the software development environment that is needed to support
the development team [Gornik, 2001]. The software development organization is
supported with both processes and tools. The environment discipline focuses on the

activities necessary to configure the process for a project.

37

Activities of the environment discipline include [Ambler, Nalbone and Vizdos,
2005]:
e Prepare environment for the project by tailoring the process materials for an
individual project team;
e Identify and evaluate tools;
e Install and set up tools for the project team,;

e Support the tools and process throughout the project.

3.4 Iteration in Rational Unified Process

As we mentioned in the previous sections Rational Unified Process (RUP) projects
are iterative. The RUP is an incremental process whereby the overall project is
broken down into phases and iterations [West, 2002]. Iterations address only a
portion of the entire system that is being developed. Each iteration has a fine-grained
plan that defines the steps with a specific goal. Iterative development allows projects
to proceed by small steps or increments to gradually build a more complete system

[Wessberg, 2005].

The iterative nature of the RUP is reflected in how we approach its disciplines.
During each iteration we will alternate back and forth between the activities of the
disciplines, performing each task to the extent needed at the time, to achieve the

goals of that iteration.

A flexible way to proceed is to go several times through the various development
disciplines, building a better understanding of the requirements, engineering a robust
architecture, ramping up the development organization, and eventually delivering a
series of implementations that are gradually more complete. Each iteration in the
RUP is a pass through the disciplines as shown in Figure 3.2 [e.g. Ambler, 2005a]

on the next page.

Therefore, from a development perspective the software lifecycle is a succession of
iterations, through which the software develops incrementally. With each iteration,

the solution is coming closer and closer to the final product.

38

1T !

Business Requiremerts Apalysis & Implemernt- Test Deployment
o deling Design ation o

s

m I

Elusingss Requirements Anaksie & Implement Tast D eployment
e deling Design ation .

I e

Business Requirements Analysis & Implement Test Dreployment
Iadeling Dezign ation

Figure 3.2 The Iterative Development Process of RUP

39

CHAPTER 4

IBM RATIONAL TOOLS

4.1 General

Over many years of development effort, RUP has evolved into a rich process
engineering platform called IBM Rational Method Composer (RMC). RMC is an
Eclipse-based tool which enables you to define, maintain, and deploy software
process related material by enabling teams to define, configure, tailor, and practice a

consistent process.

The RUP describes a set of models such as use-case models, analysis models, and
design models that represent well-defined perspectives on the problem and solution
domains of systems. The utility of this set of models has been proven in many
projects. For applying the modeling guidance found in the RUP, a modeling
platform called IBM Rational Software Modeler (RSM) is used that is built on the
Eclipse open source software framework. RSM is a robust collaborative platform for
visual modeling and design that specifies and communicates software project

information from several perspectives to various stakeholders.

As noted above RMC and RSM are IBM Rational Tools relevant to RUP.
Additionally, there is a platform called Eclipse that is used to develop such IBM
Tools. The Eclipse is a multi-language software development platform that is
designed for building Integrated Development Environments (IDEs) known as a

software application that provides comprehensive facilities to computer

40

programmers for software development. Eclipse can be used to create diverse end-
to-end computing solutions for multiple execution environments [Erickson and
Mclntyre, 2001]. The platform consists of open source software components that
tool vendors use to construct solutions that plug in to integrated software
workbenches. The Eclipse is simply a framework and a set of services for building
applications from plug-in components. This would be a toolkit for designing
toolkits. Not just a set of APIs, the framework will consist of real code designed to

do real work [Aniszczyk and Gallardo, 2007].

Thus, RMC and RSM have become the most powerful tools used during the project
development. RMC provides a clear path to project team with high efficiency and
low risks. On the other hand, RSM provides the communication between the
stakeholders and the project team. Their capabilities and advantages are summarized

briefly in the next sections.

4.2 IBM Rational Method Composer (RMC)

IBM Rational Method Composer represents a major evolution of IBM’s process
solutions, which includes and extends the IBM Rational Unified Process (RUP).
RMC is a commercial product that is IBM’s next generation process management
tool platform. Target users who are sanctioned for RMC are process engineers,
project leaders, and project and program managers who are responsible for
maintaining and implementing processes for development organizations or
individual projects. A conceptual framework for authoring, configuring, viewing,

and publishing processes are provided to perform each process in flexible manners.

RMC is a complete business driven development solution. Running business driven
development projects requires flexible development processes. Such processes not
only have to provide concrete support and guidance for modern development
practices, such as agile, iterative, architecture centric, risk and quality driven
software development [Kroll and Royce, 2005], but also have to be flexible enough
to support rapid tailoring and adoption of the process itself as RMC provides. These
processes also need to evolve across projects, and the projects being executed must

themselves be able to evolve as business needs change mid way to completion.

41

4.2.1 Purpose and Capabilities

Development leaders and teams face some problems when acquiring and managing

their methods and processes. The aim of Rational Method Composer is to provide

solutions to these problems as follows:

Development teams need easy and centralized access to the information
repository of the project;

It is difficult to integrate development processes that convey in their own
proprietary format;

Teams lack an up-to-date knowledge base for educating themselves on
methods and best practices;

Support for right sizing the processes of teams is required;

Compliance to standardized practices has to be ensured;

Effective execution of processes in project has to be provided.

Rational Method Composer has two main purposes which are detailed as follows

[Haumer, 2005]:

RMC is a content management system that provides a common management
structure and applicable for all process content. All content managed in RMC
can be published to HTML and deployed to Web servers for distributed
usage in any phase of the management;

RMC provides capability of selecting, tailoring, and rapidly assembling
processes in concrete development projects for process engineers and project
managers. RMC provides instructions of predefined processes of RUP for
typical project situations that can be adapted to individual needs as size and
complexity of the project to be developed. It also provides process building
blocks called capability patterns that represent best development practices
for specific disciplines, technologies, or development styles. Capability
patterns form a toolkit for quickly assembling processes based on project
specific needs. Finally, the documented processes created with RMC can be

published and deployed as Web Sites.

RMC improves team efficiency, responsiveness, productivity and increases project

quality [IBM, June 2006]. One of the most important properties of RMC is

42

providing easy to use process tools and innovative technology that reduce the time to
customize best practices. It also offers new tools that help automate capturing best
practices that other projects across the company can use. These reusable process
components are powerful building blocks that help teams to complete projects on

time and within budget.

4.2.2 Key Terminology and Concepts

In order to effectively work with Rational Method Composer, a few concepts are
needed to be understood that are used to organize the content. First of all when the

program is started, a window greets the user as shown in Figure 4.1.

File Edit Search Configuration Estimation Window Help

=

Ci1~ [CIassic RUP (for large projects) 'l] @ @5 0;' @ Ej ”
=, Library &2 =i = =8
. £ core
-} extend
- £ modernize
. B3 soa
- H} systems
- H tech

- [[# Configurations

5-| Configuration &2 G 7 = 0

Classic RUP (for large projects)

|12| Disciplines

(g2 Domains

(28 Work Product Kinds
""—n) Role Sets =l Properties &2 [£1 Problems| 47 Search g3 = =0
L« Tools
lgh Processes fmpedy Jialus
Izl Custom Categories
L@ Guidance

Figure 4.1 RMC Main Window

There are two major views within the main window of RMC which are the Library
View and the Configuration View as shown in the left side of the Figure 4.1. The
Library View shows all method plug-ins and configurations. In RMC, all of these
method plug-ins are classified in six plug-in packages. The plug-in package names

are explained as follows:

e core: Used for plug-in core to the RUP software development process. Most

RUP configurations should contain the core plug-ins;

43

e extend: Extensions to the general RUP software development process that
do not fall into the other packages;

e modernize: Enterprise modernization;

e SOA: Service-oriented architecture;

e systems: Systems engineering;

e tech: Technology and tool-specific extensions.

The Configuration View shows the content elements in a library filtered by a
configuration. A configuration is a subset of the method content. Once a
configuration is selected in the Configuration Selection Box, the configuration view
is refreshed with the content from the selected configuration. Configuration
Selection Box is a simple drop down menu whose initial value is set to “Classic
RUP (for large projects)” as default that is depicted in Figure 4.1. There are eight

major categories in Configuration View as follows:

e Disciplines: A collection of Tasks that are related to a major area of concern
within the overall IT environment. Separating these tasks into separate
disciplines makes the tasks easier to comprehend.

e Domains: A logical, hierarchy of related Work Products grouped together
based on timing, resources, or relationship. While a Domain categorizes
many work products, a work product belongs to only one Domain. Domains
can be further divided into sub-domains.

e Work Product Kinds: Used for grouping Work Products. A work product
can have many work product kinds.

¢ Role Sets: Used to group Roles with certain commonalities together. Each of
these roles work with similar techniques and have overlapping skills, but
may be responsible for performing certain tasks and creating certain work
products.

e Tools: A specific type of guidance that shows how to use a specific tool to
accomplish a piece of work.

e Processes: Describes how a particular piece of work should be done. A
process can reuse method elements and combines them into a structure and

sequence for carrying out work.

44

e Custom Categories: Highly customizable and can contain any type of
element. Custom Categories allow user to categorize content according to
any scheme that he/she wants and can then be used to compose publishable
Views, providing a means to organize the method content prior to
publishing.

e Guidance: General term for additional information related to roles, tasks,

and work products.

Rational Method Composer has some key concepts such as Process Content Library,
Out-of-the-box Delivery Processes, and Capability Patterns that are to be understood
carefully to work with it. High level understanding of these concepts is important for
team members to overcome complex development challenges. In the following

sections these concepts will be summarized:

A. Process Content Library [IBM, 2007a] which is based on the best practices
adopted in thousands of RUP projects worldwide. RMC represents process
elements in terms of roles, tasks, work products, and guidance as shown in

Figure 4.2 that is obtained by clicking core item downward in Figure 4.1.

=, Library i3 e+ ¥ =0

4} core -
base_concepts
4 base_rup
4 =, Method Content
4 gl Content Packages
a B Architecture
- L5 Roles
[Tasks
- [z Work Products
- L Guidance
- By, Assessment
- B4 Design
. =i, Guidance
- = Implermnentation

m

- =, Management
. =i, Obsolete
. =i, Production
- =, Requirements
. [= Standard Categories

. L= Custom Categories -

Figure 4.2 Process Content Library

45

B. Out-of-the-box Delivery Processes [IBM, June 2006] provides a quick
starting point for planning and initiating a project for project manager. This
can be achieved by a delivery process by providing an initial project template
that identifies the milestones that have to be in the project, work products
that have to be delivered by each milestone, and resources that are needed for
each phase. RMC includes out-of-the-box delivery processes for COTS,
J2EE, Systems Engineering, SOA, etc whose configuration can be selected

using Configuration Selection Box as shown in Figure 4.3.

F v Classic RUP (for large projects) SEE=RE >
fe § Classic RUP (for large projects) N1
=i Librany &5 | 'laccic RUP for SOMA
B core Classic RUP for SOMA - for PDF or Word publishing|
hace CJCC}TS Package Delivery |
~ | RUP for AS0) £
hase r

RUP for Mediumn Projects
=L Met RUp for RAD
s 1 RUP for RSA
ke RUP for RSD
RUP for RSM -

FD; Tasks

(5 Work Products
(@ Guidance

=, Assessment

=i Design

=i Guidance

=i, Implementation

=i, Management

=i Obsolete L

=i Production

=i, Requirements

(= Standard Categories

m

(= Custom Categories W

i [
Configuration 22 an v =
Classic RUP (for large projects)

Disciplines

[F Domains

g% Work Product Kinds
L5 Role Sets

(%, Tools

[k Processes

[Custom Categories
(@ Guidance

-

Figure 4.3 Out-of-the-box Delivery Processes

46

These out of the box delivery processes can be used as a starting point for

further customizations. The complete list of processes that is available as

follows:

Asset Based Development

Classic RUP (for large projects)

Classic RUP for SOMA

Classic RUP for SOMA — for PDF or Word publishing
COTS Package Delivery

RUP for ASQ

RUP for Medium Projects

RUP for RAD

RUP for RSA

RUP for RSD

RUP for RSM

RUP for Small Projects

RUP for Small Projects — for PDF or Word publishing
RUP for System z

System Engineering

User-Experienced Modeling

In the above list, Service-Oriented Architecture (SOA) is a business-centric

IT architectural approach that provides methods for systems development

and integration where systems group functionality around business processes

and package them as interoperable services. Nowadays, IBM is interested in

closely with the Service-Oriented Modeling Architecture (SOMA) that is the

SOA related methodology. SOMA refers to the more general domain of

service modeling necessary to design and create SOA. SOMA includes an

analysis and design method that extends traditional object-oriented and

component-based analysis and design methods to include concerns relevant

to and supporting SOA. SOMA is an end-to-end SOA Method for the

identification, specification, realization and implementation of services,

components, flows.

47

C. Capability Patterns [IBM, June 2006] allow project managers to rapidly

add or remove reusable chunks of processes addressing common problems.

We know that no two projects are alike, so project managers need to rapidly

modify the process to address the specific project needs. Reusable process

fragments captured as Capability Patterns as shown in Figure 4.4.

=, Library i3

£ =0

4 Lo Processes
4 L7, Capability Patterns
4 [Discipline Worldflow
"o Analysis & Design

‘o Deployment

g Environment

o Implementation

‘o Project Management
‘4 Requirements

g Test

“e» Construction Iteration
‘4 Elaboration fteration
g Inception fteration
':;_{,' RUP Phases
‘e Transition fteration

4 l:S Typical Patterns

o+ Define Project Plans
‘o Develop Initial Vision

o+ Integrate and Test

‘e Configuration & Change Management

4 g Templates for Delivery Processes

g Create Product to Release

f_.\p Develop Components (within Scope)
“gs Develop Support Material (within Scope)
e+ Integrate and Validate Build

t.‘* Ongoing Management and Support

g Prepare Project Environments
o+ Test and Evaluate (within Scope) =

-~

m

Figure 4.4 Capability Patterns

The Rational Method Composer addresses two major areas of interest for the

process manager. One of them is content reuse and the other is ability to customize

the process to the needs of different project types by the help of capability patterns

[IBM, 2007a]. It makes easy for organizations to capture their own best practices

and make them seamlessly extend to the Rational Method Composer content

libraries.

48

RMC focuses on addressing three critical areas for project managers such as the
followings:

e rapid project initiation

o flexibility

e reality based management

The out-of-the-box delivery processes give project managers a quick starting point
for planning and initiating a project by using templates related to the project.
Through plug-ins and process components, the content around various technologies
and domains can be added or removed by project managers. A delivery process is
assembled from capability processes that capture recurring process patterns, so it can
be instantiated as needed them rather than all at once. Rational Method Composer
focuses on productivity, guidance and personalization. Helpful templates, artifacts
and tools are included to facilitate increased productivity. Rational Method
Composer helps to guide users providing proven concepts and historical best
practices in its libraries. The process interface of Rational Method Composer can be
personalized to focus on only what matters to the project based on the experience

level, role and interest [IBM, June 2006].

RMC helps users to manage their projects with its best practices. These best
practices can be achieved by using the Configuration View as we mentioned at the
beginning of this section. The Guidance category of the Configuration View
provides best practices to users. There are eleven sub-categories for the Guidance
that has important supportive effect on projects. Some of these sub-categories could
be summarized as follows:

e QGuidelines, for techniques and concepts to learn about new concepts and

how to effectively leverage key technologies and techniques;
e Examples, about what has worked from other projects;

e Checklists, that provides users to rapidly see how the work can be improved.

The most fundamental principle in RMC is the separation of reusable core method
content from processes as shown in Figure 4.5. Separation of method content and
processes increases process tailoring ability because method content is reusable

when defining processes.

49

Disciplines

A | B Business Modeling
[] Requirements

] Analysis & Design
[] Implementation

B Test

B Deployment

Method Content

O Configuration &

v B Environment

Change Management | sre— .

B Project Management

Inception : Elaboration ! Construction Transition
o : : : : o
I e e 1 !
| T h T T 1 i
s : B, W

»

| initial CEY) B2 § GE 6B) T1 | T2
nitia He i n .
Major Lifecycle Lifecycle Initial Operational Product
Milestones Objective Architecture Capability Release
Iterations
Process

Figure 4.5 Separation of Method Content and Process

A successful development method provides both the descriptions of work and the

order of work as shown in Figure 4.6 [IBM, 2007a]. A method is end-to-end and

usable on a project. An example of a method is RUP. Method content provides

descriptions of work that can be reused as important building blocks. These are the

descriptions of tasks, roles, work products, guidelines. Processes provide the order

of doing work. They do so by providing the order for the method content.

_~"Method . _—
o / e

_— Method

————e T

- - .

Process \\

- Y
e Content) ¢ N,
I rd LY Y
/ i / , . by by
/o ;/ Capability NN
/ / Pattern Yoo\
[' Artifact | |
I Gpidance Delivery | |
| | | Process |
| Role \ [/
N K \ Activity Iy
k Tas b /
AN N o
T~ - —

Figure 4.6 The Key Concepts of a Successful Method

50

Many development methods are described in books, articles, training material,
standards and regulations, and other forms of documentation. Rational Method
Composer takes such content and structures it in one specific way. Rational Method
Composer expresses method content using concepts such as tasks, roles, work
products, and guidance [Haumer, 2005]. The relationship between these concepts is

shown in Figure 4.7.

* *
= Task
RnleL; performed by D
1 *
inputfoutput

responsible #*

Wark Product

Figure 4.7 Core Method Content Concepts

Roles: Defining development skills and responsibilities for work products.

Tasks: Provide guidance on the work that needs to be done to transform inputs into
outputs through a series of steps performed by one or more roles.

Work products: Define the items needed as input or created as output of one or

more tasks that are typically the responsibility of a single role.

A development process defines sequences of the work that is being performed by
roles and the work products that are being produced and evolved over time [Kroll
and Maclsaac, 2006]. Processes can be expressed as workflows or breakdown
structures. Rational Method Composer supports processes based on different
development approaches and can be used to define different lifecycle models such as
waterfall, incremental or iterative lifecycles [Haumer, 2005]. Rational Method
Composer can be used to define processes that use a minimal set of method content
or no method content to define processes for agile self organizing teams. Figure 4.8
shows such a part of method content. As we mentioned before, Guidance elements
let users to add any additional information that makes method content of the project

more complete and allows to factor details into separate descriptions.

51

=i Library &3 e
4 3 core -

base_concepts

4 base_rup
4 =, Method Content
4 gl Content Packages
- B Architecture
- By Assessment
4 =) Design
4 B Database Design

m

4 L5 Roles
£ rup_database_designer

4 [Tasks
[+ database_design
[review_the_design_database_design

a (g8 Work Products
ﬁ rup_data_model

- L@ Guidance =

Figure 4.8 Project Specific Method Content

Rational Method Composer expresses process using concepts such as delivery

process, capability patterns and activities which are detailed as follows:

e Delivery Processes: Defines a complete integrated approach to specific type
of project.

e Capability Patterns: Special types of process used to define a stereotypical
way of performing work related to a particular subject that may be used as a
building block for assembling delivery processes or bigger patterns.

e Activities: Supports nesting and logical grouping of related breakdown

elements.

Guidelines or Guidance can be attached to both method and process elements in
order to provide additional guidance about those elements. Guidance is
supplementary free form documentation such as whitepapers, concept descriptions,
guidelines, templates, examples, and so on. In some projects they have critical

importance on team members that are not familiar to these concepts.

52

4.3 1IBM Rational Software Modeler (RSM)

Rational Software’s first visual modeling and development tool was Rational Rose
which was an important step in model driven development. However as noted by
[Cernosek, 2004] a problem was identified that developers did not like to leave their
own Integrated Development Environment (IDE) that they wanted visual modeling
to be integrated inside their own IDE. As a result IBM Rational eXtended
Development Environment (XDE) software is created that provides an extended
development environment for the next generation of programming technologies.
IBM Rational XDE offers software designers and developers a rich set of model-
driven development and runtime analysis capabilities for building quality software
applications. IBM Rational XDE was characterized as the next generation of IBM
Rational Rose. However, as more and more capabilities were added, Rational XDE
began to reach the practical limits of this style of tool integration. For the next
generation model driven development products, it was only natural to build
additional model driven development functions on top of Eclipse to form a more
complete model driven development tool. IBM Rational Software Architect (RSA)
and IBM Rational Software Modeler (RSM) are the result of these changes.

Rational Software Architect is not the next version of Rational Rose or Rational
XDE, but it rather represents a fusion of select capabilities and development
paradigms supported by Rational Rose and Rational XDE. Rational Software
Architect takes features from these two tools, adds additional Model-Driven
Development (MDD) capabilities, and introduces new structural review and control

capabilities.

On the other hand, IBM Rational Software Modeler (RSM) is a visual modeling and
design tool based on Unified Modeling Language (UML) 2.0 developed by IBM’s
Rational Software Division. Rational Software Modeler includes capabilities
focused on visual modeling and Model-Driven Development (MDD) with the UML
for creating resilient, thought out applications and especially web services. Using
Rational Software Modeler system architects, system analysts, designers and other
team members can easily specify software development project information from

several perspectives, and communicate with each other and various stakeholders.

53

RSM automates repeatable activities and help improve the productivity and overall
maturity of the development process. This is the reason that system architects,
system analysts, designers use the capabilities of the Rational Software Modeler to

help visually model and design their systems.

RSM plays a critical role in a software development project. As stated by Brown
[2008], successfully performed Model Driven Architecture (MDA) approach
provides an integrated business architecture and governance structure that enables

project team to respond to business requirements quickly and appropriately.

Recently, Telelogic Rhapsody became a part of IBM Rational Software portfolio in
2008 that is an industry-leading UML based Model Driven Development (MDD)

environment for technical, real-time or embedded systems and software engineering.

4.3.1 Features and Benefits

Rational Software Modeler provides UML 2.0 modeling support for analysis and
design using use case, class, object, sequence, activity, composite structure, state
machine, communication, component, and deployment diagrams. These diagrams
allow capturing and communicating all aspects of an application architecture using a

standard notation that is recognized by many different stakeholders.

When the program is started, a window greets the user as shown in Figure 4.9. There
are four major views within the main window of RSM which are the Project
Explorer View, the Properties View, the Outline View, and the Inheritance Explorer

View as shown in the Figure 4.9.

The Project Explorer View provides a hierarchical view of the resources in the

Workbench.

The Properties View displays property names and values for a selected item such as

a resource.

The Outline View displays an outline of a structured file that is currently open, and

lists structural elements.

The Inheritance Explorer View provides to view an inheritance hierarchy that is

created from the selected classifier such as a class, interface, or use case.

54

File Edit Mavigate Search Project Modeling Run Window Help
il €3 AllModels = U Ry R ~ &5l - v o
Ff [k Modeling |
75 Project Explorer &2 —| Q:?; ¥ =0 =0

0% Outline 52 ™% Inheritance Explorer| = O[5 Properties 3 :::D ¥ =g
An outline is not available. Property Value

4 11 3

0° I IR =

Figure 4.9 RSM Main Window

Rational Software Modeler also uses freeform diagrams, topic diagrams and browse
diagrams [IBM, December 2006]. This simplifies the usage of UML notation for
design, documentation, communication and understanding design elements that are

captured in UML models.

RSM provides the option to create a modeling file “Blank Model” that is not based
upon a model template. It has no special profiles applied, and no default content
other than a single freeform diagram named as “Main”. Blank modeling files can be
used as a starting point for any type of model such as use case model, analysis
model, design model, deployment model by choosing how to name it, what content
to define within it, and what profiles to apply to it. Whenever a new UML package
is created in a model, a freeform diagram is automatically created. A Sample
freeform diagram is depicted in Figure 4.10 for the airline reservation system that is
modeled in Chapter 2. Also the Palette includes the packages of model elements that

will be used to design any type of model in freeform diagrams.

55

File Edit Diagram Mavigate Search Project Modeling Run Window Help

Fi~E & | 6 AlModels ~ : # 3 v| v Qv - - o ow -
Tahoma 9 | - - v—)v| |fr}u:vugv;bv| | =N "
7 | sl Modeling
[Project Explorer 52 = % ¥ © 0|) Main 2 =08
1= Airline Reservation System - - Palette >
(22 Diagrams % [Select
=1 OverallSystem = s #, Zoom
(% Models - =2 Note -
E= OverallSystem g (= Deployment
a
£ Associations il PG s mponent
5 Events

(= UML C
£ Activity Diagrams = ommeon

E3 ClassDiagrams
F3 CompenentDiagrams

= Composite Structure
== Class

E3 CompositeStructureDiagrams [== Use Case

3 DeploymentDiagram == Instance
3 InteractionOverviewDiagrams = Geometric Shapes
) Main
£ LogicalView
£ ObjectDiagrams
£ PackageDiagrams o
£ SequenceDiagrams Al b
2% Outline lE Inheritance Explorer &2 =l = Properties 52 v =K
E = | gﬂ ﬁg i : <Freeform> Blank Model::InteractionOverviewDiagrams::Main
Mo Element Selected!

Gl MName: Main
To view a UML element's inheritance hierarchy simply
select the element and then select "Navigate->Show Rulers & Grid Type: Freeform
in->Inheritance Explorer” from its context menu. Appearance o
Description: -

Alternatively, drag a UML element from the Project Advanced
Explorer into the Inheritance Explorer.

e s AW S B

Figure 4.10 Freeform Diagram

In normal diagrams, elements are manually placed that the designer wishes to depict.
The contents of a Topic Diagram are determined by a query that is run against
existing model contents. To create a Topic Diagram, a topical model element or set
of elements will be selected, and then defined what other elements the designer want
to show in the diagram, based on the types of relationships that they have to the
topical elements [Smith, 2008]. The content of the topical diagram changes
according to the changes in the content of models. The definition of a named Topic
Diagram can be persisted so that the same query can be rerun at any time. Topic
Diagrams can be created simply using the project explorer window by selecting the
model content and then follow the steps of context menu as; Visualize > Add to
New Diagram in Model File > Topic Diagram. As a result the Topic Diagram is
generated automatically. As an example Figure 4.11 depicts a Topic Diagram for the

airline reservation system that is sampled in Chapter 2.

56

weserq ado], [Ty 240514

M0

+ [

sweibeigsse|y PRI
pazueApy
S 2oueseaddy
weibeigado] BB pun g sy
weibeig aido | BEpopy [el2uan)
——

1 a |23
AHIAND WOYH A3 LVHINTD <wiojaalys [|| = Al Ik @_ =

"210]dx3 33URIIAYU] 343 0l 130 dxg

1aloid ay3 woly uzwaR N e beip ‘faaneuRyy
MU PRI 53 Wy J200]dxg 30UBILRYUT<-Ul
moys <-232biaep, 19325 UaY] pue JUAWEPR 3y P3RS

Ajduuns AyaueI31Y 33URILBLUI S JUSLUSJE TN B MAIA O]

{P3P3[3S WAWa[3 apy

0= -~

T_Omcou = Tu_ B35 & rnv_EEu_oom _-H_ ﬁﬂ_um._. @.

51 sapadolg = H=

5 s=ao)deg 3sueuayu] uw._ auipng =8

Jabayur Jsquinpuonemasa B

uoleMIISIY m

®

T :
sabuabsed -

-

1abaqup fusquinpunode By

1abuassey m

« [ESSs -

1abayuy : mos B

Buwg : aweppsiy By
Buuyg : awepjise| By

.4

J3baur agquinpy B B
Buuig : aupe B

umvmm

uosiag =

Wi =

) &) F

sweibeigsse)

- sweibeigasuanbag

sweibeigebeyaed O3
swesbeigpalgo O3
amaipenboy 0]
swesbeigmalaaag uonaeR] O
weibeiquawiogdag
sweibeigainpngsapsodwosy
swelfeigusuodwon
weibeigaido] FEE
135 H
uoeAIRS3Y m
uosiag (=
1=buasseq
Wby F
sasse|yubisaq [H
suQIeID0ssY 5
swesbeigsse|y O]
sweibeig Apanoy OJ
suRAg)
suonenossy %
washg|eiang =
s[Rpo @
wasig|eang =
sweibeig &
wayshg uoneaasay Uy <7

T An_.u.v = 57 sRuo)dig palony ﬂw_

Buippop | £

- %007 |« B » o |

RPN N S

- SREpopIY €2

dipH mopuipy uny Buippop

g~ 6]~ ewoyel |{

@_.._DA_HLM

paloig youeas mebuey webeig wp3 3y |

57

Browse Diagrams are similar to Topic Diagrams in which it begins by selecting
topical elements and then defining filters that govern which kinds of related
elements will be depicted. However, Browse Diagrams do not have a persisted
definition and they are not specifically for model organization. Their purpose is to
facilitate discovery and understanding of model content by enabling graphically
navigate through a model without having to manually compose diagrams [Smith,
2008]. Browse Diagrams can be created simply using the project explorer window
by selecting the model content and then follow the steps of context menu as;
Visualize > Explore in Browse Diagram. Finally the Browse Diagram is generated
automatically depicting the selected element as the focal point with related elements
presented in a radial layout around the focal point. As an example Figure 4.12 depicts

a Browse Diagram for the airline reservation system that is sampled in Chapter 2.

Topic Diagram and Browse Diagram are both created by selecting existing model
elements that are created during the development of the projects. RSM puts some
restrictions while using these two diagrams. The content of these diagrams changes
automatically according to the changes in the content of models. However this
action is not bidirectional. It is not allowed to change the contents directly using the
Topic Diagram or Browse Diagram. The view of both diagrams is static. So model
elements and relationships between these model elements cannot be modified using

these two diagrams even their locations in the screen.

Visual modeling with content assistance guides with action bars, connection
handles, context sensitive content suggestions, task specific modeling cheat sheets,
extensive online help, samples and tutorials [IBM, December 2006] for creating well

formed models.

An increased predictability and repeatability of software development can be
achieved by pattern and transform authoring. The authoring and apply capabilities
support teams in developing artifacts for reuse and developing artifacts with reuse.
RSM includes tools for developing custom transformations that might target any
type of implementation outputs and transformations between UML models at

different levels of abstraction.

58

WEISE(] asm0ag 7T ¢ 2INSL]

Mo

11210]dx3 F2UBIBYUT 343 03U J340]dx]
1alold ay3 woay uawap@) e beip ‘ARpagewsyy

"MUILU PEIU0D 5 Wody J210|dxg 3ouejuayu] <-u
moys <-3ebinep), 193[35 UIY] PUB JUILLR[E 343 193)35

Aduns AyoiesE1y 30URIISYUI 5 JUSWR[E NN B MIIAO]

iPaPaja5 uawag oy

N EIE
O 57 JRao0)da mucmu:ur_ran ETHE Ty mm

a
paaueApy
i wonduzsag
aoueseaddy
w0331y =dh) pug g sy
= AYIND WOWA 03LVHINID 2uwey i)
e ——
AHIND WOYd A3 1vdaNID <wiojeal]d> []
0o - T_omcou = _/zu_uuw %\ ﬁwv_._m_.t«_oom _-u ﬁﬂ_nm._. @ 57 saipadolg =H
i 13
g =N
eas-
=+
3 I 4 G uonesssd 1abuassed -
3 uopemasay m|_ i sweibeigsse)) _ T 13buassey =
% (] T
T
B -
Wby 5
_h_n_nd m 1 mﬁﬁan] L a o sweibmgsse;y Buismoig
H o

-

swesbeigaauznbag
swelbeigabeyoey
sweibeigalgg I
maipeabo] O3
swesbeigmaraaguonpessiu)]
weibaigquuawiodag
sweibeigainpniigapsodwon
sweibeiqusuodwony
weibegado] FEF
135
uonenRsy H
uosiRd
13buasseq =
Wby =5
sassepubisag [{
suQneI0ssYy %7
sweibeigsse|y OJ
sweibeig oy 1
suaAg o)
suU0ReI0sSY
wayshg|ieRag
sPPoO o)
wsigleng &
swesbeig @
Wi21sA5 UONBAIRSIY AUy 1

>.ﬂu>=___=‘_>\@\.@m @» sEPoWIY £2

dpy mopuipgy, umy Bulppogpy

T Am.v = 57 1=io)dh palong _Jln_“_
q _b m_> mEozm._.__..
@ = A_ML \

pafolg yess 2pebiey weibeig wp3 3)d

59

Customizing and extending the modeling environment is supported by open
Application Program Interface (API). Plug-ins can be developed by the
organizations. Also the analysis and design tools for environment and process can be

configured depending on the organization.

UML designs create reports and documentation that can be in the forms of HTML,
Portable Document Format (PDF) and XML [IBM, December 2006]. These reports

can be reviewed by team members or other stakeholders.

Team support with multi model support, compare merges and Software
Configuration Management (SCM) integrations provides all the capabilities required

for distributed teams to design and develop applications.

4.3.2 Capabilities

The way of using UML modeling by RSM can also range from very formal to very
informal depending on the organization. Models can be chosen like formal
architectural drawings that are to be strictly followed during construction or models
can be in the form of sketches that suggest the broad outlines of a design. Rational
Software Modeler can provide support at either end of these process and modeling

spectrums [Smith, 2006].

Rational Software Modeler provides a software development platform which can be
used to take the Model Development Architecture (MDA) approach for developing
software applications [Cernosek, 2004]. Among the major functionality supported
by Rational Software Modeler is the capability to share and communicate the

modeled complexity within team, or across teams through model publishing.

Rational Software Modeler includes perspectives, which enables switching the view
to show the toolbars that are needed [Mittal, 2005]. The perspectives and features
which most commonly used are:
e Modeling Perspective: This view is used to create and manage UML assets.
Rational Software Modeler allows building any UML diagram: use case
diagrams, class diagrams, object diagrams, sequence diagrams, collaboration

diagrams, and so on.

60

e Requirements Perspective: This view is for integration with IBM Rational
RequisitePro which is a requirement and use case management tool using
familiar document based methods. IBM Rational RequisitePro improves the
communication of project goals, reduce project risks and increase the quality
of applications before deployment. The result is better communication and
management of requirements with the increased likelihood of completing
projects on time, within budget and above expectations.

e Model Publishing: This view allows publishing model so that other team

members can view it.

Raw UML models can be stored or the source code is generated from the models.
There is no automated synchronization features between the UML models and the
code. It can be easily generated one from the other. This feature is great for
developers because an initial version of the code right from the UML diagrams can
be viewed by the developer, which saves them up front development time.
Developers are more motivated to spend additional time during the design phase

when they know that they will get something tangible from it.

61

CHAPTERS

CASE STUDY

5.1 Existing Information System

Cankaya University Library was founded at 1997 and began its structuring and
functioning. It uses open shelves for the library layout. It is decided to use LC
(Library of Congress)’s implementation for the classification technique and AACR
IT (Anglo American Cataloging Rules) is applied. “Connexion” catalog system is
used to generate library collection, make cataloging and classification much faster
and reliable within international standards. At 1998 it became a member of OCLC
which is an international information sharing and distribution center. Book sharing
is performing by the system of Inter Library Loan that cooperates with the

surrounding university libraries in Ankara.

Cankaya University Library is using BLISS-PC software package developed and
marketed by Bilkent University for library automation. Library has a website that is
rearranged to be comprehensive and the library catalog is available to scan over the
Internet. Cankaya University Library is a member of various online databases which
can be accessed through library website. There is a network system (Library
Intranet) within the library that has a single point of entry and exit. There is 16
Internet connection points available within the Cankaya University Library that can
be upgraded to 50. Also an announcement list is in use for the purpose of

announcing any information about the library to all university members.

62

Dynamic and successful services are provided by Cankaya University Library. Staff

has special skills as in the following:

e Knowledgeable about education and training;

e Experienced in information sources selection, arrangement and use;

e Expert in library automation and information technologies.

Cankaya University Library services are depicted in Figure 5.1 as a business use

case diagram.

Gankaya University Library

«Buzineszl/zelasen
Selection and Supply

«BusinesslleeCases
Cataloging and Classification

«BusinessllseCases
Reference and Collection

«BusinessllseCases
«BusinessActors
Librarian

«BusinessllzeCases

Routing To Correct Resources

«Buzinessl/zeCasen
Current Announcement

«Buzinessl/zeCasen
Orientation

Answering Incoming Questions

«BuzineszllzseCazen
Loan Material

«BusinesslleeCases
Reserve Material

«BusinessActors
Library User

«BusinesslseCases
Questioning About Usage
and Source Descriptions

«Businessl/selasen
Access To Electronic Library

Figure 5.1 Cankaya University Library Services

The organizational structure of Cankaya University Library is shown in Figure 5.2:

Manager

Secretary

Collection

Circulaticn Reserve Crder Catalog Pericdicals

Services

Figure 5.2 Organizational Structure

Some service policies of the Cankaya University Library should be listed as in the

following [cankaya.edu.tr]:

Contribute to training and education programs on users effectively;

Help academic readers for their professional work;

Respond to needs about courses and evaluate the free time of students and
provide them to interest the constructive, argumentative and aesthetic values;
To provide any additional information resources, organizing and providing
services, to all of our users, in the manner of development of thinking skills
and knowledge to meet the requirements;

Following innovations and migrate them to life;

Providing positive attitude to readers.

5.2 Existing Problem

Cankaya University Library has a reservation system currently used for sharing

books, academic magazines and documents across lecturers and students. At present,

reservation operations are performed manually by the staff who is responsible for

the reserve operations. Lecturers loan some materials related to their courses to be

placed on the reserve shelf of the library for students to utilize them during the term.

Limited number of copies of such materials causes some problems. Firstly because

of the limitation on the number of copies, each student who reserves the material has

to return it in a couple of hours in a day. This situation decreases the efficiency and

64

causes other students to wait for the return of the material. Some other problems that
are caused by the borrowers include the loss of material. This is the worst situation,
because sometimes there is only one copy of the loaned material. Another problem

1s that the materials sometimes do not return on time.

5.3 Solution to the Problem

The manual reservation system is going to be automated by developing and
implementing an online e-Reserve system. The objective of this MS Thesis study is
to develop such a system. Existing manual system will be still working for sometime
and e-Reserve system is planned to assist the existing system until it is fully
operational and reliable. By the help of e-Reserve system current problems on
reservation are expected to be solved or at least minimized. Newly proposed system
will have three groups of users which are students, instructors and librarian. Student
is the main user of the system. Student can download books and documents about
courses that are uploaded by either course instructor or by the librarian (by scanning
reserve books). An instructor can thus upload books or documents about his/her
course(s) so that students can download them for studying or for making researches.
Librarian can be considered as the administrator of this project. Librarian can do all
the operations on all courses and will be able to view the usage reports and system

performance.

Thus, major problems of the existing system such as the limitation on number of
loaned copies and delay of return will be avoided and there is no need for one
borrower to wait for another for reserving the material, thus there will be simply

almost no waiting time.

65

CHAPTER 6

APPLICATION

6.1 Selecting RUP

In order to apply a new approach to develop the e-Reserve System for Cankaya
University Library, possible solutions were examined first. We looked for a
development methodology that could be easily customized and integrated with
existing processes. The goal was to create a robust and practical system based on
object-oriented development process tailored as an answer to the needs of Cankaya
University Library. RUP appeared to be the perfect answer for such a development

project.

6.2 Project Initiation

The need behind the e-Reserve project is the necessity of an online reservation
system for Cankaya University Library. The problem of the existing system and a
suitable solution to the problem is mentioned in the previous Chapter. Our main goal
is to produce an adequate executable system by adopting Rational Unified Process

(RUP) methodology.

In general, Rational Unified Process is applied on software development projects in
two major configurations either for small projects or large projects. When the project
is defined we have to decide if it is a small or a large project by estimating the

duration of the project, the amount of code to be produced, the amount of money to

66

be spent on the project or the complexity involved. By evaluating these
characteristics for our case study, in Chapter 5, it is found that the most suitable

configuration will be the “Rational Unified Process for small projects”.

The most popular debate between Rational Unified Process and small projects is that
many programmers feel that the Rational Unified Process is too rigid and too
structured for small development projects. One can, however, configure Rational
Unified Process to fit his/her project’s needs. Recent changes to Rational Unified
Process have made it easier to navigate and configure. We are expecting in this
application to show that Rational Unified Process not only applies to large projects
but it can also be used effectively on small projects. It shares many of its principles
with other methodologies, including agile methods which are advocated for small

projects.

6.3 RMC Preparation

After we decided to begin the project using RUP, we first started to use IBM
Rational Method Composer (RMC) which is discussed in Chapter 4 to create a
method plug-in for e-Reserve System. The method plug-in is a well-formed
definition of a component of a method in terms of its method elements and their
relationships. In RMC, a method plug-in is a container for method packages which
includes method elements. Method elements composed of following elements:

e (Content Element: Consists of role, task, work product, and guidance;

e Process Element: Consists of activity, capability pattern, delivery process,

and guidance.

All content about the project is organized in that method plug-in. With method
plug-ins, the content can be organized at a level of granularity that meets the needs
for authoring and reusing content. When a method plug-in is created, we can
reference other plug-ins by reusing the content; modifying or extending the content;
or adding our own content to those plug-ins that is depicted in the present section. A
method plug-in can also be standalone and not reference other plug-ins. Method
plug-ins can also perform a supporting role. Supporting method plug-ins provide

reusable content for other method plug-ins. The content that is stored in a supporting

67

method plug-in is only visible and published for a method configuration if other

content that is not in a supporting plug-in references it.

The RMC main window which is depicted in Figure 4.1 in Chapter 4 contains menu
items in which all actions can be performed using these items. So, method plug-ins
can be created simply using the menu by following the steps of as; File > New >

Method Plug-in as shown in Figure 6.1.

Edit Search Configuration Estimation Window Help

Method Library @ & @ 7 [= Authoring i

Method Plug-i
od Plug-in =5

R Method Configuration
Close Ctrl+W
Close All Ctrl+Shift+W Estimating Model \

Save s [g% Tailoring Session
>d Lirl+3

MNew

Open

e |u

Save As... [| Other...

Save All Ctrl+Shift+5

Move...
Rename...

Refresh F5

g2y Import..

e Export..

G v =9 E
Properties Alt+Enter n

Exit

(2 Domains
lE% Work Broduict Kindk = Properties &2 L’_ Problems | 4" Search :=:€> ¥ =08
& Role Sets
(4 Tools Property Value
[+ Processes

[, Custom Categories
(@ Guidance

Figure 6.1 Creating Method Plug-in

After completing the steps, the New Method Plug-in wizard is opened that guides
you to begin creating your own method plug-in. First of all, user enters the name of
the method plug-in such as “Cankaya University Library e-Reserve Project” that we
did in our project. In the next step, the Referenced Plug-ins is selected that contains
additional plug-ins that is referenced as shown in the Figure 6.2. Referenced
Plug-ins, identify plug-ins that will have content contributed to extended or replaced.
While selecting the Referenced Plug-ins we have to know what type of project to

deal with. As we mentioned before, the size of the project will be small and we

68

decided to apply classical RUP methodology. So, core.base rup plug-in is selected
that includes plug-in for RUP for small projects. Also the wizard for creating the
new method plug-in provides an additional area to make a brief description about the

method plug-in and extra information about the author(s) of this part.

= Mew Method Plug-in | (]

Create a new method plug-in

Specify a name and provide general information about the new { %g /

method plug-in.

MName: Cankaya University Library e-Reserve Project

Brief description: -
Authors: a
Referenced Plug-ins: | =] 4= core.base_concepts -

[¥] <= core.base_rup

[] <= coreinformal_resources
[== extend.bus_model

[4= extend.cots

[] <= extend.formal_resources
[T <= extend.ux_model 7

m

< Back Mext = Finish] ’ Cancel

Figure 6.2 Method Plug-in Wizard

After creating our method plug-in we have to prepare the method content. Method
content provides step-by-step explanations, describing how specific development
goals are achieved independent of the placement of these steps within a development
lifecycle. Processes take the method elements and relate them into semi-ordered

sequences that are customized to specific types of projects.

A method content element can be created manually or it can be referenced by using
best practices that is most suitable to the current project by modifying its content. So
our method content of “Cankaya University Library e-Reserve Project” is created by
simply copying the elements from “base rup” plug-in method content. Some method

contents and their elements are excluded that are not necessary to our project.

69

Finally some of the remaining elements are modified to adapt our project and some
of them are used as in their original form. Part of newly created method content

from “Cankaya University Library e-Reserve Project” is shown in the Figure 6.3.

=i, Library ©2 570

- 3 core -
- tH etend 1
- £# modernize
- 4 =oa
- B3 systems
- £ tech
a <J= Cankaya University Library e-Reserve Project
4 =, Method Content
4 gl Content Packages
- B, Architecture
B, Assessment
4 B Design
4 =, Database Design
a L5 Roles
;S' rup_database_designer

a [5F Tasks

=+ database_design

=+ review_the_design_database_design
4 (8 Work Products

% rup_data_model
4 L@ Guidance

= conceptual_data_modeling

m

&= normalization
&= relational_databases_and_object_crientation
data_model
&1 data_model
,_-E forward-engineering_relational_databases
,:E reverse-engineering_relational_databases
- B, Design with Use-Cases
- =4, GUI Design
- =, Operation Design
- =4 Real-Time Design .
. C2 Roles
- [Tasks
- [z8 Work Products
- [{@ Guidance i

Figure 6.3 Method Content

Now we have to create a new method configuration for our new method plug-in. As
we mentioned before in Chapter 4, RMC offers a library containing a great deal of
reusable content. None of the organizations or projects requires all of this

70

documentation all at once, but would work with a selection of specific subsets. So

method configuration allows us to specify working sets of content and processes for

a specific context, such as a specific variant of the RUP framework that user wants

to publish and deploy for a given software project or as a foundation for a

development organization. Simply, method configuration is a configuration that

allows us to select or deselect from the method packages available in our library’s

set of plug-ins.

Method configuration can be created simply in to the Configurations folder using the

menu by following the steps of as; In the Library, right-click the Configurations

folder and click New > Method Configuration as shown in Figure 6.4.

File Edit Search Configuration Estimation Window Help

o

|| ’CIassicRUP(forlargeprojects] V] o O] @b & @
=, Library 3 s Ay T |
2 core
2 extend
3 modernize
3 soa
2 systems

1 tech
“J= Cankaya University Library e-Reserve Project

[[# Configuratigns

5]

MNew DI | Methed Configuration

MNew Method Plug-in
Edit

Copy

= Paste
|8=] Configuration &

Classic RUP (for large Delete

[Z] Disciplines | Validate
(2 Domains
(8 Work Prody
C& Role Sets
& Tools Property Value
[Processes

Refresh

—lierties 3 Li_ Problems -';)'-' Search

(s Customn Categories
(@ Guidance

B | =i Authoring it

=g

Figure 6.4 Creating Method Configuration

Then the method configuration wizard greets us. This is the initial step before

modifying our configuration that we firstly name our configuration as “Cankaya

71

University Library e-Reserve Project”. Then, the configuration editor is opened and
name of the configuration is given as “Cankaya University Library e-Reserve
Project”. As a result our new configuration is created. At the bottom of the editor,
we click the Plug-in and Package Selection tab to modify configuration in more
details as shown in Figure 6.5. List boxes in the right hand side are used to add or
remove elements to define our configuration.

Cankaya University Library e-Reserve Project &2 =

Configuration: Cankaya University Library e-Reserve Project

w Configuration Content
Select the method plug-ins, content packages and processes that will ke included in this configuration,

Content: Add these Categories:
. [C] ## core =J== Cankaya University Library e-Reserve Project
- [] £8 extend [¥] 2] Disciplines
. [83 medernize [¥]z8 Demains
. [C] #3 soa [¥] (8 Work Product Kinds
- [O] H3 systems [#] L5 Role Sets
. [8% tech [, Tools
4 =J= Cankaya University Library e-Reserve Project [= Custom Categories

Y =i Method Content
. []lg Processes

Subtract these Categories:

[] == Cankaya University Library e-Reserve Project

/

Description: /

Description IPIug-in and Package Selectionl‘u'iews

Figure 6.5 Creating New Method Configuration

We mentioned the delivery process and capability patterns already in Chapter 4. For
our project we have to define a complete integrated approach that will be used in a
given pattern. The capability patterns can be either in discipline workflows that are
listed in Appendix A regarded using the recent IBM Poster [IBM, 2007b] as given
in Figure 6.6 or in templates for delivery processes which will be found in RMC.
We will construct our delivery processes by simply choosing the templates for

delivery processes and making some modifications on it to adapt our project.

72

Unified Process™ | Proven. Practical. Flexible.

Improving project performance with proven,
Included in IBM® Rational® Method Composer adaptable process

BUSINESS MODELING g U IMPLEMENTATION

-

F
-
¥a.

-

i

P

[[‘{!ﬁﬂ [][]if'l[it]i“iif‘i[_

W

g

Figure 6.6 RUP Discipline Workflows

73

Capability patterns express and communicate process knowledge for a key area of
interest, such as a discipline, and can be directly used by process practitioners to
guide their work. Capability patterns are also used as building blocks to assemble
delivery processes or larger capability patterns ensuring optimal reuse and
application of the key practices they express. We begin to construct our capability
patterns by using “Templates for Delivery Processes” for small projects as a
reference from the base rup plug-in in RMC. So firstly we create four capability
patterns that will form the phases of our project. Capability patterns can be created
simply using the menu by following the steps of as; In the Library, right-click the
Capability Patterns under Processes and click New > Capability Pattern as shown in
Figure 6.7. We name capability patterns as Inception Iteration, Elaboration Iteration,
Construction Iteration, and Transition Iteration that emphasizes each iteration in its
specific phase in our project. One more capability pattern is created which is named
as RUP Phases. This capability pattern is used to combine other four capability

patterns and provide an overview and order for the project phases.

File Edit Search Configuration Estimation Window Help

- ’CIassic RUP (for large projects) '] L= O ¥ i a Eﬁ £
B Library o3 pe g V=] =8
- 3 core
. 3 extend
. 3} modernize
. 3 soa
- 3 systems
- 3 tech
a = Cankaya University Library e-Reserve Project
- =, Method Content
a g Processes
. kg, Capability Patterns

. Gl Delivery Process New » | (5 Process Package
- [Configurations I*_C" Capability Pattern

Mew Method Plug-in

Edit
Copy
= Past
8= Configuration &2 s
Cankaya University Library e-Reg Delete
iZ] Disciplines Show in Resource MNavigator ;) = =
(2 Domains 9 [Zl Problems| " Search :<=::> &3]
(g2 Work Product Kinds Validate Value
A Role Sets
=, Tools e m

[+ Processes
(s, Custom Categories
(@ Guidance

C\Users\Tufan\RMC\library.72\Cankaya University Library e-Reserve Project\plugin.xmi

Figure 6.7 Creating Capability Patterns

74

After creating the capability patterns, we have to define activities and tasks for each

of these activities. As we mentioned before, there is no need to define all activities

and its tasks from the beginning because we are using “base rup” in RMC as a

reference point for our project. So firstly we choose the configuration “RUP for

small projects”. Then in the Library window we open the capability pattern that we

want to define and in the configuration window we chose the related capability

pattern that will be used as a guide for preparing our capability pattern. Figure 6.8

depicts the view during the configuration of our capability pattern named as

“Inception Iteration” in RMC.

File Edit Search Configuration Estimation Window Help
wifhs [RUP for Small Projects Wi iR isia 5] Z
| Report Design
= Library &2 & &8 ¥ 7 B || Inception Iteration £ = (=]
H systems & Presentation Name Index Predecessors ModelInfo Type 2
 tech 4 " Inception fteration 0 Capability P...E .
<= Cankaya University Library e-Reserve Project 4 B Conceive New Project 1 Activity E
=) Method Content M —DI% Identify and Assess Ri5|2 Task Descfi... —
= Processes gt Develop Business Case 3 Task Descri..
£l Capability Patterns [Initiate Project 4 Task Descri...
o :I:?mplatesfor Delivery Processes | = [Project Approval Revie 5 Task Descri...
I'::’I Constnichon feration 4 57 Prepare Project Environme & Activity
'3’ Elabofation fEration 4 5% Prepare Envirenment £ 7 Activity
I?"I Inception Iteration [Tailor the Developr 8 Task Descri...
I'::’I RUB:Phasee 4 Q’? Create Project ConfigL 9 Activity
‘o Transition Iteration [Set Up Configuratii 10 Task Descri...
{5 Delivery Processes = 4 57 Prepare Environment for a 11 1.6 Activity -

Bl Configuration &3 o
RUP for Small Pn:lj_ects

G'g Tools
[;3 Processes
-3, Capability Patterns
[Classic RUP
(& Discipline Workflows
3 Templates for Delivery Processes
‘& Construction fteration
‘& Elaboration Iteration
‘g Inception Iteration
“g RUP Phases
‘& Transition Iteration
[;3 Typical Patterns
&, Delivery Processes
[z, Custom Categories
(@ Guidance

i

1] 1 | r
b

Tearn Allocation | Work Product Usage | ™

j=)

scription | Work Breakdown 5t..

)

of inception_iteration &%
Presentation Name Index Predecessors ModelInfo Type i
‘& Inception Iteration 0 Capability PE|

extends 'c.. Activity

5% Conceive New Project 1

Task Descri..
extends 'p... Activity
extends ‘p...

[gh Project Approval Revie 5
(5% Prepare Project Environme 6

2

Description | Work Breakdown 5t.. | Teamn Allocation | Work Product Usage | ™

==

Figure 6.8 Defining Capability Patterns

The work breakdown structure of the capability patterns can be examined briefly

under the Work Breakdown Structure tab of the right bottom and top windows.

Right bottom window shows the possible activities and its task that will be used in

small projects during an inception iteration named as “inception_iteration”. So

75

simply drag and drop any activity, task or both that are suitable to the current project
to the right top window which is our created capability pattern named as “Inception
Iteration”. Alternatively new activities and tasks can be created manually using the
right click in the window of our newly created capability pattern that is “Inception
Iteration”. Team allocation and work product usage of the current iteration can be
viewed using the tabs under both window of capability patterns which are “Inception
Iteration” and “inception_iteration”. They can be easily prepared using the same
way as done for the activities and tasks by taking the advantage of drag and drop
property of the RMC.

We thus completed defining our capability patterns so that we are ready to define the
delivery process. A delivery process describes a complete and integrated approach
for performing a specific type of project. A delivery process describes what is
produced, how it is produced and the required staffing for the entire project
lifecycle. Delivery process can be created simply using the menu by following the
steps as follows; In the Library window, right-click the Delivery Processes under

Processes and click New > Delivery Process as shown in Figure 6.9.

File Edit Search Configuration Estimation Window Help

Pz ’CIassicRUP (for large projects) " =T OR N RO [[= Authoring #
=, Library &2 Gz A == | =8

. 3 core

. 3 extend

. £ modernize

. 8 soa

- 3 systems

. 8 tech
4 «J= Cankaya University Library e-Reserve Project

- B Method Content
4 (g Processes
- Ll Capability Patterns
- il Delivery Processes

. (@ Configurations New » | (54 Process Package

5, Delivery Process

MNew Method Plug-in

Edit
|8=] Configuration 3

Cankaya University Library e-R . [Problems| 47 Search g]
|iZ| Disciplines Value
#2 Domains Delete
(8 Work Product Kinds
5 Role Sets Show in Resource Mavigator
L5 Tools Validate

[Processes

[, Custom Categories Refresh
(@ Guidance

C:\Users\Tufan\RMC\library.72\Cankaya University Library e-Reserve Project\plugin.xmi

Figure 6.9 Creating Delivery Process

76

After creating the delivery process we have to define it using the capability patterns
that we constructed in the previous step. So firstly we choose the configuration
“Cankaya University Library e-Reserve Project” using the configuration selection
box. Then in the Library window we open the delivery process that we want to
define and in the configuration window we chose the capability patterns in a
sequence of order that will form our delivery process. Figure 6.10 depicts the status

of RMC during the configuration of our delivery process.

File Edit Search Configuration Estimation Window Help
5 - ’Cankaya University Library e-Reserve Proj '] LEREN OB Sl 0| =1 2
[Report Design
B Library &3 8 Y50 55 RUP for eReserve 53 = (=]
i core g Presentation Name Index Predecessors ModelInfo Type &=
extend . [4 Fél, RUP for eReserve 0 Delivery Pro... _
H modernize a (5 Inception 1 Phase 1=
 soa 4 5% Inception Iteration 1 2 Activity
8 systems =| a4 5% Conceive New Praoj|3 Activity
8 tech ' Cg Identify and As [4 Task Descri...
=§= Cankaya University Library e-Reserve Project — [+ Develop Busine|5 Task Desciii
%ﬂ Method Content Ca Initiate Project 6 Task Descri...
le irocesses L_Q* Project Approv |7 Task Descri...
fol Capability Patterns a 15 Prepare Project Em & Activity
fh Delivery Processes a 57 Prepare Enviror 9 Activity
B AP forchewne i [STalrtebn Tesk Descr.. =
[T configuration &2 $ ¥ -0 N e - z » ‘
e : Description | Work Breakdown 5t... | Team Allocation | Work Product Usage | ™
Cankaya University Library e-Reserve Project
[E] Disciplines | ||“&{Inception Iteration &2
[Domains Piesentation Name Index Predecessors ModelInfo Type G
(& Work Product Kinds %% Inception lteration 0 Capability P...| |
,E-_B Role Sets 5 Conceive New Project 1 Activity (3
fﬁ Tools [Identify and Assess Ris|2 Task Descri... —
g Erocesses [+ Develop Business Case|3 Task Descri...
=4 Eapabilit}r Patterns | [Initiate Project 4 Task Descri...
Lk 'I:emplatesfor Delivery Processes |E [Project Approval Revie|5 Task Descri...
'*:3" Construction Iteration % Prepare Project Environme 6 Activity
'*:3" Elsboration lteration (52 Prepare Environment f 7 Activity
*C’ Inception Iteration [Tailor the Developr 8 Task Descri..,
0 RUP Phases (53 Create Project ConfigL 9 Activity
. '.\0' Transition Iteration % Set Up Configurati 10 Task Descri..
o Delivery Processes | 5% Prepare Environment for a 11 16 Activity i
Iz, Customn Categories] [} r
(i@ Guidance T | || Description | Work Breakdown St... | Team Allocation | Work Product Usage | %
CI =1

Figure 6.10 Defining Delivery Process

Right bottom window shows the capability pattern that is named as “Inception
Iteration”. This capability pattern contains the activities and tasks which is defined
in the previous steps. So simply drag and drop activities to the right top window
which is our newly created delivery process. Alternatively new activities and tasks
can be created manually using the right click in the window of our newly created

delivery process.

77

As a result we obtain delivery processes for e-Reserve Project including inception,

elaboration, construction, and transition phases as shown in the Figure 6.11.

Inception Elaboration Construdion Transition

(Chapter T} (Chapter 8} (Chapter) (Chapter 10)
Figure 6.11 RUP Phases for the Project

Application of each phase is explained in detail in the following chapters. Each
phase consists of activities which is a breakdown element that supports the nesting
and logical grouping of related process elements. Activities can include one or more
sub-activities. Each of these activities and sub-activities include tasks which
describes a unit of work performed by specific roles. By the nature of Rational
Unified Process, parallelisms are provided between activities/sub-activities/tasks.
All activities and its tasks are discussed in detail with produced work products.
While a task is being performed the emergent endeavor is represented by formal
rules designated on work products. A work product is a content element that
represents anything used, produced, or modified by a task. These work products can
be in the form of document, model or model element whose templates can be found
in the RMC work product templates as mentioned in Chapter 4. Work products have
to be produced cautiously. When a task is concluded with a work product potentially

it triggers another task, activity, or sub-activity.

6.4 RSM Preparation

For UML modeling of the system, IBM Rational Software Modeler (RSM) is used
which is also discussed in Chapter 4. A UML model is a model that uses the UML
notation to graphically represent a system at various levels of abstraction. UML
models can be used to visually represent the system that is to be built, to
communicate our vision of system with customers, and for direct code generation.
UML models contain model elements, such as actors, use cases, classes, and
packages, and one or more diagrams that show a specific perspective of a system. In
RSM, models can be created and managed easily by using Model Projects. At the

beginning of the e-Reserve project, we create the Model Project. We have to create

78

this Model Project first, because we need to hold our UML 2.0 model artifacts that

will be created while the development of the project continues.

The RSM main window which is depicted in Figure 4.9 in Chapter 4 contains menu
items in which all actions can be performed using these items. So, the Model Project
can be created simply using the menu by following the steps as follows;

File > New > Model Project as shown in Figure 6.12.

Edit Mavigate Search Project Moedeling Run Window Help
New Alt+ShittsN » | 2% Model Project -
Open File... % Project..
Close Crl+W % Folder \ =5
Clase All Ctrl+Shift+W ¥ File
B
Save Cties | B Pluglet
= w7y Model
Save As... °
Save Al Ctrl+Shift+S EZ Transformation Configuration
Revert [Example..
Move... [Other..
Rename... F2
Refresh F5
Convert Line Delimiters To 3
Print... Ctrl+P
Switch Workspace 3
£2g Import.
3 Export. F :::b - =
Properties Alt+Enter plalue
1 InceptionPhase.emx [Cankaya Univers...]
2 Blank Model.emx [Airline Reservatio...]
3 InceptionPhase.emx [Cankaya Univers...]
4 Blank Model.emx [November 12, 2008]
Exit
0 o s aWyE

Figure 6.12 Creating Model Project

Then, the Model Project wizard is opened and user enters the name of the Model
Project such as “Cankaya University Library e-Reserve Project”. RSM provides
several templates that will be used to create models. Each template helps to create
content for a particular type of model. So, we choose the Standard Template in the
Model Project wizard as shown in Figure 6.13. Also existing models can be chosen
if there exists any other past works that are completed in previous projects. Initial
step of the Model Project creation is completed by assigning a name to the project

and choosing the Standard Template.

79

(29 Model Project |

Create Model Froject L\}k .
i =
Create a new model project.

Project name: Cankaya University Library e-Reserve Project

[¥] Use default location

m
Q
m

C:/Users/Tufan/IBM/rationalsdp? 0.5/ workspace
Create new model from:
[¥] Create new madel in project
@ Standard template
() Bxisting rnodel
Termnplate Description

Creates a new model from a standard template. -

)] < Back Mext = Finish Cancel

Figure 6.13 Model Project Wizard Step 1

In the next step of the wizard, we configure the type of model that will be initially
created automatically and form a baseline for the entire of the project which will be
placed in “Cankaya University Library e-Reserve Project” Model Project. First of all
we assign a name to the model which is “InceptionPhase” as shown in Figure 6.14.
This model will contain UML model artifacts that will be created within the
Inception Phase of our project. The wizard window has two main views. The view in
the left hand side contains four categories of existing Standard Templates. One of
the categories has to be chosen depending on the action that will be taken within this
model which will be analysis, design, business modeling, requirements gathering, or
all of them. So we choose the General that includes all other categories which are
Analysis and Design, Business Modeling, and Requirements. The view in the right

hand side contains the templates according to the selected category. After choosing

80

the General category, we see three different templates. All of these templates contain
blank UML models with different subsets of UML tools. For example, Blank Rose
UML Model is created with a simplified subset of UML tools is enabled that
emulates constructs available in Rational Rose. Also, Simplified Blank UML Model
is created with a simplified subset of UML tools is enabled that emulates constructs
available in UML 1.x. So, we choose the Blank Model which will create a blank
UML model with access to all UML tools.

(29 Model Project = | B -
Create Model "i
Create a new model from a standard template. o
Categories: Templates:
[= Analysis and Design “%s Blank Model
[Business Modeling "% Blank Rose UML Model
(= General “fs Simplified Blank UML Model
[= Requirements

[Show All Termplates

Ternplate Description:

Create a new blank UML model. All UML tools are enabled. -

File name:

InceptionPhase

Destination folder:

Cankaya University Library e-Reserve Project Browse...

@ <Back || MNea> || Finsh || Cancel

Figure 6.14 Model Project Wizard Step 2

In the last step of the Model Project wizard, we are able to create a freeform diagram
as shown in Figure 6.15. If we choose to create a freeform diagram then it will be
placed in the previously created model. We do not need to create a freeform diagram
for now, because we did not decide which diagram will be created first yet. As a

result we conclude the wizard by clicking Finish button.

81

129 Model Project = | B i

Default Diagram n"
. 2%~
Create a default diagram in the new model, | 7

Default diagram

Create a default diagram in the new model.

Freeform Diagram

@ <Back | MNet> || Finsh || Cancel

Figure 6.15 Model Project Wizard Step 3

After concluding the Model Project wizard the Model Project called “Cankaya
University Library e-Reserve Project” and its initial model called “InceptionPhase”
are created. These resources are represented to users as shown in Figure 6.16. The
window on the left top side in RSM depicts the Project Explorer view. As we
mentioned before, in RSM, we can create and manage models using modeling
projects in the Project Explorer view. The contents of a modeling project are
organized into two types of logical folders: diagrams and models. This structure
displays the logical containment of the UML model elements, regardless of where
they are stored physically. Models contained in a modeling project are displayed
under the Models folder, or node. These nodes are not the physical model (.emx)
files, but rather the root model elements of the models. Similarly, the corresponding

diagrams in a modeling project are displayed under the Diagrams folder.

The window on the right top side gives some general information about the physical
model which is “InceptionPhase.emx” such as size, location, creation date, and so
on. Also the window on the right bottom side which is the Properties view gives
some descriptive information about the physical model. Properties view displays
property names and basic properties of a selected resource from Project Explorer
view. The window on the left bottom side is Inheritance Explorer view as we
mentioned in the previous sections that provides users to view a UML element’s

inheritance hierarchy. This property will be used in next sections.

82

ua.dg alorg [eyruy 919 aansny

m ncO\ _UH_ @ g : 5 AVD
- 5214 GoTRET a1ls
xwaseyquondsoul/palony a/usay-2 Aeigr) Apsiaun edeyueny yied
B nwizasey quandaoug 3weu ‘110]dxg F0uBIURYU] 2Y3 oJul JRi0|dxg
Apsisnun edeyjuedyi@sedsyom gy dps|EuonEN WAL URIN [\SIRS D) uoI3EI0) At NP Y eilekge gy o EE e
i P MU PRIU0D 5 Woyy J300)dxg 3oueuayul<-w
= WY BZEE0T BOOZ TT J2quizsop PapoLW 35e] Moys <-33eBiABp, 199]25 USY] PUE JUSLS|R 24} 12335
ana 2qepp2 Aduns Ayaaeiany 20UBILSYUI 5 JUSLUS[R TN B MIIA O]
3]y SERTIED]
o iPR133[RS U333 oy
BT anjep Ffpadoig il = ﬂ.H H.m @ _ - _H_
= o= 57 JRaojch oueuayur B | supng =2
4 [
I 57 saadolg (5
suswbely | s9ouRIRRY _u__mum.ﬁ_ _Bm__.r_mno
e ann 3|qeup]
WY BT'EEI0T 8O0 TTI2QUBAcN PIJpoLU 358
s31g CoTRET =15
¥waaseyuondzsunieafong amasay-a Aeigr) Apspaup efeyueyasedsyiom,g [/dps|euonen WA URIN [\SIR5 0 uoeI0
nwaaseyquondaou FE,
aseyduondaoul AWEN (sadA aamuugaIn) U
= '|2powW sy} INoge uoijewloul [erauab sagquasap uoigoas sy aseyguondaoul &
U0} EULIOU] [BISUSD) SPRew @
"PPOW SIY} YPM paelosse swajgoud ou 2ue 309y m“mr_n_:o_ﬁwucw =
SLI2)] UORIY pUE SpISY sweibed &
- z paloag aauasay-2 Aeigr) Apsieaun efeyueny &)
D =

i ﬁ.iu.v = 57 Jaopdig uuw_.Ea_.M_n._

& apan |2 @_.@mpm_%oz_&@

dEpy mopuipy uny Buppopy P2loid youeag

Buipoyy fa]| £

apebineny Wp3 24

83

Now our Model Project is ready and we can create new UML model elements using
the Project Explorer view. In this step we are going to create a package which is a
UML model element to store other UML model elements that will be constructed
during the Inception Phase of e-Reserve project. A package can be created simply
using the menu by following the steps as follows; In the Project Explorer view,
right-click the model called “InceptionPhase” under Models folder and click
Add UML > Package as shown in Figure 6.17.

File Edit MNavigate Search Project Modeling Run Window Help
il QAMdels v (¥ @ @]l Qr S e
7 |25 Modeling
[Project Explorer &3 = Q:?; = = O] % InceptionPhase.emyx 52 = |
= %n;.a)ra University Library e-Reserve Project Alerts and Action [tems -
iagrams s - =
(5 Models There are no problems associated with this model, |2
B3 InceptionP hase General Information
T UMLE Add UmML »Im Package alel.
%24 InceptionPha - v
Add Diagram % o
New [? Subsystem lorkspace\Cankaya University Lik
Add Shortcut i
0 Use Case -
pen Artifact
5 Outline 2 % In Ypavit g H Class =
An outline is not availabli Close £] Component
Cloedl [E] Enumeration
S = Interface) i
E e () Protected () Package
Navigate » Data Type
Visualize 3 Primitive Type
Rename Signal
Refactor 4 Instance Specification 3
| X Delete % Deployment Specification
0% I B Incept) Import Model Library... Device s E W ¥ E

Figure 6.17 Creating UML Elements

We name the package as “Iterationl1” which is depicted in Figure 6.18 that

emphasizes the first iteration of the Inception Phase of e-Reserve project.

L Project Explorer 2 o5 Y T O
- =+ Cankaya University Library e-Reserve Project
4 E Diagrams
- B2 InceptionPhase
4 (22 Models
a = InceptionPhase
£ Iterationll
52 (UMLPrimitiveTypes)
%2d InceptionPhase.emx

Figure 6.18 Explorer View of Creating UML Elements

84

CHAPTER 7

INCEPTION PHASE

We begin to structure our project by constructing delivery processes from the
templates in RMC and making some modifications on it to adapt our project as
mentioned in Chapter 6. Starting point of these delivery processes is the Inception
phase that establishes the feasibility of the system and phase plays the most critical
role in the project as mentioned in Chapter 3. Inception Phase of our project consists
of one iteration which includes several activities and concluded by a milestone as

shown in the Figure 7.1.

. B _. &

Inception Iteration N Lifecycle Objectives Milestone

Figure 7.1 Inception Phase

Each activity consisting of one or more tasks performed in Inception Phase Iteration
and each task is concluded by a work product that points the critical parts and
summarizes the task. Work products are important to complete the project
successfully and achieve its objectives. So they have to be prepared correctly by
following unique method that will be easily understood by team members and an
appropriate format with universal practices. RMC provides templates and examples
of various types of work products to apply correct formats. So, the guide for work
products can be reached simply using the menu by following the steps as follows;

Help > RMC Process Browser as shown in Figure 7.2.

85

File Edit Search Configuration Estimation Window

Fo Cankaya University Library e-Reserve Prao| & Welcome j %
B, Library &3 s 4 ¥ o0 (7 Help Contents = 5
. 53 core {7) Dynamic Help
- {3 exend &7 Search Help
. £ modernize : 7
. B soa Key Assist.., Ctrl+Shift+L
. 3 systems Cheat Sheets...
- 3 tech
+ RMCP B
. = Cankaya University Library e-Reserve Project I b2 i
- L[Configurations Software Updates >
About IBM Ratienal Method Composer
License Status
|2Z] Configuration &2 G ¥ =08
. . 5 Web Resources
Cankaya University Library e-Reserve Project
|{Z] Disciplines
(5 Domains
(8 Work Product Kinds
& Role Sets
% Tools

[Processes
s, Custom Categories
(#® Guidance

C:h\Users\ Tufan\RMC\library.72\...y e-Reserve Project\plugin.xmi ol |_?_ .0"'

Figure 7.2 Open RMC Process Browser

The RMC Process Browser appears as shown in Figure 7.3 after following the
previous steps depicted in Figure 7.2. Process Browser allows developers to reach
instantaneously process guidance or policies, including the latest document
templates they should use. RMC Process Browser has two views in its window. The
window in the left most side contains the process view that provides the guidance
and the window in the right most side shows the details of selected items. Our aim is
to gain some knowledge about work products that will be produced during the
development of the project. So, first of all we have to select the appropriate task
under the activities of current iteration performed in that phase under the “Delivery
Processes” tab as shown in Figure 7.3. Then the task specific information will
appear in the right most side of the browser. This brief information tells us which
work product, named as outputs, has to be produced within that selected task. Now
we know which work product to produce. Process Browser provides more
information about the work product when we click on it as shown in Figure 7.4. As a
result, all necessary information can be obtained from templates section to produce

work product and some samples from examples section.

86

JI3sMoag ss3200J JNY £ 2Ins1y

e
W]

swabeuew s dnisusnedAypgedes dniaseq aiod /s1aloagabie /gy /o Wz Loy WAL (98 07265314075, weiboid i /=)y _ E _

[

-

uoRela)| JO pu3 a8y} e SYsY UsIAeY
uopesay ayi Buung sysiy usinay
salfiayens Aouabunuoy Mpuap
salfajens vonebniy ys1y Anuap
salfisjens soueploay ysry fnuap
sysiy aznuouyd pue azkjeuy

sysiy [enuajod Appuap

ANPPYy pue Buippoly pRguaun-a01a35 4Ny 4..«&
3ppfoay Buippapy ssauisng 3
uoiisuel] &3
uoipnisual B
sdaig o uoneieqe|3 51
auogsa)y saapalgg apayn i3
_ dojoiped g uoneR RN o) ueld {5
EREE sinding uoijesy] 2Geueiy m.l&
UOIS5IA] UoIlEN|BAT USR] FAJ_&

sdals ||v asde|joD _M_ sdals ||v puedx3

ugIsip, - i o=
auop = ue|d uswabeuep ysry = auop SRS IR LI ON r_m
Jeulapg Jeuondo Auojepuey m.:.:u:_ washs aup uyRq M@

wisAs 3y3 o adoog ayy sbeuepy) m_Ja
5 . sabieuey 1osloig .. - japoyy uiewioq doprag 7
‘Bunsissy 1EUONRRY ‘e 124 worsip ferpup doprag 7

sdiysuone|ay - 3foig |onua] pue sonuopy G5
do3 03 3oeg 4 sue|d paloig aupg €5
uaneIaY] ue Jo} JuatiuaiIAUg 3iedalg {5

sniels 1oaloud uanno ayy 1oayal 03 351 Ysiy ayl sepdn o] e
salbalel)s uawabeuew ysu aleudoidde aunuiaiap o] e
10aloud ay) 01 sysu aznuoud pue szfjeue “fynuspi ol e

asoding &

[

SNelS SsAUISNg S5sSY {5
sjuRLuoNAug Palold ueday m@
manay |eacuddy 1pafoud
yaloag 23e1u]
asey ssauisng dojEaag
sty 55355y pue Ayuap]
palaig map 3nRIUa) L5
[u] uonesay] yondaoul G5
uandaou] 57
M dsse|y S
“......u v _ bt - _ pauelg Bumag | sassa00u4 Aampg

suonoes |y asde|jed o) suonoes || puedx3

“poeloid ayy Joj 3817 ysiy eyl w asay) oaysl pue ‘saibejens juswsbeuew ysu seudoidde ~
auziap ‘1aaloud ayp 01 sysu aznuoud pue azAjEuE “Auapl 01 MOy SaQUISEP YSE] SIY| .NH_

SHSIY SS8SSYy pue Ajjusp| Hsel

EIRLSET

87

eI
7]

ﬁ@_ﬁﬁmﬁﬂv ?qj..ﬁ_um__r._ﬁ.._ _@ SMR1)|, S522014

E youeag - Wuangy

o EBS | HEED

I=| Main Description

The Risk List identifies, in decreasing order of priority, the events that could lead to a significant
negative outcome. It serves as a focal point for project activities and is the basis around which
iterations are organized.

i Back to top

= Properties
Opticonal

Planned v
T Back to top

=] Hlustrations

Templates

Examples s CREG Risk List - Inception Phase
CREG Risk List - Elaboration Phase
CREG Risk List - Construction Phase
C5SPS Risk List - Inception Phase
CSPS Risk List - Elaboration Phase
CSPS Risk List - Construction Phase

T Back to top

[=I Tailoring

Representation The Risk List should capture the cntical and serious risks-if you find this list
Options extending beyond 20, carefully consider whether they are really serious risks.
Tracking more than 20 risks is an onerous task.

i Back to top

= More Information

Guidelines s Risk List
s Risk List — Informal Representation

i Back to top

© Copyright IBM Corp. 1987, 2006. All Rights Reserved

-

m

-

file:///C:/Program 3a20Files %20 (x86)_IBM/RMCT72/rmc/RUP/LargeProjects/core.informal_resources/guidances/guidelines/

Figure 7.4 Selected Work Product

7.1 Inception Iteration I1

can be obtained from RMC and modified to adapt on projects.

88

Inception Iteration I1 is referred as Preliminary Iteration of the Inception Phase. The
activities performed in Preliminary Iteration of inception phase are shown in the

Figure 7.5. The activity diagram in the Figure 7.5 and all of its activities and tasks

!

l l

=5 5]

Conceive Mew Project Prepare Project Environments

l l

l
B3

Prepare Environment for an [teration

l

l

25

Define Project Plans

— B9

E . Managethe Scope ofthe System
55

Define Evaluation Mission

Monitor and Control Project EE;:j

Define the System .
5
Perfarm Architectural Synthesis

l

J !
55 55

Manage lteration Plan for Mext lteration

! !

Figure 7.5 Inception Phase Activity Diagram

Conceive New Project activity brings our project from the origin of an idea to a
point at which a reasoned decision can be made to continue or abandon the project.

It consists of four tasks as shown in the Figure 7.6.

= L &

Identify and Develop Initiate Project Approval
Assess Risks Business Case Project Review

Figure 7.6 Conceive New Project Tasks

89

The conceive new project activity begins with Identify and Assess Risks task which
is very important for identifying, analyzing and prioritizing risks at the beginning of
the project. Within this task risks should be carefully identified. Rank the risks and
group them to avoid long list of similar risks. Identify mitigation plans to reduce the
impact of the risks on the project. Revisiting the risks is a critical issue because risks
appear dynamically in the project. The task concludes with a Risk List (see
Appendix B.I.1) that captures the potential risks of the project. Risks are defined in a

decreasing order of priority. Risk List also given below as Table 7.1.

Table 7.1 Risks for Iteration 11

Risk Risk Description & Impact Mitigation Strategy and/or

Ranking/ Contingency Plan

Magnitude

High The team is unfamiliar with Web | Train the Team on Web technologies
architecture and technology. (to be done in the second elaboration

iteration, or E2).
This risk may impact the ability to

deliver a Web application on time. Allocate time (during E2) for the
learning curve and monitor progress
weekly in elaboration.

Medium Volume of users logged on during | Early prototyping and extrapolation of
peak periods (on holidays and special | response time data should be done in
days) may significantly degrade | the elaboration phase.

system performance.

Low Incompatibility with internet | Address during elaboration (E2).
browsers and specific configurations
on client machines.

The second task in Figure 7.6 is Develop Business Case and it is used to develop the
economic justification for the product and we obtain Business Case (see Appendix
B.1.2) that develops the economic plan and gives the economic value of the product.
A brief description of the product that is to be developed will be given in this
document. Business context is defined which helps stakeholders to understand
intended market for the product. Objectives of the product will be given here that
provides a support for managing risks. Some constraints specified for the system
within this document that will be obeyed from beginning to the end of the project.
These constraints could be about standards, technologies or techniques that will be

used during the development as depicted in the Figure 7.7.

90

General design and implementation constraints include:

e Only CU students and staffs can use this system.

e Software system shall be written in .NET 3.5 Technologies

e Student basically can see the courses that has been taken in that semester. But if student
use search functions, he/she can see all the courses and can download all materials.

e Instructor basically can add materials only the courses given by him/herself. But if
instructor use search functions, he/she can add materials to all courses.

e A material can be deleted only by the owner of material.

e An instructor can only activate materials that are added by him/herself or materials of the
courses that are given by him/herself in that semester.

e The documentation shall be in accordance with the IEEE Standards.

Figure 7.7 Constraints

Initiate Project sets up the necessary executive management and project planning
teams, and the criteria that will be used for successful project completion. During
this task an initial draft of Software Development Plan (see Appendix B.1.3) is
produced which defines the process of the project. It gathers all information
necessary to manage the project by the managers. By using the information that is
gathered in this task project overview is prepared including purpose, scope and
objective of the project and documented as shown in Figure 7.8. It also includes the

list of possible work products that will be produced during the development.

2. Project Overview

2.1 Project Purpose, Scope, and Objectives

The project will implement an e-Reserve application. The e-Reserve application will be an
upload/download document, reserve document application. It will provide the ability to
list details of a document and select a quantity of that document to reserve.

A CU library terminal interface will provide interface to enquire and reserve documents.

A Web based interface will allow enquiring and reserving documents using an internet
browser.

The e-Reserve application will be a C# application that uses ASP.NET. The e-Reserve
application will access a document stored in the main database.

Figure 7.8 Project Phase Plan

Project Approval Review determines whether or not the project is worth investing in
and concludes with Review Record (see Appendix B.I1.4). This document captures
the results of the review activity for the current task in which identifies the possible
problems that team members faces and proposes possible solutions to these
problems. Key activity to be performed is a meeting in the current task. All

decisions about approval of the work products that are produced will be made at this

91

meeting. An example of a problem that arises while performing the task and a

possible solution to it is shown in the Figure 7.9.

Problems identified
Use Case Diagrams: The use case for view documents includes books and magazines but not

documents.
T —

Recommendations

Use Case Diagrams: The use case for view documents will be changed to view material.
e |

Figure 7.9 Problems and Recommendations

Prepare Project Environments activity of the Inception Phase given in Figure 7.5
is responsible for the preparation of the project environment and composed of two

sub-activities as shown in Figure 7.10.

w 5
o5 s
- Create Project Configuration
Prepare Environment for Project Management (GM) Environments

Figure 7.10 Prepare Project Environments Sub-Activities

Prepare Environment for Project sub-activity prepares the development

environment for the project and has one major task as shown in Figure 7.11.

Co

Tailorthe Development Process for the Project

Figure 7.11 Prepare Environment for Project Task

Tailor the Development Process for the Project task is responsible for customizing
the development process. Analyzing the problem fires this task and arise the
requirement of a project specific process that concludes by a Development Process.
The key work product of this task is a Development Process that describes the

process a project has to follow. There are different types of processes that have to be

92

selected for the entirely of the project: Delivery Process or Capability Pattern, which
are mentioned in Chapter 4. Development Process is documented formally in
Development Case document (see Appendix B.L5). It is developed to produce
guidance to the members of project and adaptations on development process takes
place in the Development Case document. At each phase it has to be revised to give
the major activities of that phase. The version in inception phase includes the
overview of the development process as shown in the Figure 7.12. Development
Case document also includes the major phases of inception phase not in details but

as a list of the activities to establish a path of work.

This project will consist of a full Inception phase, a two iteration Elaboration phase, a three
iteration Construction phase, and a full Transition phase. Design and code reviews will take place
at key iteration milestones, and project quality reviews will be conducted at the end of each phase.

Figure 7.12 Overview of the Development Process

Create Project Configuration Management (CM) Environments sub-activity is
responsible for the overall product development environment and has one major task

as shown in the Figure 7.13.

Co

Set Up Configuration Management (Ch) Environment

Figure 7.13 Create Project Configuration Management Environments Task

Set Up Configuration Management (CM) Environment task sets up the environment
of the project. We begin with setting up a hardware environment which will form
our Project Repository. It holds all the documents of the project. It also serves as a
guideline to the new members who join to project team and helps to capture main
steps of work done. It contains only documentation of the project and may be
backups only. Project Repository is documented in Configuration Management Plan
(see Appendix B.1.6). This document mainly describes the computing environment
and software tools to be used throughout the project. The critical part of
Configuration Management Plan is definition of Project Repository and its detailed
physical location. All the information about Project Repository is depicted in the
Figure 7.14. Also format for the Change Request Form is given in Configuration

Management Plan.

93

2.2 Tools, Environment, and Infrastructure
All environment files will be available at Cankaya University MP Lab. Moreover the
configuration manager will save a backup copy on the space allowed to the team in the
lab. All environment material files will be available at any time at the following address:

Host: ceng.cankaya.edu.tr/~mp
Port: 21

Login: ¢c0771000

Password: CUeReserve

Figure 7.14 Project Repository

Prepare Environment for an Iteration activity prepares the environment for the
iterations in the project. It is examined for the current iteration that is Inception

Iteration I1. It consists of one task as shown in the Figure 7.15.

Co

Launch Development Process

Figure 7.15 Prepare Environment for an Iteration Task

Launch Development Process rollouts the development process. Efforts in this task
primarily make the changes public to all members of the project. The selected
development process in the previous activities would be a new concept for many
team members. So training on newly proposed development process is planned. A
Change Request Form is required for this task. In Change Request Form problem
that causes a change on the product and suggestion for the solution will be given.
Current problem and proposed change is given clearly in this document. Change
Request would be prepared if a change to the product is needed. For the inception

phase we do not need to prepare it; however it changes from project to project.

Define Project Plans activity shown in Figure 7.5 provides general planning for the

release of the project and composed of one sub-activity as shown in the Figure 7.16.

*
55

Plan the Project

o

Figure 7.16 Define Project Plans Sub-Activity

94

Plan the Project sub-activity develops the components and enclosures of the
Software Development Plan document. It has three major tasks as shown in the

Figure 7.17.

Co

Oefine Project Organization and Stafing

Co

Plan Phases and lterations

Co

Project Planning Review

Figure 7.17 Plan the Project Tasks

Define Project Organization and Staffing task defines an organizational structure for
the project. Project staff is organized to be managed by the managers. In Software
Development Plan organizational structure of the project is defined clearly
depending on the characteristics of the project. Key roles are defined especially
during the inception phase team should be small. Software Development Plan (see
Appendix B.1.7) is revised to capture structuring to manage key roles on the project

as depicted in Table 7.2 in addition to Project Overview and Management Process.

Table 7.2 Project Roles
Role Inception Elaboration Construction Transition
Project Team Member A | Team Member A | Team Member A | Team Member A
Manager
System Team Member B | Team Member B
Analyst /
Requirement
Specifier
Software Team Member C | Team Member C | Team Member C
Architect
Designer Team Member D | Team Member D
Developer / Team Member E | Team Member E | Team Member E
Integrator Team Member F | Team Member F
Tester Team Member G | Team Member G | Team Member G | Team Member G
Team Member H | Team Member H
Deployment Team Member I | Team Member I
Manager
Technical Team Member J | Team Member J
Writer
System Team Member K | Team Member K | Team Member K | Team Member K
Administrator

Plan Phases and Iterations describes the project phases and iterations by making

estimations. Estimations on the project are made in the current task such as project

95

phase plan is developed. Milestones are defined and their dates are identified if
possible. Resources required carrying out the project are defined based on the
estimation made in the previous stages of the task. This task is concluded with the
revision of Software Development Plan (see Appendix B.1.7). By using the
information that is gathered in this task an initial project phase plan is prepared and

documented in Software Development Plan as shown in Figure 7.18.

Task Name Duration Start Finizh
- Cankaya University Library e-Reserve Project Phase Plan 145 days Mon 11/10/08 Fri 5/29/09
=/ Phase 1: Inception 14 days Mon 1110008 | Thu 11/27/08
Inception keration [1- Preliminary fteration 14 days| Mon 11M0/028) Thu 11/27/08
Lifecycle Objectives Milestone 0 days Thu 11/27/08) Thu 11427/08
-/ Phase 2: Elaboration 45 days Fri11/28/08 Thu 1/29/09
Elaboration keration E1 - Architectural Protetype for e-Reserve Application 23 days Fri11/28/08 Tue 1230008
Elaboration teration E2 - Architectural Prototype for System User Connectivity and Access 22 days| Wed 12/31/08| Thu 1/29/09
Lifecycle Architecture Milestone Odays Thu 1/28/0% Thu 1/25/08%
-/ Phase 3: Construction 72 days Fri1/30/09 Mon 5M11/09
Construction lteration C1 - Develop Course Operation Capability 24 days Fri 1/30/09| Wed 3409
Construction lteration C2 - Develop Material Operation Capability 24 days Thu 3S/09 Tue 47/09
Construction keration C3 - Develop Browsze Capability 24 days| Wed 48/09) Mon SM1/09
Initial Operational Capability Milestone 0 days Men5M1/0%9 Men S54M11/09
= Phase 4: Transition 14 days Tue 512109 Fri 5/29/09
Transition teration T1 - R1 Releaze 7days| TueSM2/09 Wed 20/09
Transition fteration T2 - RZ Release 7days Thu S/21/09 Fri 3/258/09
Product Release Milestone 0 days Fri 5/28/09 Fri 5/258/09

Figure 7.18 Project Phase Plan

Project Planning Review in Figure 7.17 helps describing the review of Software
Development Plan. As we mentioned in the previous tasks key activity to be
performed is a meeting. All decisions about approval of the work products that are
produced will be made at this meeting again. At the end of Define Project Plans sub-
activity Review Record is handled again to approve the initial Software
Development Plan. If there exists any missing parts or mismatching concepts with
the project then Software Development Plan is sent back to the project manager to

review it.

Monitor and Control Project activity in Figure 7.5 is used to capture continuing
work including monitoring project status, reporting to stakeholders, and dealing with

issues. It consists of four major tasks as shown in the Figure 7.19.

= & & =

Schedule and Assign Work Report Status OrganizeReview Conduct Revies

Figure 7.19 Monitor and Control Project Tasks
96

Schedule and Assign Work task in the activity helps project manager to schedule the
work. The critical issue is the state of Change Request. Because we did not need to
document a Change Request Form up to this task. So if the Change Request is
examined than project manager should fix the iteration. If the Change Request is to
be held until a later iteration, the project manager simply re-plans the future
iterations. The Iteration Plan (see Appendix B.L.9) is prepared at the beginning of
this task that details the work in a fine-grained way. We are now at the early stages
of inception phase and the duty of Iteration Plan is to give a fine grained plan of
inception phase. It is detailed only as a Gantt Chart for the inception phase as shown
in Figure 7.20 and iteration overview of the current phase is reported as in the Table

7.3. Detailed Gantt Chart can be found in Project Phase Plan (see Appendix B.LS).

Table 7.3 Iteration I1 Overview

Phase Iteration Description Risks Addressed
Inception | Il Iteration | ¢ Define and approve Business Case Clarifies user
Phase e Define high-level product requirements up
Preliminary requirements . front.
Iteration The Vision document contains key

features and constraints.

« Define project scope Develops realistic

A Use Case Diagram includes key Software
Actors and Use Cases. Only a brief Development Plans
description is provided for each Actor | and scope.
and Use Case.

e Plan the overall project and next Determines
iteration feasibility of

A high-level Software Development

Plan, a Risk List, and an Iteration Plan
for the first elaboration iteration are
created.

project from a
business point of
view.

e Create a very first draft of the Test
Plan

e Define application-specific
terminology
Important terms are defined in the
Glossary.

Another work product produced during current task is a Work Order (see Appendix
B.1.10) that provides communication between the project manager and the project
team. Each team member with a specific role has its own responsibilities which are
detailed in Work Order. The roles of team members are identified in the work
product as shown in the Figure 7.21. These responsibilities are more detailed in the

work order reports and schedules.

97

aseqd uondadu] 10§ JEY) HUEL (7L INT1]

sfep ¥1 UCIPSUEL] i 2SBUd +
sfep g2 UCIINIISUOD i 25BUd +
sfep 5§ ucjBIOqE|] i SBUd +
SAER QO auolsa|ly saaaeligo aakaa
sfep ¢ UcHyBIa)| X3 4o} ueld +
shep ¢ uoneiay abeuepy +
sfep g ucS Sy UoIEN|BAT SUNST +
sfep g s1SaYuis [RIN}oaNyosy Wiopad +
shep g walshs Uy augag +
sfep g wayshs aul Jo adoosg ayl abeueyy +
sfep g jaalodd |0Jjuo) pue Jopuoy +
sfep g suEe|d 10aloid auyaq +
sfep g UCJEIS) UE J0) Juswwucaau] aiedaad +
sfep 7 sjuawWwuoaaul yoaload aiedaad +
sfep 7 12aloid may amaauod +
sfep 1 uoiyeday Aeuiwnaad -3 woneiay vondasu) -
. B sfep 1 uondasu) 1} aseYd -

“r-——--———e——Y—™" sfep Gyl | ued aseud 1oalold aniasay-2 Leiqr] Aussamun efeque) -
(e [2ws | o5 | 6w | aw | zze | ok | zze | @ | saib | bub | 82k | bk [08k | 8WLL | 2ibh
| aunr | L Aey | L udy | 1 yoJep | | Auenigad | | Asenuer | | Jaquiaaaq | | Jagwanop | UoHEINg SUWEN YSEL

98

2.4 Responsibilities

2.4.1 Team Members
Each team member is assigned to a role. Here are the team’s responsibilities:
Team Member A (TMA): Project Manager
Team Member B (TMB): System Analyst
Team Member C (TMC): Software Architect
Team Member G (TMG): Test Analyst
Team Member H (TMH): Test Designer
Team Member L (TML): Management Reviewer

Figure 7.21 Responsibilities for Iteration I1

Report Status task in Figure 7.19 describes when and how the periodic updates on
the project will be done. An important work product in this task is the Status
Assessment (see Appendix B.[.11) that has the responsibility to ensure the
expectations of all parties are consistent. A lot of the information in the Status
Assessment is copied from other sources to provide a comprehensive source of
information for the people assessing the project. For example, within the Status
Assessment document risks are examined that are already listed in the Risk List.
Status of the team members are also given in the Status Assessment as shown in the

Figure 7.22.

2. Resources

2.1 Personnel/Staffing
Inception phase staff will continue to the project also in elaboration phase.

Figure 7.22 Status of Team Members

The next task in Figure 7.19, Organize Review, describes how to facilitate the
review process and ensure the review is undertaken appropriately. Within this task
review coordinator has to ensure that required review tasks are appropriately
planned and organized. There are various approaches to planning review tasks which
are based on factors such as team size, team culture and so on. Organize Review task

1s concluded with revision of Review Records.

The last task in Figure 7.19, Conduct Review and it describes how to facilitate a
review so as to maximize the productivity of the reviewers and meet defined quality
requirements. This task is under the control of reviewer of the project. Conduct

Review task is concluded with revision of Review Records.

99

Manage the Scope of the System activity in Figure 7.5 is used to ensure that
requirements are obtained clearly for that iteration. It consists of two major tasks as

shown in the Figure 7.23.

))

Develop Vision Prioritize Use Cases

Figure 7.23 Manage the Scope of the System Tasks

Develop Vision task develops a vision for the system especially including the
stakeholders, systems key features and constraints that conclude with a Vision
document (see Appendix B.1.12). By the help of Vision document the problem being
solved simply by asking the problem. Vision document provides to understand
stakeholders view of the product to be developed. It is closely related with the work
product Business Case. Vision document provides a statement that is summarizing

the problem being solved by this project as shown in the Table 7.4.

Table 7.4 Problem Statement

The problem of A slow and less efficient manual reserving process is
currently in use; also students have to come into the library to
realize reserve operation.

Affects Reserve process efficiency, thereby affecting librarian
productivity and student satisfaction.

the impact of which is Negative librarian productivity and student satisfaction, which
in turn impacts on CU library efficiency.

A successful solution would be To improve the inquiry and reserving process.

Stakeholders are identified clearly. It also provides an overall statement that
summarizes at the highest level, the unique position product intends to fill the

marketplace depicted in the Table 7.5.

Table 7.5 Product Position Statement

For Librarian, instructor and student

Who Enquire and reserve books/documents

The e-Reserve application Is an online reserving system

That Will enable a real-time online reserving facility

Unlike The current manual reservation process

Our product Will vastly improve the reservation process, thereby creating
student satisfaction and improving CU library efficiency.

100

Based on the benefits listed in problem statement, a list of features is developed that
we want in the system. The vision document is written from the customers
perspective and provides the contract between the funding authority and the

development organization.

Prioritize Use Cases task in Figure 7.23 identifies the significant use cases. Use
cases are prioritized and significant use cases are listed. They are identified within a
Software Architecture document (see Appendix B.1.13). Inception phase version of
this document contains only a list of use cases as shown in the Figure 7.24. Use

cases in bold are significant to the architecture.

Login

Logout

Insert User
Update User
Delete User
Activate Course
Update Course
Deactivate Course
Search Corse
Insert Material
Update Material
Delete Material
Search Material
View Material
Download Material

Figure 7.24 Use Case List

Software Architecture document contains different architectural views. Deployment
view of the system is also given in this work product where the system begins to
arise step by step however this view is detailed in the next tasks now it is only

conceptually formed.

Another important work product of the task is Software Requirement that contains
specifications for a condition to which a system must conform. Software
Requirements are documented in Software Requirements Specifications (see
Appendix B.1.14) document in which provides a complete definition of the software
requirements; both functional and non-functional. It includes general factors that

affect the product and its requirements and provides a background for those

101

requirements. As an example product functions for the project is depicted in the

Figure 7.25.

2. Product Functions

The functionality supported by e-Reserve project can be described in a number of major
functional areas.

Students can login to this page and display their courses. Then student can download books and
document about his/her courses. Also student can search for another courses and books.

Basically, an instructor can do all the tasks that a student can do. Also an instructor can add,
update and delete book/document. Instructor can activate/deactivate course accessibility and
update a course.

Librarian can access all the courses categorized by course ids. Can perform all operations on all
courses. (Insert/update/delete) Can make bulk activation or deactivation operation. Can view
usage reports.

Figure 7.25 Product Functions

Referring to Figure 7.5, Define the System activity is responsible on sketching key

requirements. It consists of four major tasks as shown in the Figure 7.26.

> > > >

Develop Vision Capturea Common Find Actors and Develop Supplementary
Yocabulary Use Cases Specifications

Figure 7.26 Define the System Tasks

Develop Vision task has the same functionality as in the Manage the Scope of the
System activity. Vision documented is developed during the previous activity and its
development continuous in current activity. Its final changes made on this task if
needed and the Vision document (see Appendix B.I.15) is completed at the end of

task. Revision of Vision document is completed.

Capture a Common Vocabulary task determines how project specific terms are
organized and defined during the development process. A common vocabulary,
using the most common terms in the problem domain, is constructed. All team
members should use these terms in order to define problem domain. Using a
common vocabulary between the team members improve the efficiency and provide
increased understanding of the concepts. It is concluded by developing a Glossary
(see Appendix B.1.16) that all terms are identified clearly as depicted in the
Figure 7.27.

102

2.1 ERS
e-Reserve system

2.2 ERIS
e-Reserve Information System

2.3 HTML
Hyper Text Markup Language is a text base programming language using many
symbols and codes interpreted statically by a web browser.

241IM
Instructor Module

251LM
Librarian Module

2.6 RUP
IBM Rational Unified Process is a software engineering process and a process
framework for successful iterative-incremental software development.

2.7 RMC
IBM Rational Method Composer is a commercial product for authoring,
configuring, viewing, and publishing processes.

2.8 RSM
IBM Rational Software Modeler is a robust collaborative platform for visual
modeling and design.

2.9 SM
Student Module

2.10 SRM
Server Module

Figure 7.27 Definitions for Iteration I1

Find Actors and Use Cases task in Figure 7.26 identifies the actors and use cases
for the system that supports the requirements. During the evaluation of task it
produces the Use Case Model (see Appendix B.I.17) that documents the systems
functionality. It helps to communicate with the stakeholder in a manner of
standardized notations and diagrams. First of all actors of the system are identified.
Actors that we found are briefly described to understand who or what interacts with
the system. All actors are identified and briefly explained as shown in the Figure
7.28. Explaining the roles of each actor provides a better understanding of the
system while reviewing the Use Case Model. After we have found the actors, the
system’s use cases should be found. As we did in the actors, we name and briefly
describe the use cases of the system. There are many informal ways to find use cases
however most effective approach is to ask that what the actor requires of the system.
Most of the time it will be difficult to find the suitable actors and use cases for the

system however working with use case gives a better understanding of the system.

103

2. Actors

Librarian Student

Instructor Operator WebClient

Figure 7.28 Actors of the System

These actors and uses cases are represented in the use case diagrams by showing the
relationships between them that how they interact with each other. A use case

diagram is depicted in the Figure 7.29.

4.5 <<Package>> Material Operation

Insert Material
. . Librari

Librarian Update Material ibrarian
Delete Material Download Material

Instructor Instructor
Search Material

Student Student

View Material

Figure 7.29 Use Case Diagram

104

If the number of actors and use cases becomes too large then they could be divided
into use case packages. The Figure 7.29 also shows how the use case diagrams are

packaged. This approach simplifies the view of more complex systems.

The last task of Figure 7.26 is Develop Supplementary Specification task. It helps to
capture requirements that are not readily captured in use cases. Many functional
requirements can be documented in Use Case Model however some cannot. Task is
performed and concluded with Supplementary Specification (see Appendix B.I1.18)
that captures the system requirements which are not applicable to specific use cases.
An example of requirements that affect supportability is depicted in the Figure 7.30.
Task is performed especially for capturing system qualities and constraints.
Supplementary Specification is an important complement to Use Case Model in

which they are used to capture all software requirements.

3. Usability
3.1 Multichannel Access

The system will be accessed via both a web browser and CU library terminals.

3.2 Ease of Use
The system will not require user training beyond that of using a web browser.

3.3 Browser Compatibility
The web client application can run under Mozilla Firefox, Microsoft Internet Explorer
or Opera.

3.4 Online Help
The web client application provides an online help for the user.

Figure 7.30 Usability Requirements

On Figure 7.5, Perform Architectural Synthesis is an activity showing the system
is feasible and demonstrates it. It consists of three major tasks as shown in the

Figure 7.31.

> > =

Architectural Analysis Caonstruct Architectural Assess Viability of
Proof-of-Concept Architectural Proof-of-Concept

Figure 7.31 Perform Architectural Synthesis Tasks

Architectural Analysis task tries to define architecture of the system based on similar

systems or similar problem domains. An architecture overview is developed at the

105

early stages of the project. This architecture provides an early understanding of the
high-level structure of the intended system to the stakeholders. In inception phase
we only deal with the Deployment Model (see Appendix B.1.19) of the system that
shows the nodes, devices, and connections between them. Deployment Model
represents a high-level overview of the system. We acquire an understanding of the
geographical distribution and operational complexity of the system. Deployment
Model is documented in the Software Architecture Document (see Appendix B.1.20)
that is depicted in the Figure 7.32.

«artifacts
e-Reserve Database

adeploy=

_ wdevices

(=] Browser Client . unode:m)
Eg Internet Explorer Internet Connection (=] e-Reserve Application Server
[Cg Mozilla Firefox [Eg ASP.NET
Eg Cpera

adeploy»
=artifact=

e-Reserve Application

Figure 7.32 Deployment Model

Referring to Figure 7.31, Construct Architectural Proof-of-Concept task is the
critical point of the management that defines how to develop an Architectural Proof-
of-Concept for the system. Architectural Proof-of-Concept can be documented as a
list of known technologies which seem appropriate to the solution, a sketch of a
conceptual model of a solution using a notation such as UML, or an executable
prototype. Using the technique that is listed above Architectural Proof-of-Concept is
constructed. In this case our Deployment model is defined as the Architectural

Proof-of-Concept for the system that shows a solution for the problem domain.

Assess Viability of Architectural Proof-of-Concept task is required for evaluating
defined Architectural Proof-of-Concept. The key work product for the task is

106

Reference Architecture (see Appendix B.1.21) whose purpose is to form a starting
point for the architectural development. Reference Architecture should be defined
through different viewpoints and these views map to the 4+1 Views of software
architecture. From that 4+1 Views, logical view has four functional layers which are
defined in the Reference Architecture document. These layers are; interface layer,
business layer, middleware layer, and system software layer. Table 7.6 depicts the

middleware layer defined in the document.

Table 7.6 Middleware Layer

Area Products/Services/Components

Application Servers Microsoft COM+
BEA Weblogic V7
Messaging Services Microsoft MSMQ/MQ Series Interface
Directory Services Active Directory/LDAP
Data Distribution Strategies No distributed two-phase commit processing will be supported.

Centralized data access is encouraged at all times.

Data Access APIs NET Framework
ADO.NET

On Figure 7.5, Define Evaluation Mission activity identifies the test efforts to be

taken for the iteration. It consists of one major task as shown in the Figure 7.33.

Ca

Define Test Approach

Figure 7.33 Define Evaluation Mission Tasks

Define Test Approach task focuses on test strategies for the desired testing. Effect of
the software architecture is considered for the test approach by gaining information
from Software Architecture Document. After completing all test approaches,
existing test techniques are identified to improve test approaches. In the case of
insufficient existing test techniques, new test techniques could be identified briefly.
For the inception phase this task is performed shallowly. A Test Strategy document
(see Appendix B.1.22) is created at the end of task that defines the strategic plan for
how the test effort will be conducted against one or more aspects of the target
system. For the inception phase only test strategies are given as a list that will be

performed at next phases as shown in the Figure 7.34.

107

2. Test Strategy

Function Testing

User Interface Testing

Data and Database Integrity Testing
Performance Profiling

Load Testing

Stress Testing

Volume Testing

Security and Access Control Testing
Failover/Recovery Testing
Configuration Testing

Installation Testing

Figure 7.34 Test Strategies

On Figure 7.5, Manage Iteration activity contains the activities that begin, end and

review the iteration. It consists of five major tasks as shown in the Figure 7.35.

Co

Acquire Staff

Co

Initiate lteration

Co

Identify and
Assess Risks

Cor

Assess [teration

Cor

Iteration Evaluation
Criteria Review

Figure 7.35 Manage Iteration Tasks

Acquire Staff task is used to organize members into teams. Teams are formed with

required skills for the problem domain. Project manager assigns each role to a

specific member in the team. This action was already documented in Software

Development Plan (see Appendix B.1.7) as in Table 7.2. It is now summarized in

Table 7.7. In some cases team members will need a training to develop skills in the

project.

Table 7.7 Team Member Roles

Role Resource
Project Manager Team Member A
System Analyst / Requirement Specifier Team Member B
Software Architect Team Member C
Tester Team Member G
System Administrator Team Member K

108

Initiate Iteration task allocates team members to the activities identified for the
current iteration. In the previous tasks members are assigned into specific roles.
Now activities are assigned to team members that they have to perform. For that
operation Work Order (see Appendix B.1.23) is revised and work order reports are
prepared for each team member. As an example of the description of the works is

given in these reports as shown in the Figure 7.36.

Work Order for e-Reserve Created on: <11/14/08>

Identification

Work Order ID: <TMA-I1-W02-01> WBS ID: <1.10.1>

Responsibility (Holder)
Team Member A

Associated Change Reports

None

Schedule
Start: < 11/24/08> Completion: < 11/24/08> Critical Path: <NA>

Efforts and Other Resources

Staff Hours: 1 Hour Other Resources: None

Description

Work Description: Acquire Staff

Expected Output(s): Revise Software Development Plan

Signature Agreement

Project Manager: Team Member A Work Order Holder: Team Member A
Signed on: <dd/mm/yy> Signed on: <dd/mm/yy>

Figure 7.36 Work Order Reports for Iteration I1

Identify and Assess Risks task is primarily performed in the beginning of the project
at Conceive New Project activity. As we mentioned before, risks are dynamic
elements that could arise at every stage of the project. We will reduce the effects of
risks by updating the Risk List to reflect the current project status periodically. So
risks could be avoided before they happen or handled rapidly as they appear with a

minimum effect on the project.

Next task, Assess [teration evaluates the results of an iteration assess related project
information. Main purpose of this task is to determine success or failure of the

iteration. Within this task we compare the actual and expected results of the

109

iteration. Also we have to ensure that evaluation criteria for the current iteration are
realistic. Based on the results of the assessment Change Requests for any work
product could be generated. An Iteration Assessment (see Appendix B.1.24) is
created for evaluation of this task that captures the results of the iteration. Objectives
that are reached within the iteration are given in Iteration Assessment. An example

for the use cases are shown as in the Figure 7.37.

2.1 Use Cases and Scenarios Identified
The use cases in this system are listed below.

Login

Logout

Insert User
Update User
Delete User
Activate Course
Update Course
Deactivate Course
Search Corse
Insert Material
Update Material
Delete Material
Search Material
View Material
Download Material

All of these use cases will be completed with details during the design process.

Figure 7.37 Objectives Reached for Iteration I1

The last task of Figure 7.35 is [Iteration Evaluation Criteria Review task. It
determines how to approve the criteria if the iteration is completed with its meeting
objectives. As in the previous review tasks a meeting is planned and all materials
about the activity are distributed across related team members to perform review. At
the end of the meeting a decision is made to approve or reject the criteria. If the
criteria are approved then the next activity will be performed otherwise the project
team should address the identified deficiencies and re-submit revised iteration
evaluation criteria for a follow-up review. Review Record is completed at the end of

meeting that captures the results of the current review activity.

Plan for Next Iteration activity is the last activity of Inception Phase given in
Figure 7.5. It guides project team to the next iteration. It consists of two major tasks

as shown in the Figure 7.38.

110

Co

Develop lteration Pan

Co

lteration Plan Reviaw

Figure 7.38 Plan for Next Iteration Tasks

Develop Iteration Plan task composes an iteration plan. At the early stages of
inception phase we created an Iteration Plan (see Appendix B.1.9) for the Inception
Phase Iteration I1 which focuses on proving the concept of the product. Now we are
creating an Iteration Plan for the next iteration which is Elaboration Phase Iteration
E1l (see Appendix B.1.26). The scope of the next iteration is determined. Again we
define the iteration evaluation criteria for Iteration E1 as we did for the Iteration I1.
In elaboration phase we will focus on creating a stable architecture. With this
conscious we have to select a set of tasks to be performed within Iteration El.
Typically some use cases will be fully developed in Iteration El so they are
documented in an Iteration Plan that is specially created for Elaboration Phase
Iteration E1. The iteration overview for this iteration is depicted in the Table 7.8.

Detailed Gantt Chart can be found in Project Phase Plan (see Appendix B.1.25).

Table 7.8 Iteration E1 Overview

Phase Iteration Description Risks Addressed
Elaboration | El Iteration e Complete analysis & design for Architectural issues
Phase high risk requirements related to ERIS
Architectural - Create Use Case Specification for | clarified.
Prototype for each of the Login, Logout use cases,
e-Reserve derive an Analysis Model, and Technical risks
Application refine it into a Design Model. related to ERIS
- Document the architecture (high- mitigated.
level design) in the Software
Architecture Document. Early prototype for

Develops the architectural
prototype for e-Reserve
application

- Code the part of the application
implementing the Login, Logout use
cases.

Demonstrate feasibility and

user review.

Performance risks
related to high
volume of requests
mitigated on the
ERIS side.

performance through testing

Iteration Plan Review task determines to approve the proposed work plan for the
current iteration or not. It is held after the current iteration has been developed. For
this review operation again a meeting is planned and all materials about the activity

are distributed across related team members to perform review. There is a

111

consideration with this task is that at the end of the review we determine to begin
next iteration or not. So the Review Record for the current task has to be created

carefully.

7.2 Lifecycle Objectives Milestone

Lifecycle Objectives Milestone given in Figure 7.1, marks the end of the inception
phase. It is the first major milestone of the project that is reached at the end of
Inception Phase. Now we are standing on a critical region that we have to decide
either to proceed with the project or cancel it. At this point a tentative architecture

should be established which we will develop further during the next phase.

Evaluation criteria for the Inception Phase can be listed as follows:
e Stakeholder concurrence on scope definition and cost and schedule
estimates.
e Agreement that requirements are understood.

e All risks and mitigation strategies have been identified.

The project may be aborted or considerably re-thought if it fails to reach this

milestone.

Inception Phase Iteration I1 work products are tabulated in Table 7.9. All the work
products are given in the Appendix B of the thesis as B.[.1-26, also on CD to be
reached by:

e ~/Appendices/AppendixB/Inceptionlterationll

112

Table 7.9 Inception Iteration I1 Work Products (APPENDIX B)

eReserve RiskList 1.0

eReserve BusinessCase 1.0

eReserve SoftwareDevelopmentPlan 1.0
eReserve ReviewRecord 11 11 08 1.0
eReserve DevelopmentCase 1.0
eReserve ConfigurationManagementPlan 1.0
eReserve SoftwareDevelopmentPlan 1.1
eReserve ProjectPhasePlan 1.0

eReserve IterationPlanll 1.0

eReserve WorkOrder 1.0

eReserve StatusAssessment 1.0

eReserve Vision 1.0

eReserve SoftwareArchitectureDocument 1.0

eReserve SoftwareRequirementsSpecifications 1.0
eReserve Vision 1.1

eReserve Glossary 1.0

eReserve UseCaseModel 1.0

eReserve SupplementarySpecification 1.0
eReserve DeploymentModel 1.0

eReserve SoftwareArchitectureDocument 1.1

eReserve ReferenceArchitecture 1.0

eReserve TestStrategy 1.0
eReserve WorkOrder 1.1
eReserve IterationAssessment 1.0

eReserve ProjectPhasePlan 1.1
eReserve IterationPlanE1 1.0

113

CHAPTER 8

ELABORATION PHASE

We had already completed the Inception Phase of our project and ready for the next
phase namely Elaboration Phase. The next point in delivery processes is the
Elaboration Phase that baselines the architecture of the system. Elaboration Phase of
our project consists of two iterations in which each of them includes several

activities and concluded by a milestone as shown in the Figure 8.1.

o I - B - &b

Elaboration lteration E1 Elaboration Iteration B2 Lifecycle Architecturs
Milestone

Figure 8.1 Elaboration Phase

As we mentioned in Chapter 7, RMC provides templates and examples of various
types of work products. Again, the guide for work products can be reached in the

same way as explained in Chapter 7.

8.1 Elaboration Iteration E1

Elaboration Iteration E1 forms the basis for developing an architectural prototype for
e-Reserve application in our project. The activities performed in Elaboration
Iteration E1 of the elaboration phase are shown in the Figure 8.2. The activity
diagram in the Figure 8.2 and all of its activities and tasks can be obtained from

RMC and modified to adapt on projects.

114

!

75)

Prepare Environment for an lteration

|

|

£y o

Develop Components [within Scope]

Ongoing Management and Support Elj
A,
| :‘ . .
E,-‘;:,J Define a Candidate Architecture E’Eﬂ
Revise and Complete Project Plans EI L] -
___E‘I Integrate and Test

Refine the System Definition EI 2]
75

Refinethe Architecture
| :1
=5

Plan for Mext lteration

®

Figure 8.2 Elaboration Phase Activity Diagram

Prepare Environment for an Iteration activity prepares the development
environment for the project. It is examined for the current iteration that is

Elaboration Iteration E1. It consists of one task as shown in the Figure 8.3.

Co

Launch Development Process

Figure 8.3 Prepare Environment for an Iteration Task

Launch Development Process task is initially performed in the previous phase which
is the Inception Phase. This task is performed again at the beginning of the first
iteration of the Elaboration Phase to make necessary changes on the project, if
needed, before further development in the project. It is important to make necessary
changes in the early stages of development that reduces cost and time by defining
the malfunctioning or missing parts. If a change is made then the related team
members are trained by a short seminar. If training on proposed development

115

process is planned in the Inception Phase then trainings will begin. Changes are
written formally on Change Request Forms that briefly describe the problem and
possible solution to the problem. This document simply formulates the changes
within a format as shown in Figure 8.4. Currently we do not need any change on the

project for now.

‘ Change Request for <Project Name> Created on: <dd/mm/yy>
Identification
Priority: Status:
Title: Submitted on:

Change Request ID: <>

Submitter: Type: <>
s |

Current Problem

Critical Failure:

Description: X
Nuisance:

Source of the Problem:

Enhancement/New Requirement/Other:

Observation conditions:

Proposed Change (Submitter)

Description:

Proposed Change (Review Team)

Approval: Reviewed Description:

] Enhancement/New
Affected Configuration Items Category Requirements/Other
Resolution

Estimated effort (staff hours):

Change Review Team Disposition

Changes approved and accepted on: By:

Changes implemented on: By:

Figure 8.4 Change Request Form
116

A change request form is a document containing a call for an adjustment of a system
and it is of great importance in the change management process.This template
format is used for enhancements, new requirements or other requests that will be

reported during the development of project.

Revise and Complete Project Plans activity in Figure 8.2 gives a general planning

for the release and it consists of two sub-activities as shown in the Figure 8.5.

55

Plan the Integration

Plan the Project

Figure 8.5 Revise and Complete Project Plans Sub-Activities

Plan the Project sub-activity is performed primarily within the Inception Iteration 11
of the Inception Phase that is performed for developing initial plans. This time we
are going to complete these plans. We have two iterations in Elaboration Phase so
we will complete this task in the second iteration of Elaboration Phase. Now plans
are revised for only the current iteration that is Elaboration Iteration E1. This sub-

activity has three major tasks as shown in the Figure 8.6.

)))

Define Project Organization Plan Phases and [terations Project Planning Review
and Staffing

Figure 8.6 Plan the Project Tasks

Define Project Organization and Staffing task has the same responsibility as
performed in the Inception Iteration I1 of the inception phase. In this task again
project team members and their roles are defined. However during Elaboration
Phase, the focus is primarily on the architecture and the architectural prototype. So,

most of the effort comes from your architecture team and a designated prototyping

117

team. Because of this necessity team members have to be chosen carefully. The size
of the project team will vary across phases, and the Software Development Plan will
be updated to reflect these changes. The Software Development Plan (see Appendix
C.L.1) is revised to describe the responsibilities of defined roles in the project as

shown in the Table 8.1.

Table 8.1 Roles

Role

Description

Project Manager

Allocates resources, shapes priorities, coordinates interactions with the
customers and users and generally tries to keep the project team
focused on the right goal. The project manager establishes a set of
practices to ensure the integrity and quality of project artifacts.

System Analyst / Leads and coordinates requirements elicitation and use-case modeling

Requirement by outlining the system’s functionality and delimiting the system.

Specifier Details the specification of a part of the system's functionality by
describing the Requirements aspect of one or several use cases and
other supporting software requirements. The requirements specifier
may also be responsible for a use-case package, and maintains the
integrity of that package.

Software Leads and coordinates technical activities and artifacts throughout the

Architect project. The architect establishes the overall structure for each
architectural view: the decomposition of the view, the grouping of
elements and the interfaces between these major groupings.

Designer Defines the responsibilities, operations, attributes, and relationships of

one or several classes, and determines how they will be adjusted to the
implementation environment. In addition, the designer role may have
responsibility for one or more design packages, or design subsystems,
including any classes owned by the packages or subsystems.

Developer /

Responsible for developing and testing components, in accordance with

Integrator the project’s adopted standards. Additionally, the Developer / Integrator
integrates components into the system.

Tester Responsible for the core activities of the test effort, which involves
conducting the necessary tests and logging the outcomes of that testing.

Deployment Provides the overall Configuration Management (CM) infrastructure

Manager and environment to the product development team.

Technical Writer | Responsible for writing a meeting minutes document after each team-
wide meeting and making it available to all team members.

System Responsible for maintaining the project web site, which contains

Administrator project news, general project information and project documentation.

Plan Phases and Iterations task has the same responsibility as performed in the

Inception Iteration I1 of the Inception Phase. We know that this task has an

118

importance for the project that the most common estimations about the project are
made here. From the previous iteration we obtained an initial overview of the overall
duration of the project. By the help of this view we complete the estimations about
the budget of the project within this task. This task is concluded with the revision of
the Software Development Plan, and estimations about budget of the project as

shown in the Figure 8.7.

3.24 Budget

The budget for the Inception Phase is $100,000.00.
The budget for the Elaboration Phase is $200,000.00.
The budget for the Construction Phase is $300,000.00.
The budget for the Transition Phase is $150,000.00.

Figure 8.7 Budget

Project Planning Review task of Figure 8.6 helps describing the review of Software
Development Plan. As we mentioned in the tasks of the previous iteration, key
activity to be performed is a meeting. All decisions about approval of the work
products that are produced will be made at this meeting again. At the end of Plan the
Project sub-activity Review Record is handled again to approve the revised Software
Development Plan. If there exists any missing parts or mismatching concepts with
the project then Software Development Plan is sent back to the project manager to

review it.

Plan the Integration sub-activity in Figure 8.5 plans the integration of the system

and composed of one task as shown in the Figure 8.8.

Ca

Plan System Integration

Figure 8.8 Plan the Integration Task

Plan System Integration task identifies the plan of integration. The first step of the
task is defining the subsystems, if available. In complex systems we have to define
build sets to manage the complexity. The purpose of defining these build sets is to
make it easier to do the integration planning. The task is concluded with an

Integration Build Plan (see Appendix C.1.2) that defines the details of the integration

119

for the current iteration. Build for the project is given in the Integration Build Plan

as shown in the Table 8.2.

Table 8.2 Build Set

Build 1 This build will include the use cases Login, Logout.

Build 2 This build will add the use cases Insert User, Update User, Delete User.

Ongoing Management and Support on Figure 8.2 activity covers the various
management and support activities that are repeated on an ongoing basis throughout

the project. It is composed of five sub-activities as shown in the Figure 8.9.

75)

Manage lteration

[Requirgments B‘})ﬂ

L chan
E}}j oel Support Environment
o During an lterafion
Monitor & Control Project [Change Requesd

[
E__}J 3
Manage Changing E__:)J

Requirements Manage Change
Request

Figure 8.9 Ongoing Management and Support Sub-Activities

Manage Iteration sub-activity contains the activities that begin, end and review the

iteration. It consists of five major tasks as shown in the Figure 8.10.

o L L L =

Acquire Staff Initiate lteration |dentify and Assess |teration lteration Evaluafion
Assess Risks Criteria Review

Figure 8.10 Manage Iteration Tasks

120

Acquire Staff task has the same responsibility as primarily performed in the
Inception Iteration I1 of the inception phase. Within this task teams are formed with
required skills for the Elaboration Iteration E1. Role to specific members are
assigned in the team for the Elaboration Iteration E1 by the project manager. If any
changes occurs on team members then Software Development Plan is revised to

represent that changes and assign a role to new members.

Initiate Iteration task allocates team members to the activities identified for the
current iteration. In the previous tasks members are assigned into specific roles.
Now activities are assigned to team members that they have to perform. For that
operation Work Order (see Appendix C.1.3) is revised and work order reports are
prepared for each team member for the Elaboration Iteration E1. Description of the

works is given in these reports as shown in the Figure 8.11.

‘ Work Order for e-Reserve Created on: <12/02/08>
Identification
Work Order ID: <TMQ-E1-W01-01> WBS ID: <8.3.1>

Responsibility (Holder)
Team Member Q

Associated Change Reports

None

Schedule
Start: < 12/22/08> Completion: < 12/22/08> Critical Path: <NA>

Efforts and Other Resources

Staff Hours: 2 Hours Other Resources: None

Description

Work Description: Implement Test Suit

Expected Output(s): Test Suit

Signature Agreement

Project Manager: Team Member A Work Order Holder: Team Member Q
Signed on: <dd/mm/yy> Signed on: <dd/mm/yy>

Figure 8.11 Work Order Reports for Iteration E1

Identify and Assess Risks task has the same responsibility as primarily performed in
the beginning of the Inception Iteration I1 of the Inception Phase. As we mentioned
before, risks are dynamic elements and we have to update the Risk List to reflect the
current project status periodically for avoiding risks before they happen or handle

121

them rapidly as they appear with a minimum effect on the project. So the Risk List
(see Appendix C.L.4) is updated to capture the potential risks of the project. Within
the Elaboration Iteration E1 some other potential risks are identified and defined in a
decreasing order of priority. Some priorities of the existing risks are changed within

the new i1dentified list and new risks are added as shown in the Table &.3.

Table 8.3 Risks for Iteration E2

Risk Risk Description & Impact Mitigation Strategy and/or

Ranking/ Contingency Plan

Magnitude

Medium R1 and R2 Releases may slip and not | Monitor progress against the schedule
be available by 05/12/2009. and milestones.

Update effort to complete and time to
complete on a regular basis.

Medium Interfaces to the old legacy Library | Continue to develop prototype. Monitor
System may introduce performance | this issue at weekly progress meetings.
and response time issues.

Low The team is unfamiliar with Web | Train the Team on Web technologies
architecture and technology. (to be done in the second elaboration

iteration, or E2).
This risk may impact the ability to

deliver a Web application on time. Allocate time (during E2) for the
learning curve and monitor progress
weekly in elaboration.

Low Volume of users logged on during | Early prototyping and extrapolation of
peak periods (on holidays and special | response time data should be done in
days) may significantly degrade | the elaboration phase.

system performance.

Mitigated Incompatibility with internet | Address during elaboration (E2).
browsers and specific configurations
on client machines.

On Figure 8.10, Assess Iteration task evaluates the results of an iteration assess
related project information as in the Inception Iteration I1. The success or failure of
the current iteration is determined. The actual and expected results of the current
iteration are compared. Also we have to ensure that evaluation criteria for the
current iteration are realistic. Test results are also given roughly, not in details. At
the end of this task Iteration Assessment (see Appendix C.1.5) document is revised
for the Elaboration Iteration E2. Objectives that are reached within the Elaboration
Iteration E2 are given in Iteration Assessment. An example for the use cases that are

implemented are shown as in the Figure 8.12.

122

2.2 Use Cases and Scenarios Implemented
The following use cases were completed with details uncovered during the
design process:
e Login
e Logout

Figure 8.12 Objectives Reached for Iteration E2

The last task of Figure 8.10, lteration Evaluation Criteria Review task determines
how to approve the criteria if the iteration is completed with its meeting objectives.
As we did in all previous review tasks, a meeting is planned and all materials about
the activity are distributed across related team members to perform review. At the
end of the meeting a decision is made to approve or reject the criteria for the
Elaboration Iteration E2. If the criteria are approved then the next activity will be
performed otherwise the project team should address the identified deficiencies and
re-submit revised iteration evaluation criteria for a follow-up review. Review Record
is completed at the end of meeting that captures the results of the current review

activity.

Monitor and Control Project activity of Figure 8.9 is used to capture continuing
work including monitoring project status, reporting to stakeholders, and dealing with

issues. It consists of four major tasks as shown in the Figure 8.13.

= o o o

Scheduleand Assign'Work ReportStatus Organize Review Conduct Review

Figure 8.13 Monitor and Control Project Tasks

Schedule and Assign Work task helps project manager to schedule the work at any
iteration. As we mentioned in the previous iteration Change Requests are critical for
this task. Also for this iteration Change Requests have critical importance in this
task for project manager to fix the iteration. If necessary, the Iteration Plan E1 is
revised, and any impact on future iterations should be reflected in the Software
Development Plan. The iteration overview of the Elaboration Iteration El that is

reported in the Software Development Plan is shown in the Table 8.4.

123

Table 8.4 Iteration E1 Overview

Iteration Description Risks Addressed

E1 Iteration e Complete analysis & design for high Architectural issues related
risk requirements to ERIS clarified.

Architectural - Create Uge Case Specification for. each

Prototype for of the L.Ogm’ Logout use cases, derive an Technical risks related to
Analysis Model, and refine it into a ..

e-Reserve Design Model. ERIS mitigated.

Application - Document the architecture (high-level
design) in the Software Architecture Early prototype for user
Document. review.

e Develops the architectural prototype

for e-Reserve application Performance risks related

- Code the part of the application to high volume of requests
implementing the Login, Logout use mitigated on the ERIS side.
cases.

e Demonstrate feasibility and
performance through testing

During this task Work Order is revised to ensure that responsibilities that are given
in the work order reports and schedules are satisfied. Each team member with a
specific role has its own responsibilities. If any changing occurs on these roles or on
the development team members of the project then this action have to be reported in
the Work Order document. The roles of team members are identified for the

Elaboration Iteration E1 is shown in the Figure 8.14.

2.4 Responsibilities
2.4.1 Team Members

Each team member is assigned to a role. Here are the team’s responsibilities:
Team Member A (TMA): Project Manager

Team Member B (TMB): System Analyst

Team Member C (TMC): Software Architect
Team Member G (TMGQG): Test Analyst

Team Member H (TMH): Test Designer

Team Member L (TML): Management Reviewer
Team Member M (TMM): Implementer

Team Member N (TMN): Integrator

Team Member O (TMO): User-Interface Designer
Team Member P (TMP): Test Manager

Team Member Q (TMQ): Tester

Team Member R (TMQ): Database Designer

Figure 8.14 Responsibilities for Iteration E2

124

Report Status task of Figure 8.13 is performed to identify when and how the
periodic updates on the project will be done as performed in the previous iteration.
An important work product in this task is the Status Assessment (see Appendix
C.1.6). Many work products are produced until this task and many of them are still in
progress. So status of each work product is given in Status Assessment Document
for the current iteration. Risks are again given in the Status Assessment Document to
point them out. The technical progress during the Elaboration Iteration E1l is

reported in the Status Assessment as shown in the Figure 8.15.

4. Technical Progress

During this iteration, the following artifacts were produced:
e Software Development Plan

Review Record

Iteration Assessment

Work Order

Integration Build Plan

The following artifacts were updated:
e Analysis Model
Change Request
Design Model
Development Infrastructure
Implementation Model
Software Architecture Document
Software Requirements Specifications
Test Evaluation Summary
Test Ideas List
Test Log
Use Case Model

Figure 8.15 Technical Progress

Organize Review task of Figure 8.13 describes how to facilitate the review process
and ensure the review is undertaken appropriately. Within this task review
coordinator has to ensure that required review tasks are appropriately planned and
organized. There are various approaches to planning review tasks which are based
on factors such as team size, team culture and so on. Organize Review task is

concluded with revision of Review Records.

The last task of Figure 8.13, Conduct Review describes how to facilitate a review so
as to maximize the productivity of the reviewers and meet defined quality
requirements. This task is under the control of reviewer of the project. Conduct

Review task is concluded with revision of Review Records.

125

Referring back to Figure 8.9, Manage Changing Requirements sub-activity used to
manage changes to requirements and assesses their overall impact. It consists of two

major tasks as shown in the Figure 8.16.

))

Structurethe Use-Case Model Review Requirements

Figure 8.16 Manage Changing Requirements Tasks

Structure the Use-Case Model task is performed to make the requirements easier to
understand and to maintain by structuring use case models. First of all review the
use cases that are modeled in the previous iteration to form an understanding for the
requirements. In this task use cases are analyzed in more details. Include and extend
relationships are formed between use cases. An include relationship between use
cases means that the base use case explicitly incorporates the behavior of another
use case at a location specified in the base. Only the base use case knows of the
relationship between the two use cases. An extend relationship between use cases
means that the base use case implicitly incorporates the behavior of another use case
at a location specified indirectly by the extending use case. Only the extension use
case knows of the relationship between the two use cases. Also generalization
between use cases, and between actors can be defined. As we mentioned in the
previous iteration if the number of actors and use cases becomes too large then they
could be divided into use case packages. At the end of this task the Use Case Model
(see Appendix C.1.7) is revised for the Elaboration Iteration E1 that is created in the
Inception Iteration I1. Include and extend relationships are added to the use case

diagrams as shown in the Figure 8.17.

Another work product of this task is the Glossary (see Appendix C.L.8) in which a
common vocabulary, using the most common terms in the problem domain, is
constructed. In some cases Glossary is the primary artifact that is used to capture
information about the project’s business domain. So it is important to update terms

that are defined in the Glossary.

126

4.5 <<Package>> Material Operation

Insert Material

Librarian

Update Material
Delete Material
Instructor
Search Material
Student
View Material

wincludes

wincludes

cincludes

cincludes

eincludes

cextends

Login

Download Material

Librarian

Instructor

Student

Figure 8.17 Use Case Diagram

Review Requirements task identifies how to review the requirements work products.

The main purpose of this task is to review the results of the tasks that are related

with requirements. Each review should

include a recommendation. These

recommendations are discussed in review meetings as done in the previous review

tasks. At the end of meetings a Review Record is created that documents the review

results.

Manage Change Requests sub-activity of Figure 8.9 is used to manage Change

Request reports. The sub-activity ensures that due consideration is given to the

impact of change on the project and that approved changes are made within a project

in a consistent manner. It consists of four major tasks as shown in the Figure 8.18.

> =

SubmitChange Request Review Change Requests

Co

Confirm Duplicate or

Rejected CR

Co

Schedule and
Assign Work

Figure 8.18 Manage Change Requests Tasks

127

Submit Change Request task identifies to how to create a Change Request. An
advantage of this task is that it can be performed by any role who submits a change
request throughout the project lifecycle. The work product of the task is Change
Request (see Appendix C.1.9) that documents and tracks requests for a change to the
product. Change Request can include new features, enhancement requests, defects,
changed requirements, and so on. After we completed the Change Request it is
submitted to its destination. Also a stakeholder on the project can submit a Change
Request. Current problem and a proposed solution for that problem are shown in the
Figure 8.19 from the Change Request.

s |
Current Problem

Description: Currently system is accessible Critical Failure: N/A
by Student, Lecturer, and Librarian. However
system cannot recognize which type of user
currently uses the system. That causes security
problems. Source of the Problem: Misunderstanding of
the Software Requirements Specification

Nuisance: When accessing the system
privileges cannot be assigned.

Enhancement/New Requirement/Other: User types will be received first before displaying its
own form and a new attribute will be added to the user information tables.

Observation conditions: During a review of prototype of the e-Reserve System.
e —
Proposed Change (Submitter)

Description: Add a new attribute to the user information table in the database to determine the
type of the user. Retrieve the user type from the user information tables when a student,
instructor or librarian logins the system. Access the proper functions from the form depending
on the received user type.
|

Figure 8.19 Change Request Sections

Review Change Requests task of Figure 8.18 performs prioritizing Change Requests.
This task determines to accept or reject a Change Request. Submitted Change
Requests are viewed by a meeting to determine if it is a valid request or not. Change
Requests include all state changes along with dates and reasons for the change. This
information will be available for any repeat reviews. At the end of this task
submitted Change Requests are reviewed. At the beginning of the meeting a Change
Request is determined that it is valid or not. If it is valid but out of scope for the
current release then it will be put in the Postponed state and will be held and
reconsidered for future releases. If a Change Request is believed to be a duplicate of

another Change Request that has already been submitted then it will be put in the

128

Duplicate state. If a Change Request has been determined to be in scope for the
current release then it will be put in the Opened state and is awaiting resolution. If it

is invalid then it will be put in the Closed state.

Confirm Duplicate or Rejected CR task of Figure 8.18 determines that the Change
Request be rejected or labeled as Duplicate. First of all, change control manager
retrieves the Change Request which will be labeled. In this task Change Requests
are examined to decide whether it is a Duplicate or it must be Rejected. In some
cases reports will return to the submitter to provide more information about the
related Change Requests. At the end of the task Change Request is updated to

represent its current status.

The last task of Figure 8.18, Schedule and Assign Work task describes all the things
that must be accomplished for an approved Change Request to be incorporated in the
development schedule. The Change Requests are examined and essential
modifications are made on them in the previous tasks within this activity. As a result
if the Change Request is to be held until a later iteration then the future iterations
have to be re-planed by updating Software Development Plan, Iteration Plan, and

Work Order documents.

Support Environment During an Iteration sub-activity of Figure 8.9 supports the
development environment for a project. It consists of one major task as shown in the

Figure 8.20.

Co

Support Development

Figure 8.20 Support Environment During an Iteration Task

Support Development task is performed to support development with hardware and
software. It regroups a large range of technical services such as, maintaining the
development infrastructure, backup, document creation and reproduction, and so on.
The task is concluded with Development Infrastructure (see Appendix C.I1.10) that
includes hardware and software. As an example Project Management discipline in
the RUP and the tools that are used to perform the activities and produce the artifacts
necessary for the project development process are shown in the Figure 8.21 and

reported in Development Infrastructure.

129

3. Project Management

3.1 Hardware
This discipline is focused on the project management activities. The tools for this
include Microsoft Excel, Word and Microsoft Project. These tools are located on
each user’s desktop.

3.2 Software
The details on the minimum required software include:

e Version 2000 or higher for all three tools.
e MS Project recommended ideal version is 2007.

Figure 8.21 Project Management Discipline

Refine the System Definition activity of Figure 8.2 identifies the requirements for

the current iteration. It consists of three major tasks as shown in the Figure 8.22.

> = =

Detail a Use Case Detall the Software Develop Supplementary
Requirements Specifications

Figure 8.22 Refine the System Definition Task

Detail a Use Case task examines use cases in more details. The task begins with
reviewing the scenarios for the current iteration which is previously defined in the
Inception Iteration I1. After reviewing use cases, flow of events are detailed for each
of them. While defining flow of events for use cases it is important to be careful
about what is done in the use case. The flow of event simply defines how and when
the use case starts, how it interacts with the actors, what action does it takes, and
how it ends. In some cases one action can be divided into several sub-actions. Each
sub-action has to be defined in details as a main action. Preconditions and
postconditions for a use case are defined within the flow of events. A precondition
on a use case explains the state the system must be in order for the use case to be
possible to start. A postcondition on a use case lists possible states the system can be
in at the end of the use case. If a use case is extended by another use case it is
specified in the flow of events. At the end of the task use cases are reviewed with the
stakeholders to confirm that the required system is well understood. The Use Case
Model (see Appendix C.I.11) is reviewed that is created in the previous iteration and
flow of events is added for the use cases which are specified for the Elaboration

Iteration E1. A flow of event for the use case “Login” is shown in the Table 8.5.

130

Table 8.5 Flow of Events

Use Case Name

Login

Actor Student, Instructor, Librarian
Description Student, Instructor or Librarian can access the system.
Preconditions

Post conditions

Actor accessed the system successfully.

Priority

High

Normal Course

Login

Actor Actions
1) Enter the username and
password.

3) -

5) If Actor reached wanted result
then press view button, if not
reached go to state 1.

System Responses
2) Check validation control.

4) If not valid go to Alternative
Course 1. If valid apply the criteria
and display the result.

6) View the account information.

Alternative Course 1

Actor Actions

1) -

3) Correct the errors and
resubmit.

5) If Actor reached wanted result
then press view button, if not
reached go to Normal Course
state 1.

System Responses

2) Give the message that the
submitted password criterion is not
valid.

4) If not valid go to state 1. If valid
apply the criteria and display the

result.

6) View the account information.

Exceptions

Actor Actions

System Responses

Includes

Special requirements

Detail the Software Requirements task of Figure 8.22 identifies the requirements for
the system that is to be developed. The task is initiated by detailing the software
requirements clearly. These requirements can be managed by using special tools for
graphical or textual documentation. At the end of the task all the requirements are
packaged in the Software Requirements Specifications (see Appendix C.I1.12)
document that captures the software requirements for the system. Some specific
functional requirements are defined in the Software Requirements Specifications for
the Elaboration Iteration E1 is shown in the Figure 8.23.

131

3.3 Librarian Module

e The user shall be able to load the LM within Web Browser.

e The initial window of the LM shall contain a label for enter user id and
password, and a button for login.

e When Librarian selects login. SRM checks the user and returns the
successful message. After successful message a new page is loaded which is
LM specific.

3.4 Server Module

e The SRM shall be the only intermediate between SM, IM, LM, and the
database.

The SRM shall receive all the requests and format the pages.

The SRM shall accept all connections from the SM, IM, and LM.

The SRM shall validate and execute all requests coming from LM.

An error of execution, communication or else shall be identified and
appropriate display.

® The SRM shall try recovery from most common errors.

Figure 8.23 Librarian and Server Modules for E1

Develop Supplementary Specifications task of Figure 8.22 is used to capture
requirements that do not apply to specific use cases. As we mentioned in the
previous iteration this task helps to capture requirements that are not readily
captured in use cases. System wide functional requirements are identified in this
task. Some constraints and compliance requirements such as licensing of the system
are given in the Inception Iteration I1 of the inception phase. In Elaboration Iteration
E1 Supplementary Specification (see Appendix C.I.13) document is revised to
capture the interfaces of the system that must be supported by the application. An

example of interfaces is depicted in the Figure §8.24.

10.2 Hardware Interfaces
All components must be able to execute on a personal computer.

10.3 Software Interfaces

Student Module, Instructor Module, and Librarian Module must be ASP running
within browser. The server Module must integrate within a DBMS through Microsoft
SQL Database Connectivity. The Server must run within a Web Server available for
Windows NT.

10.4 Communications Interfaces

Student Module, Instructor Module, and Librarian Module must communicate within
the server over a TCP/IP connection. The Server and Database components should be
located on the same host.

Figure 8.24 Interfaces

132

Define a Candidate Architecture activity of Figure 8.2 establishes an initial sketch

of the architecture. It consists of two major tasks as shown in the Figure 8.25.

>)

Architectural Analysis Use-Case Analysis

Figure 8.25 Define a Candidate Architecture Tasks

Architectural Analysis task defines the architecture of the system. An architecture
overview is developed at the Inception Iteration I1 of the Inception Phase. During
architectural analysis of Elaboration Iteration E1, we focus on the high-level layers.
Within the current iteration we define the analysis mechanisms and services used by
designers. A logical view is defined for the system and it is documented in the
Software Architecture Document (see Appendix C.I1.14). Logical view of a system
illustrates the key use-case realizations, subsystems, packages and classes that
encompass architecturally significant behavior. The most important classes, their
organization in service packages and subsystems, and the organization of these
subsystems into layers are described. The logical view of the system is comprised of

three main packages as shown in the Figure 8.26.

T Presentation

3 Application

£1 Data Access

Figure 8.26 Logical View of the System

133

Use-Case Analysis task develops use case realization using predefined use cases. A
work product is created for this task which is an Analysis Model (see Appendix
C.L.15). It is the document that is created to identify set of analysis classes. Analysis
Model is used to identify the behavior of the system that illustrates how it works.
Responsibilities of analyses classes have to be identified that each analysis class
should have several responsibilities. After finding responsibilities, we have to find
associations between analysis classes that help us to understand class coupling. It is
important to focus only on associations needed to realize the use cases. Use case
realizations are reconciled that two different analysis use case realizations might
include an analysis class that is conceptually the same. So the duplications can be
reduced within this stage. Analyses classes that are identified for the Elaboration

Iteration E1 are depicted in the Figure 8.27.

«boundary= «controls
H LoginForm H SystemAccess
«entitys
= WebClient
«boundary= «controls
Q UserForm Q SystemAccessData

Figure 8.27 Analysis Classes for Iteration E1

Behavior of use cases are defined using a work product Use Case Realization
Specification Document (see Appendix C.I.16). There should be a use case
realization for each use case which needs to be expressed in the design model. This
document enables the transition between requirements, and analysis and design
tasks. For each use case realization within the Use Case Realization Specification
Document there is one or more interaction diagrams depicting its participating
objects and their interactions. We know that there are two types of interaction
diagrams: communication diagrams and sequence diagrams. They express similar
information, but show it in different ways. Communication diagrams show the
communication links, whereas sequence diagrams show the explicit sequence of

messages. Within the Use Case Realization Specification document sequence

134

diagrams and communication diagrams are created for the use cases Login and
Logout that are planned to be developed in Elaboration Iteration E1. Use Case
Diagram, Communication Diagram and Sequence Diagram for the use case “Login”

is given in Figures 8.28 — 8.30 respectively as example.

Instructor

Login Librarian

Student
Figure 8.28 Use Case Diagram for Login

At the end of current task a review is performed to verify that the analysis objects

meet the functional requirements and if the analysis objects are consistent.

=1 sd Login

% webClientWebClient

L:clickLzgin
Q leginF:LoginForm

2: sendUzernameAndPassword

Q caSystemAccess

3 selectUserForm
2.1 selectUserType

2.2: selectlUserType
3.1: displaySelectedForm

Q sad:SystembccessData Q userF:UserForm

Figure 8.29 Communication Diagram for Login

135

wuojpalraasAedsip T

LI 4135 41350 (=

mS0] I0] melsel(] auanbag g g 2ansig

WO 4I35M333]38 if
ad&jiasnioa)es g

adAjJasnioa)es g

PIOMSSE JPURLUBLIRSMPUAS 17

uiBa a3 T

BjegesaddyasAgipes = Lo juboqijubol = FEDGIMAUNDGIM X

ubo Ps[

136

Refine the Architecture activity of Figure 8.2 completes the architecture for the

current iteration. It consists of seven major tasks as shown in the Figure 8.31.

= o = =

|dentify Design |dentify Design Incarporate Exising Structure the
Mechanisms Elements Design Elements Implementation Modsl

>)

Describe Distribulion Reviewthe Architecture

Figure 8.31 Refine the Architecture Tasks

Identify Design Mechanisms task adjusts analysis mechanisms into design
mechanisms. First of all clients of analysis mechanisms are identified by looking at
the characteristics they require for that mechanism. Characteristic profiles are also
identified. They can be performance, footprint, security, economic cost and so on.
All clients of analysis mechanisms are grouped according the characteristic profiles.
This grouping is defined in Software Architecture Document that is also produced
by Design Model (see Appendix C.I.17). As a result three layers are used as shown
already in Figure 8.26.

Identify Design Elements task identifies subsystems, classes, interfaces, events and
signals. In the first step of this task analysis classes are refined into appropriate
design model elements. Analysis classes are very simple and they can be directly
mapped to the design classes. Design classes are packaged in order to maintain
configuration management processes. In some cases analysis classes become too
complex to depict the behavior of a single class alone. In such a case analysis classes
mapped into design subsystems which is modeled as a UML component having only
interfaces as public elements. If a subsystem is defined within the system then we
have to identify interface for each subsystem. For our project we do not need a
subsystem so we do not deal with subsystem concept. At the end of the task Design
Model (see Appendix C.I1.18) the resulting document is reviewed. In the previous
task we defined only the packages that will hold the design classes. Now for each
package design classes are identified and placed under appropriate layers. The
current version of Design Model Document contains the design classes for the

Elaboration Iteration E1 as depicted in the Figure 8.32.

137

2.1.1 Presentation Package

Q LoginForm

3 clickLogin (idMumber : String, userPassword : String)
3 returnLogin ()

=] UserForm
& sa: SystemAccess
Eg formType : String
E& wronglegin @ Boclean
% sessionStatus () @ Boolean
§2, selectUserForm [type: String)
#2, displaySelectedForm [)
5 logout [)

Figure 8.32 Presentation Layer Design Classes for Iteration E1

Incorporate Existing Design Elements task of Figure 8.31 refines the Design Model.
Reusable model elements from other projects or marketplace are incorporated. In the
previous task design classes are identified and placed into appropriate packages and
now all design classes are examined to identify relationships between them. The
Design Model (see Appendix C.I.19) Document is revised to give the detailed
relationships between design classes as shown in the Figure 8.33 on the next page.
Some of the common components to other projects can provide many of the
architectural mechanism needed for current project. In the next step of the task the
logical view of the system is revised where new elements will be added to the
Design Model and it requires updating logical view. For our project no updating is
required that all elements that are added to Design Model adapts the current logical
view of the system. Newly added elements in Design Model are represented in
Software Architecture Document (see Appendix C.1.20) as in the Design Model
document that is shown in Figure 8.32 because the design classes and packages are
important from an architectural perspective. This task performs the identification of

interactions between analysis classes.

Structure the Implementation Model task of Figure 8.31 establishes the structure of
the implementation elements. Main goal in this task is to construct first version of
the Implementation Model (see Appendix C.I1.21) document. Implementation model
structures are represented in the work product Implementation Model by packages

and component diagrams. Design Packages will have corresponding Implementation

138

Subsystems and dependencies between these subsystems are identified carefully. For
each subsystem it is defined which other subsystems it imports. The Build package
is created that is the topmost level of the hierarchy of the implementation
subsystems and represents a collection of executable programs produced by a build
process. For the e-Reserve project packages from the Implementation Model are
shown in the Figure 8.34 on the next page. At the end of the task the Software
Architecture Document (see Appendix C.1.22) is revised and the implementation
view is added. This section of the document contains component diagrams that show
the layers and the allocation of implementation subsystems to layers, as well as

import dependencies between subsystems as shown in the Figure 8.35 on the

next page.
Q UserForm
[E sa: Systemdiccess
e LoginForm . 1 Eg formType : String
[Eg wronglegin : Boolean
ﬁ"‘é clickLegin [idMumber : String, userPassword : String) {fé sessionStatus () Boolean
5 returnLogin () 1.7 4 selectUserForm [type : String)
1) 4, displaySelectedForm ()
1.+ 4 logout)
H SystemAccess
g sad : SystemAccessData
2 sendUsernameAndPassword [userlame : String, userPassword : String)
2 checkSession () : Boclean N
Q WebClient

?E} closeSession ()
Eg idMumber : String

! [Eg userType : String
&2 setldMurmber [)
. %geﬂdNumber{):String
Q SystemAccessData {5 setUserType ()
g sqlConnection : Sglonnection §% getUserType () : String

[Eg strConnection : String

& webClient : WebClient

3 createConnection () : SglConnection

3 cpenConnection [)

{f& closeConnection ()

£ selectUserType [userMame @ String, userPassword @ String) @ String
§ securedAccess [templd : String) : Boolean

Figure 8.33 Design Class View for Iteration E1

Describe Distribution task of Figure 8.31 is used to describe how the functionality
of the system is distributed. The distribution requirements and the network
configuration are analyzed within this task. The initial design of the deployment is
made in the previous iteration. Any changes on deployment view have to be reported

in Deployment Model that is previously created.

139

=Package» «Packages»

3 App_Code 3 App_Data
=Packages» =Package»
3 ASP Pages 3 Libraries

Figure 8.34 System Access — Overview (Level 1)

8.1 App_Code

App_Code package includes the C# class files in Presentation, Application, and Data
Access Layers that are previously identified in Logical View of the system.

«5 Filess wlEE =5 Filess xLEER <5 Filess
=] PresentationLayer = | ApplicationLayer = | DataAccessLayer

Figure 8.35 Implementation Model Package

Review the Architecture task is the last task of Figure 8.31 and it performs the
review of the architecture. At the end of the Inception Phase, there is usually little of
a concrete architecture in place. The most natural place for a software architecture
assessment is at the end of the elaboration phase. For this iteration of the elaboration
phase the scope and the goals of the review is defined. The review can be done in
three different approaches as representation driven, information driven, or scenario
driven. In representation driven review, a representation of the architecture is build
and questions are asked on this representation. In information driven review, a list of
information data is produced that is necessary for reasoning and then this
information is compared to the requirements. In scenario driven review, general
questions are transformed and asked in a set of scenarios. At the end of the review of
the architecture defects are identified and detailed again in Review Record as done

in the previous tasks.

Referring to Figure 8.2, Develop Components [within Scope] activity performs a

group of sub-activities that are required to develop components within the scope

140

identified in the iteration plan for Elaboration Iteration El. It is composed of four

sub-activities as shown in the Figure 8.36.

75)

Analyze Behavior

75)

Design Components B}ﬂ

Designthe Database

55

Implement Compaonents

Figure 8.36 Develop Components Sub-Activities
Analyze Behavior sub-activity transforms behavioral descriptions into a set of
elements upon which the design can be based. It consists of four major tasks as
shown in the Figure 8.37.

= o o o

Use-Casednalysis DesignthelUser Prototypethe Reviewthe
Interface User-Interface Design

Figure 8.37 Analyze Behavior Tasks

Use-Case Analysis task develops use case realization using predefined use cases.
This task is performed one more time while developing components. Use Case
Realization Specification document is created in the previous tasks with the use case

diagrams, sequence diagrams and communication diagrams. Now object diagrams

141

are added to Use Case Realization Specification (see Appendix C.1.23) document to
express the behavior of the use case in more details. These object diagrams show the
relations and constraints between classes and objects involved in the use case. The

object diagram for the use case Login is created as shown in the Figure 8.38.

Q LoginFormInstance : LoginForm

Q SystemAccessInstance : SystemAccess Q UserFormlnstance : UserForm

Q SystemAccessDatalnstance : SystemAccessData

'Q WebClientInstance : WebClient

Figure 8.38 Object Diagram for Use Case Login

Design the User Interface task conducts graphical user interface design. The task is
initiated by describing the characteristics of the users of the system. Task continues
with identifying primary requirements that are captured in the previous activities.
Primary windows for the system are created which are the essential windows when
the user accesses the system. An important point is to always minimize the number
of primary windows. Based on defined primary windows a Navigation Map (see
Appendix C.I1.24) is created which describes the structure of the user interface
elements in the system and their pathways. This document contains only the main
pathways, not a detailed view of the path. Potential paths are identified for the
Elaboration Iteration E1 as shown in the Figure 8.39.

Legin Page

Librarian Home Page Instructor Home Page Student Home Page

Figure 8.39 Navigation Map for Iteration E1

By the help of navigation maps users can simply figure out how many steps they

require to reach their target page in the system.

142

Prototype the User-Interface task of Figure 8.37 explains how to develop a graphical
user interface. A prototype for the user interface is created for the Elaboration
Iteration E1 and documented in User Interface Prototype (see Appendix C.1.25)
document that shows an example of user interface. In this task it is important to
work closely with potential users of the system when prototyping the user interface
that helps designers to discover any uncovered requirements. These prototypes
provide a baseline for the system’s user interface. Prototyping focuses on visualizing
the significant aspects of the user interface instead of achieving a good structure and
modularization of the source code. Prototyping is much cheaper than developing real
interfaces at the early stages of the development. Because several changes on user
interfaces and code are needed that causes waste of budget. A user interface
prototype is created for the Elaboration Iteration E1 that is documented in the User

Interface Prototype document as shown in the Figure 8.40.

@& Cankaya University e-Reserve System - Windows Intemet Explorer O | B ||
()~ & nttpi/localhost9953/eReserve/Defauitaspx = [44] % | [Live Search o |
W |@§ankayaUmva;ity e-Reserve System] | Pt B o8B [Pages v Toolsor

CANKAYA UNIVERSITY
E-RESERVE SYSTEM

Please enter your ID Number and Password

ID Number

Password

Gankaya University Library ©

Done (% € Internet | Protected Mode: On H100% ~

Figure 8.40 User Interface Prototype for Iteration E1

The last task of Figure 8.37 is Review the Design task and it defines a review of the
design up to current task. The Design Model is reviewed to ensure that it is well

formed. Within the Elaboration Iteration E1 the review on Design Model is focused

143

on the overall structure of it. Also the Use Case Realizations are reviewed to ensure
that the behavior of the system matches the required behavior. Results and defects

are reported in Review Records as in all review meetings.

Design Components sub-activity of Figure 8.36 refines the design of the system. It

consists of three major tasks as shown in the Figure 8.41.

= & o

Use-Case Design Class Design ReviewtheDesign

Figure 8.41 Design Components Tasks

Use-Case Design task refines use case realizations that are defined in the previous
tasks. Analysis mechanisms are identified in the previous tasks within this task any
applicable design mechanisms are incorporated into the use case realizations. For
each use case realization the interaction between design objects are shown by using
sequence diagrams. The interaction between an object and an actor is represented
briefly in sequence diagrams. Also each flow variant can be defined in a separate
sequence diagram. Flow of events is refined within this task in which they are
defined in the previous tasks and may need to be added additional description to the
sequence diagrams using annotations or notes. At the end of the task design model is

checked, but not in detail, to verify the work is in the right direction.

Class Design task is used to design the class structure of a component in the system.
The main goal in this task is to ensure that classes provide the behavior required by
the use case realizations. Classes are created firstly while producing analysis classes
as boundary, control, and entity classes. Boundary classes represent the interface so
the design of them depends on the user interface development tools that are available
to the project. Entity classes represent manipulated units of information and they are
detailed in when designing the database. Control classes are responsible for
managing the flow of a use case. In the next step of the task, visibilities are defined
for each class. Operations are defined for each class that is required for message
passing in a sequence diagram. After defining operations briefly their visibilities are
identified. Attributes are identified that are needed by the class to carry out its
operations. Name, type, and visibilities of attributes are identified. Finally

associations and generalizations between classes are identified. At the end of the

144

task design model is checked again as in the previous task, but not in detail, to verify

the work is in the right direction.

Review the Design task defines a review of the design for the current activity. It is
primarily performed in the previous sub-activity. The Design Model and Use Case
Realizations are reviewed again but including current changes to these documents.

Results and defects are reported in Review Records as in all review meetings.

Design the Database sub-activity of Figure 8.36 designs the corresponding database

structures. It consists of two major tasks as shown in the Figure 8.42.

=

Database Design Reviewthe Design

Figure 8.42 Design the Database Tasks

Database Design task defines the way of designing a database for the current
iteration. Before beginning the task optionally a logical data model can be created. It
is not a necessity but provides an idealized view of the key logical data entities and
their relationships. It is in the third normalized form that minimizes the redundancy.
The main goal of this task is to develop a physical design of the database. The
physical database design represents the physical structure of the database. This
physical data model is represented in Data Model (see Appendix C.1.26) that
describes the logical and physical representations of persistent data used by the
application. The system access operations database tables created for the Elaboration

Iteration E1 is depicted in Figure 8.43.

UserAccess
% dMumber

userPassword

userType

Figure 8.43 Database Tables for Iteration E1

For developing physical database designs, first of all domains are defined. Then the
physical data model elements are designed using tables and columns in tables. One

or more columns are selected as a primary key to uniquely identify the row of tables.

145

For Elaboration Iteration E1 it is not necessary to detail the design because there is

only one database table in our application.

Review the Design task of Figure 8.42 defines a review of the design for the current
activity. This task is performed to verify that design model fulfills the requirements.
Now Data Model is reviewed in addition to Design Model to ensure that it fulfills
the objectives. As in all previous review tasks, a meeting is performed then the

results and defects are reported in Review Records for that task.

Referring to Figure 8.36, Implement Components sub-activity completes a part of

implementation. It consists of two major tasks as shown in the Figure 8.44.

= =

Plan Subsystem Integration Review Code

Figure 8.44 Implement Components Tasks

Plan Subsystem Integration task plans the order in which the elements contained in
an implementation subsystem should be integrated. First of all the build is defined
by selecting the use cases and scenarios for the Elaboration Iteration E1. In the next
step of the task, classes are identified that will be participated in the selected
scenario from use case realizations. These scenarios are described in the use case
realizations by using sequence and communication diagrams. The task concludes by
revising the Integration Build Plan (see Appendix C.1.27) that is added integration

build one for the Elaboration Iteration E1 as shown in the Figure 8.45.

Integration Build One includes the following Subsystem and Components:

Subsystem Components

System Access LoginForm CS File
UserForm CS File
SystemAccess CS File
WebClient CS File
SystemAccessData CS File
UserAccessTable DBO File
back GIF File

logo GIF File

Default ASPX File (index file)
Student ASPX File
Instructor ASPX File
Librarian ASPX File

Figure 8.45 Build for Iteration E1
146

Review Code task of Figure 8.44 is performed to review the code to verify the
implementation. There three different techniques for reviewing the code. By
inspection technique, the implementation is examined in detail. By walkthrough
technique, the author of the implementation leads one or more reviewers through the
implementation. By code reading technique, one or two persons read the code. At
the end of the task, a meeting is performed then the results and defects are reported

in Review Records for that task, as in all previous review tasks.

Integrate and Test activity of Figure 8.2 includes tasks to fully integrate and test

the product. It is composed of three sub-activities as shown in the Figure 8.46.

| :-'
5] ﬂ
Yerify Test Approach E‘l‘;ﬂ
Integrate and Validate Build E‘l‘;ﬂ

Testand Evaluate [within Scopg]

Figure 8.46 Integrate and Test Sub-Activities

Verify Test Approach sub-activity represents that the techniques outlined in the Test
Approach will facilitate the planned test effort. It consists of one major task as

shown in the Figure 8.47.

Co

Implement Test Suite

Figure 8.47 Verify Test Approach Task

Implement Test Suite task identifies the grouping of tests to be executed. Test Suite
is a collection of related test cases. Test cases can be grouped together to perform
different types of activities, such as unit test, integration test, system test, or
acceptance test. First of all some Test Suite candidates are selected to be
implemented by using test ideas list. Dependencies between tests are identified. If

147

there exists any dependencies then the correct sequence of execution of the tests
have to be defined. On the other hand, identifying opportunities for reuse improves
the Test Suite maintainability. Test Suite is stabilized to resolve any dependency
problems both in terms of system state and test execution sequences. Errors can
occur when tests are executed together within a given Test Suite. So it is better to
run the Test Suite regularly as new tests are added. Unit tests are the initial tests that
will be performed for our project so a Test Suite is created for the unit tests to be run
in a given order. Every method of every class will be tested in the project so a Test
Suite (see Appendix C.1.28) is created for each class. Test Suites will be documented

in the work product that will be created in the next task.

Integrate and Validate Build sub-activity of Figure 8.46 includes activities that are
required to integrate, build and validate the build for the entire system. It is

composed of three more sub-activities as shown in the Figure 8.48.

55 55

Integrate each Subsystem Integrate the System

|
55

Walidate Build Stability

Figure 8.48 Integrate and Validate Build Sub-Activities

Integrate each Subsystem sub-activity is used to create a consistent implementation

subsystem. It consists of three major tasks as shown in the Figure 8.49.

Implement Developer Test ExecuteDeveloperTests Integrate Subsystem

Figure 8.49 Integrate each Subsystem Tasks

148

Implement Developer Test task is used to create a set of test to validate components
before other tests are performed. The task begins by identifying the components that
are to be tested. While identifying components, its scope and test type is also
defined. After defining fundamental concepts, an appropriate technique is
determined to implement the tests in terms of manual and automated testing. Now it
is the time to implement the tests that are defined in the previous steps of the task.
External data sets can also be created that allows other tests to use current test
results. Finally tests are verified to ensure that they work correctly. If any defects
occur then discover it during debugging and fix it. At the end of the task a Developer
Test (see Appendix C.1.29) is produced. Developer Test defines types of testing that
are used in the project, such as Function Testing, User Interface Testing, Data and
Database Integrity Testing, Performance Profiling, Load Testing, Volume Testing,
Configuration Testing. Testing of the project is begun with unit testing that is

reported in the Developer Test as shown in the Figure 8.50.

5. Unit Tests

A new project is created named TesteReserve in the project repository. Unit tests are
performed for each class and its each method of the project eReserve. Generated unit
test classes are listed as follows:

e System Access

e WebClientTest
SystemAccessDataTest
SystemAccessTest
LoginFormTest
UserFormTest

Figure 8.50 Unit Test for Iteration E1

Execute Developer Tests task of Figure 8.49 runs and evaluates the tests designed in
the previous task before more formal tests are performed. For each unit in the test
suit a sequence of operations are performed. First of all the test environment is set
up and initialized then each unit test is executed. Execution of each unit test is
examined to ensure that they complete its execution successfully. If any test is halted
for any reason, after determining and correcting the problem test is executed again
from the beginning. When testing is completed, the test results are reviewed to
ensure the test results are reliable. At the end of the task the Test Log (see Appendix
C.1.30) is produced which is the raw output captured during a unique execution of
the tests. The Test Log represents the output resulting from the execution of each

149

Test Suite that is defined in the previous tasks. As an example, the execution of a
Test Suit is resulted by a Test Log in which a small partition of it is shown in the

Figure 8.51.

<UnitTestResult
executionId="9413f140-8368-4c25-a08a-513b345b791d"
parentExecutionId="8853e85e-024f-4ebe-bf84-35ab80c98echH"
testId="1d7266db-328e-128e-410f-7bedf56c85£9"
testName="checkSessionTest"
computerName="TUFAN-PC"
duration="00:00:01.3569185"
startTime="2008-12-29T11:59:55.5772166+02:00"
endTime="2008-12-29T11:59:56.9990916+02:00"
testType="13cdc9d9-ddb5-4fad4-a97d-d965ccfced4b"
outcome="Passed"
testListId="8c84fa%94-04cl-424b-9868-57a2d4851ald">

</UnitTestResult>

Figure 8.51 Unit Test Result of checkSessionTest

Integrate Subsystem task of Figure 8.49 integrates the elements in an
implementation subsystem, then deliver the implementation subsystem for system
integration which will be performed in the next task. The order of implementation
elements and integration subsystem is previously defined. So the implementation
elements are integrated in a bottom up fashion as in their defined order. At each
increment only one element is added to the system. After performing all increments,

the implementation subsystem is delivered into the system integration.

Integrate the System sub-activity of Figure 8.48 integrates implementation
subsystems to create a new consistent version of the overall system in the current

iteration. It consists of one major task as shown in the Figure 8.52.

Co

Integrate System

Figure 8.52 Integrate the System Task

Integrate System task integrates the implementation subsystems into a build.

Depending on the complexity and the number of subsystem to be integrated, the

build is produced in a number of steps. The sequence of components that is to be

integrated is previously defined in the Integration Build Plan (see Appendix C.1.27)

and the details about the build are documented in Implementation Model (see

Appendix C.I1.21). After performing all steps, the build becomes ready for system
150

testing. When the build testing is finished, associated baselines are promoted by

marking baselines as having passed or failed a certain level of testing.

Validate Build Stability sub-activity of Figure 8.48 performs validation operations
that if the build is stable enough for detailed test and evaluation effort to begin. It

consists of one major task as shown in the Figure 8.53.

Co

Execute Test Suite

Figure 8.53 Validate Build Stability Task

Execute Test Suite task executes the appropriate collections of tests required to
evaluate product quality. First of all the test environment is established to execute
the Test Suite. Tools are configured that is used in the Test Suite execution. After
setting the environment, the appropriate time is selected and the Test Suite is
executed. The Test Suite is previously executed in the previous tasks by the
implementer, but now it is executed by the tester and a new version of Test Log is
obtained at the end of task. The steps for executing a Test Suite are same as done in

the previous tasks.

Test and Evaluate [within Scope] sub-activity of Figure 8.46 includes the activities
required for testing within a particular scope. It is composed of three more sub-

activities as shown in the Figure 8.54.

55 55

Test and Evaluate Achieve Acceptable Mission

55

Improve Test Assels

¢

Figure 8.54 Test and Evaluate Sub-Activities

151

Test and Evaluate sub-activity achieves appropriate breadth and depth of the test

effort to enable a sufficient evaluation of the items being targeted by the tests. It

consists of five major tasks as shown in the Figure 8.55.

Identify Testldeas

Ca

Lo

Structure the Test

Implementation

Ca

Test Suite

= Lo

Implement Execute Test Suite Determine

TestResults

Figure 8.55 Test and Evaluate Tasks

Identify Test Ildeas task is used to identify test cases. The task begins with

identifying the test motivators that driving the test effort for the Elaboration Iteration

E1. Team members brainstorm to create potential test ideas and the most appropriate

ones are documented in the Test Case (see Appendix C.I1.31) document for each use

case included within the current iteration. At the next step all test ideas are refined to

make further revisions and improvements. At that moment it is very important to

collect many test ideas as much as possible. Finally the task concludes by verifying

it to ensure that has been completed appropriately. The Test Case created for the

Login use case is depicted in the Table 8.6 (V: Valid, I: Invalid).

Table 8.6 Test Case for Use Case Login

TC Scenario Name Page | User | Password | User | Expected Result
ID # Info | ID Type
Lil Successful Login v v v v Successful Login.
Li2 Invalid Redirection I n/a n/a n/a Error Message. Home
Page is not available.
Li3 Incorrect Validation | V n/a v n/a Error Message. Return to
(No User ID) Basic Flow 2.
Li4 Incorrect Validation | V v n/a n/a Error Message. Return to
(No Password) Basic Flow 2.
Li5 Incorrect Validation | V n/a n/a n/a Error Message. Return to
(No User ID and Basic Flow 2.
Password)
Li6 Incorrect Access v I I n/a Redirected to home page.
Return to Basic Flow 2.
Li7 Invalid User Form v v v I Error Message. Return to
Basic Flow 1.

152

Structure the Test Implementation task of Figure 8.55 defines the overall structure
for the test suite implementation. Structuring the test implementation begins with
examining the test approach, target test items and assessment needs to understand
how the testing will be assessed. After performing this step, an initial Test Suite is
structured before its implementation. Test cases are produced in the previous task so
the only remaining work is assembling them with the Test Suit. The Test Suite
structure is adapted to reflect team organization and tool constraints to work with the
team responsibility assignments. Within Test Suites, each Test Case is called in a
prescribed order so the test designer has to be ensuring the correct system state is
passed through from one Test Case to the next. Some initial dependencies between
Test Suite elements are also defined at current task. Finally Test Suite structure is
refined to make necessary adjustments to maintain the integrity of the test

implementation.

Implement Test Suite task identifies which tests should be executed together. This
task is primarily performed in the previous activities but for the unit testing. Now the
Test Suite has to be implemented for the Test Cases. Firstly the candidate Test Suite
is defined by reviewing Test Cases that are related with each other. All steps are
performed again same as done for the unit testing to the workspace that is previously
reported in the Developer Test. There are only two Test Cases for the Elaboration
Iteration E1 and they are placed in a Test Suite (see Appendix C.1.32) System
Access Operations that holds Login and Logout Test Cases.

Execute Test Suite task of Figure 8.55 executes the appropriate collections of tests
required to evaluate product quality. This task is again primarily performed in the
previous activities but for the unit testing. Now the Test Suite has to be executed for
the Test Cases. The test environment is established to execute the Test Suite and the
tools are configured. After all configurations are finished, the Test Suite is executed.
Execution of each Test Case is examined to ensure that they complete its execution
successfully. If any test is halted for any reason, after determining and correcting the
problem Test Suite is executed again from the beginning. At the end of the execution
of Test Suite a Test Log (see Appendix C.1.33) is obtained that contains the raw
output from Test Cases. A Sample Test Log from the execution of the Test Suite is

shown in the Table &.7.

153

A0S 24 JOTIED

“AA225300 0] J2sn pue 25ed WO | 21BIS UOISSag PHEA
mdine papoadxa 2 Lepdsyy| paderdsip st aSessam Jomuy o] 28e preau] UONIAAPaY] PHEAU]
“asuodsaz
‘pammbazsy 10U saop wRisAg padedsp 2IEIG TOISS2 S PHBAU]
Uo[njos MPIEH 2q jouned afessamt Jouyg| padepdsip st aSessatw Jomrg o] 25e pUes Iolg uolssag
“Apoa100 -afed awoq 0] pa10ampay| 2BIS UOISSag PHEA,
mdino pajadxa 2 Lepdsy WRSAS 2 WO INOS0] o] 288 PR A moZoT Myss220ng

moSoT

HOLEPUATIIIOIRY

adA] 1250 pRAL]
PloOMSSEJ PTRA
“AAoa1100 -a8ed awmoy 03 paoan(g I 5251 PTRA
mdno pajadxa atp Lepdsig ‘paderdsp st afessam to1rg o a5ed pUes IO] 135 PHRAT]
PIOMSSBJ PUR (]] 335] PUEA| pIoasse] pPRRAN]
“AA22m00| 12IUR 0] 25ed 2o UO B A (I 325 PYeAU]
mdine papoadxa 2 Lepdsyy| paderdsip st aSessam Jomuy oy 28ed pUEA $S200Y 102H00U]
PloMSSEJ PUR (] 325[] TROQ PIOMSSEJ ON (promsseg
“fpoauod| 12ju= o) 25ed Swol uo WAy (I %251 ON pue (] 1251 ON)
mdno pajoadxa atp Lepdsi ‘paderdsp st afessam o1rg o] a5e pUes| UONEPHEA 10211021U]
Piomssed plomssed ON
“AA22m00| 121uR 0] 25ed 2moy UO B A (1 3251 PUEA (promssed oN)
mdinc pagoadxa 2 Aepdsyy| paderdsp st aSessam somg oy 28ed pUeA| UOWEPHEA 1021100U]
I =50 PIOMSSEJ PTRA
“fpoauod| 12ju= o) 25ed Swol uo WAy (I %251 ON (I =5 oN)
mdino pajadxa 2 Lepdsy ‘padeydsp st a5essam 101K o] 288 pUe,| UOWEPHEA 1021100U]
"AA220300| UMmOTs 2q louued 25ed awoy
mdine papoadxa 2 Lepdsyy| paderdsip st aSessam Jomuy o] 28e preau] UONIAAPaY] PHEAU]
adiT 1257 PIBA
PloMSSEJ PTRA
“fpoau00 paderdsp I %251 PTEA
mdino pajadxa 2 Lepdsy ST ULIO] 1250 PR123[2g o] 288 PR A WS MIss200ng mioT

mdng (emoay

mdnQ pepedxy

IS0 JO JNSaY ISE)

191 L'§qEL

AsE) JSo], INpOTy ISAL

800

- .lﬁ

(P)-TEX8

154

The last task of Figure 8.55, Determine Test Results task reports and summarizes the
test findings. The task begins by forming an understanding on resulting problems.
Test Logs are analyzed and the Test Results (see Appendix C.1.34) document is
created that provides a detailed assessment of the quality of the target test items and
the status of the test effort. Test Results document summarizes the status of Test

Cases after their execution as shown in the Table 8.8.

Table 8.8 Test Case Login Execution Results

Test Results — Login

Test Case Status

Lil Succeeded
Li2 Succeeded
Li3 Succeeded
Li4 Succeeded
Li5 Succeeded
Li6 Succeeded
Li7 Succeeded

By using the summary in Test Results document a Defect Report (see Appendix
C.1.35) is created for each failed test. It is important for Defect Report to be
understandable and unambiguous. A sample defect report is given in Figure 8.56.
This report identifies the problem occurred in testing effort and provides candidate
solutions, as many as practical to that problem. It provides an indication to the
management and development staff of the severity of the problem. After specifying
the problems and their solutions task continues by giving a feedback on the current
perceived quality in the software product. An assessment is made to identify the
areas that have not yet been addressed in terms of quality risk. At the end of the task
a Test Evaluation Summary (see Appendix C.1.36) is created that organizes and
represents a summary analysis of the Test Results and key measures of test for
review and assessment. In the Test Evaluation Summary document a summary
assessment of the test coverage analysis is performed. To evaluate test execution
coverage, Test Logs are reviewed. So the ratio between how many test cases has
been performed in this test cycle and a total number of tests for all intended target
test items, and the ratio of successfully performed test cases are determined. Also the
defect sources and their status are reported. The requirements-based test coverage is

reported in the Test Evaluation Summary as shown in the Figure 8.57.

155

Defect Report for <Project Name> Created on: <dd/mm/yy>

Identification

Priority: Status:
Title: Submitted on:

Defect Report ID: <>
Submitter: Type: <>

Current Defect

Critical Failure:

Description: -
Nuisance:

Source of the Problem:

Observation conditions:

Proposed Change (Submitter)

Description:

Proposed Change (Review Team)

Approval: Reviewed Description:
Affected Configuration Items Category Error Fix
Resolution

Affected number lines of code:

Estimated effort (staff hours):

Assessment

Test Methods:

Test Cases:

Figure 8.56 Defect Report

156

3. Requirements-based Test Coverage

The tests to be performed on the System Access are defined in the appropriate
documents. The test coverage results are as follows:

Module Performed Test Successful Test Failed Test Cases

Cases Cases
Login 7 7 0

Logout 3 2 1
10 9 1

Ratio Test Cases Performed = 10/10 = 100%
Ratio Test Cases Successful = 9/10 = 90%

The area of tests with the highest failure rate was:
e Load tests involving access to the e-Reserve System.

Figure 8.57 Requirements-based Test Coverage for Iteration E1

Achieve Acceptable Mission sub-activity of Figure 8.54 delivers a useful evaluation
result of the test efforts to the stakeholders. It consists of one major task as shown in

the Figure 8.58.

Ca

Assess and Advocate Quality

Figure 8.58 Achieve Acceptable Mission Task

Assess and Advocate Quality task identifies quality gaps, assesses their risks and
finds acceptable solutions. Test Evaluation Summary is examined to perform this
task efficiently. This step deals with assessing the software quality by gathering
information. Test Results are examined based on the Test Evaluation Summary.
Also the Change Requests are examined to gain more information about the possible
risks and their solutions. Each gap in quality is identified and the associated impact
and risk of each issue is assessed that creates the gap. Potential mitigation and
contingency strategies are considered for each gap. The initial findings are
formulated to discuss them with the team members. It is an important work to
validate performed thoughts. Work priority is negotiated to advocate for an
appropriate solution that does not reduce the quality of the product. Monitoring the
work progress is an important issue in this task that provides to remain supportive on
the resolution of the issue. At the end of the current task the resolutions for key

issues are confirmed that should improve the quality.

157

Improve Test Assets sub-activity of Figure 8.54 is used to maintain and improve test

assets. It consists of one major task as shown in the Figure 8.59.

Ca

Define Test Approach

Figure 8.59 Improve Test Assets Task

Define Test Approach task defines the test strategies. After performing the desired
tests, this task is handled to improve test assets by examining the Test Strategy
document that is previously created in the Iteration I1. All test motivators are
examined and for each of them it is considered that what test approach and
associated techniques might be required to address them. Completeness of the test
approaches is considered. After completing all tests, existing test techniques are
identified to improve test approaches. In the case of insufficient existing test

techniques, new test techniques could be identified briefly.

Recall that the last activity of Figure 8.2 was Plan for Next Iteration activity that
guides project team to the next iteration which is Elaboration Iteration E2. It consists

of two major tasks as shown in the Figure 8.60.

> =

Oevelop lteration Plan Iteration Plan Review

Figure 8.60 Plan for Next Iteration Tasks

Develop Iteration Plan task composes an iteration plan. The scope of the next
iteration is determined. In the elaboration iterations scope is defined by risks,
criticality, and coverage. Risks have to be mitigated as early as possible. For
criticality, project manager have to be sure that the most fundamental function or
services provided by the system are included. For coverage, project manager have to
be sure that the architecture addresses all aspects of the software to be developed.
The iteration evaluation criteria for Iteration E2 are defined. In elaboration phase we
are focusing on creating a stable architecture so the evaluation criteria are focused
on assessing the stability of the architecture. Finally Elaboration Iteration E2

activities are defined based on the goals. At the end of the task an Iteration Plan

158

(see Appendix C.1.38) is created for the Elaboration Iteration E2. The iteration

overview for this iteration is depicted in the Table 8.9.

Table 8.9 Iteration E2 Overview

Phase Iteration Description Risks Addressed
Elaboration | E2 Iteration e Train the team on Web Risks of low skills
Phase Architectural Technologies. related to Web
Prototype for | ¢ Complete analysis & design for teclilnologles and
System User high risk requirements un hnO\;vn
Connectivity - Create Use Case Specification for | €¢nology
and Access each of the Insert User, Update mitigated.

User, Delete User use cases, derive

analysis elements and refine the Architectural issues

Design Model. related to Web
- Refine the architecture (high-level tech.nologles-
design) in the Software Architecture partially clarified.
Document. Technical risks

e Refine the architectural prototype | (clated to Web
for system user connectivity and technologies
access, so it establishes the partially mitigated.

connectivity between ERIS and
System Users

- Code the elements related to the
Insert User, Update User, Delete
User use cases.

¢ Demonstrate feasibility through
testing (integrate as necessary)

Iteration Plan Review task determines to approve the proposed work plan for the
current iteration or not. It is held after the current iteration has been developed. For
this review operation again a meeting is planned and all materials about the activity
are distributed across related team members to perform review. It is important to
provide sufficient lead time to allow the participants to review the project materials
that will be used as the basis for the approval decision. There is a consideration with
this task is that at the end of the review we determine to begin next iteration or not.
So the Review Record for the current task has to be created carefully by capturing
any important discussions or action items, and recording the result of the Iteration

Plan Review.

After we have performed the Iteration Plan Review task of Elaboration Iteration E1
we decided to approve proposed work plan for the current iteration which means that
we have completed work products of the current iteration successfully. Elaboration

Phase Iteration E1 work products are tabulated in Table 8.10.

159

Table 8.10 Elaboration Iteration E1 Work Products (APPENDIX C.I)

eReserve SoftwareDevelopmentPlan 2.0
eReserve IntegrationBuildPlan 1.0
eReserve WorkOrder 2.0

eReserve RiskList 2.0

eReserve IterationAssessment 2.0

eReserve StatusAssessment 2.0

eReserve UseCaseModel 2.0

eReserve Glossary 2.0

eReserve ChangeRequestCR 01 1.0

eReserve DevelopmentInfrastructure 1.0

eReserve UseCaseModel 2.1

eReserve SoftwareRequirementsSpecifications 2.0
eReserve SupplementarySpecification 2.0

eReserve SoftwareArchitectureDocument 2.0

eReserve AnalysisModel 1.0

eReserve UseCaseRealizationSpecification 1.0

eReserve DesignModel 1.0

eReserve DesignModel 1.1

eReserve DesignModel 1.2

eReserve SoftwareArchitectureDocument 2.1
eReserve ImplementationModel 1.0
eReserve SoftwareArchitectureDocument 2.2
eReserve UseCaseRealizationSpecification 1.1
eReserve NavigationMap 1.0

eReserve UserInterfacePrototype 1.0
eReserve DataModel 1.0

eReserve IntegrationBuildPlan 1.1

eReserve TestSuite 1.0

eReserve DeveloperTest 1.0

eReserve TestLog 1.0

eReserve TestCase 1.0

eReserve TestSuite 1.1

eReserve TestLog 1.1

eReserve TestResults 1.0

eReserve DefectReportDF 01 1.0
eReserve TestEvaluationSummary 1.0
eReserve ProjectPhasePlan 2.0
eReserve IterationPlanE2 1.0
eReserve Build 1.0

160

8.2 Elaboration Iteration E2

We have successfully completed Iteration E1 of the Elaboration Phase. Now we are
ready to begin development of Elaboration Iteration E2 that is the final iteration of
the Elaboration Phase. In this iteration our purpose is to complete analysis and
design for all remaining high risk requirements of the e-Reserve project which is the
User Operations. The activities performed in Elaboration Iteration E2 of the
Elaboration Phase are the same as done in the Elaboration Iteration E1 (see Figure
8.2 on page 115). Tasks for all activities in Elaboration Iteration E2 are also same as
in Elaboration Iteration E1 and can be found in the previous section. It is depicted in
the Iteration Plan (see Appendix C.1.38) that is created for the Elaboration Iteration
E2 at the end of the previous iteration. This Iteration Plan defines the activities and

tasks of the current iteration briefly within a schedule.

In the previous iteration, we implemented the system access capability of the
e-Reserve System. Now it makes sense to give system the capability of user
operations that includes the use cases are implemented within Elaboration Iteration
E2 as follows:

e Insert User

e Update User

e Delete User

They are the core use cases and have a great importance for further operations that
will be implemented in construction phase iterations. So by implementing these use
cases early in the project, the risks would be mitigated by the testing that would

occur during the rest of the project.

Some of the work products that were previously created in Elaboration Iteration E1
are updated with additional requirements and changes. Remaining work products are
created newly to suit the specific objectives of Elaboration Iteration E2 that are
listed in the Iteration Plan for the Elaboration Iteration E2. Complete set of work
products that are created and updated within the Elaboration Iteration E2 can be

found in Appendix C.IL

161

The current iteration of the Elaboration Phase again includes the analysis of the
problem domain. As mentioned before, analysis means finding the right things to do,
after it is clarified, the probability that the system fulfills its goals is increased and
the amount of just-in-case programming minimized. Creation of the Use Case Model
is one part of this analysis which includes the uses cases and their flow of events. So
the flow of events for the related use cases are added in Use Case Model (see
Appendix C.I1.8) within the current iteration. As an example Table 8.11 depicts the

flow of events created for the use case “Insert User”.

Table 8.11 Flow of Events for Insert User

Use Case Name Insert User

Actor Librarian

Description Librarian adds new user to the system.

Preconditions Login must be satisfied and Librarian must have enough permission.

Post conditions User successfully created.

Priority Low

Normal Course

Insert User

Actor Actions

1) -

3) -

5) Fill the form and submit.

7) -

System Responses
2) Checks permission of Librarian.

4) If Librarian has enough
permission then display page. If
Librarian has not enough
permission then go to alternative
course 1.

6) Create user and integrate it with
system.

8) Give message to Librarian that
user added to system successfully.

Alternative Course 1

Actor Actions

System Responses

1) - 2) Give message that you have not
enough permission to the Librarian.
Exceptions
Actor Actions System Responses
Includes Login

Special requirements

162

The iteration continues with analyzing the iteration specific use cases that are
defined in the Use Case Model. Now we have to identify a preliminary mapping of
required behavior onto modeling elements in the system for the Elaboration Iteration
E2. So the Analysis Model is updated (see Appendix C.II.11) that was previously
created during the analysis of Elaboration Iteration E1 elements. This model
includes the analysis classes for the current iteration as done in the previous iteration
that is depicted in the Figure 8.61. Iteration specific analysis class diagrams have an
advantage that the designer will only deal with analysis classes that are related with
the current iteration. It reduces complexity of the view that the designer is capable to
see analysis classes created within the current iteration. Such an analysis technique,
which contains iteration specific analysis class diagrams, also provides developers to
concentrate on part of a whole much more easily during the development of the

system for the current iteration.

«boundan- =Controls
Q UserDetailsForm Q Account
wentity= econtrols
Librarian Q AccountData
=boundary= «controls
Q UserForm Q SystemAccessData

Figure 8.61 Analysis Classes for Iteration E2

However, the Analysis Model has an additional field for this iteration which
includes the analysis classes for overall system (also further iterations will include)
as shown in Figure 8.62. This kind of analysis classes gives the overall view of the
system. It does not have an additional property that is just the union of all analysis
classes of all iterations. Such an analysis class diagram helps us to view the whole
structure of the system that we are modeling. They also give rise to the major
abstractions of the system design. As an example Figure 8.62 shows the analysis
classes for overall system that includes the analysis classes from Elaboration

Iteration E1 and Elaboration Iteration E2.

163

=boundary= sControl=

Q LoginForm Q SystemAccess
«entitys
-] WebClient
=boundary= =Control=
Q UserForm Q SystemAccessData
wentity=
Librarian
=boundany= scontrols
Q UserDetailsForm Q AccountData
sControls
5 Account

Figure 8.62 Analysis Classes for Overall System

Object design is very much about assigning responsibilities, which are basically of
two types: knowing and doing. At the design the responsibility choices are usually
considered in the process of creating interaction diagrams; remember that the UML
has two diagram types for them: sequence diagrams and collaboration diagrams that

were already created in the previous iteration of the project.

The development team then created sequence diagrams and communication
diagrams based on the iteration specific use cases. Since Elaboration Iteration E2
includes very complex use cases, the sequence diagrams and communication
diagrams are also more complex than the diagrams that were created in Elaboration
Iteration E1. Within this iteration the development team spent quite a bit of time

analyzing the user operations.

The sequence diagram is created for the Insert User use case as shown in the Figure
8.63 to understand which objects will be needed and how to interact with those
objects. Then the communication diagram is created for the same use case as shown
in the Figure 8.64 to understand all of the effects on a given object and for algorithm
design. The Insert User sequence and communication diagrams are one set of the
interaction diagrams that are to be handled for the user operations within the
Elaboration Iteration E2 and the other interaction diagrams can be found in Use Case

Realization Specification (see Appendix C.II.12) document.

164

J3s[) LI3SU] J10] WeISel(] 3duanbag ¢g g aInsL]

SMIEISMOLS iF

13SMHAsULIE'T

13sMHAsULTT

5|Iea(asn T [35]2]

SN3EIGAMaLYS T
[23e311dnp]

ajeandngyaaya ig

ajeandngst gy

ajeadngs Ty
a1edngyaays
5[IB33(] 4A5 43T IE
LLIO{5|IBI(I3SMIMOYS T
JASAHASLE 2 T

Bl RUNOIIFRE = IUNB3y3UNeI3e = O CFHIEEREH P = I CEIEHPIEH = LeHeIgITLe g X

1aspasug ps[o

165

| sd InsertUser

% librarian:Likrarian
1. clickInsertUser

F:lserF
Qw 3: Enter User Details

21 showlserDetailsForm

Q udf:lUserDetailsForm

1: showSiatus

1: ukerDetails

4: checkDuplicate

S:checkDuplicate

21 showSstatus

Q accountiAccount

1.1: insertlzer

4.1: isDuplicate

4.2:isDuplicate
1.2: inzertlser

Q ad:AccountData

Figure 8.64 Communication Diagram for Insert User

In parallel with creation of the interaction diagrams, the design classes for the
e-Reserve system started taking form. Many new classes and associations were
added to the design class diagram within the Elaboration Iteration E2. After each
sequence diagram was created and refined the design classes are updated, so the
Design Model is updated (see Appendix C.I1.14) for the Elaboration Iteration E2.
This model includes the design classes for the current iteration as done in the
previous iteration that is depicted in the Figure 8.65. Iteration specific design class
diagrams provide the same advantage that is mentioned for the iteration specific
analysis class diagrams. Also, the Design Model has an additional field for this
iteration which includes the design classes for overall system (also further iterations

will include) which gives the overall view of the system as shown in Figure 8.66.

166

TH UOHEID)] 10 SISSE[) USISI(] £9°§ 2ANB1]

ueajoog : (Buwis : gEn | aesnEEEe O

uezjeag : (Buws : pepy= Buss 2uoyd Buws @ ssauppe Buuig uswnedap Buws adipn Buuls : prlomssegn Bus : gpsn Bulas : giEn | s=snepdn 9k
1=2ge1eq : (Buwg i gpen) sesnpul 95

uezjoog : (Buwis : lewa ‘Buwis : suoyd Buws : ssauppe Bus : Juswedsp Dulls 2ddpn Buws : pramssegn Bus gEn) sesnu=su 9k

uez|oog : (Buwis :saspjonued) szendngs 95

LELIRIGIT | UBLIRIG) 2

BIE(]5530 WSS | pes 99

BJE(JIUNDIIY m
T
1ageeq : { Buwg : gsn) sesnyoieas
Buusg : () szquinppr=b {Buwig : ey Buwis : suoyd Buuss @ ssauppe ‘Buuig : wuswpiedsp Buwis taddpn ‘Bug @ promssegn ‘Buuig : gusn Buuis : grsn Buulg @ ouod) sjieszgiesn @
{] 4aquinppRas 9k uesjoog : (Buuis uesnonuad) 31edngy sy 9
Buwys uaquinpp 25 EJE(ALUNO2YY : pe 29
uerielqr] = Wno3sy =
() 4asnasa 20212 O a
() 42snErepdrp € i
[] 4=snuasupy> 9 {BuLys : gsn | uondy=IREp mmm.
()3nabo| €k 1seieq : Buwg : gsn) jonuoRREP O
() wuogpa1a2psieidsip OB { Buwig : iews Buws : auayd Buws @ ssauppe ‘Buwig : uswpedsp Buwys @ adf) n Buuis : piomssegn Buuis : gusn ‘Buuis : gEn) uonoy=iepdn
[Buis : 2df) wuogesmizaps 98 12geeq : { Buwg 1 gsn) jesuodmtepdn 9
uezjoog : () smelguaissas O { Bunis : ewa Bunis : suoyd Buuis : ssauppe ‘Buwis @ juawedsp Buls : 3ddpn ‘Buuis : promssegn ‘Buss (gEn) jeuauaguiasul O
wio4s|iescdasn ¢ ipn 85 J a [DU T SMIEigIu=iny | sraesmoys O
Lgajoog : ubobuoim 25 { Buis : 2df3) wuogsjesegiesnmays 9
Buups : adijwioy B Bug T sneis 95
ssaooywaysis tes @ N0 Lunoaae 95)

w0 13s) (5 uLiojsjie2qias =

167

1 1

Q LoginForm Q UserForm * Q UserDetailsForm
1 1+ 1.
3 1+ 1.*
Q SystemAccess Q WebClient Q Account
1 1
Q SystemAccessData Q Librarian Q AccountData

Figure 8.66 Design Classes for Overall System

The iteration continues with graphical user interface design. We describe the
characteristics of the user operations for the system. By identifying primary
requirements, primary windows for the system are created which are the essential
windows when the user operations to be performed. Based on defined primary
windows the Navigation Map (see Appendix C.I1.19) is updated which was created
in the previous iteration of Elaboration Phase. We know that by using the
Navigation Map, users can simply figure out how many steps they require to reach
their target page in the system. Potential paths that are identified for the Elaboration

Iteration E2 are added into existing paths as shown in the Figure 8.67.

Login Page
Librarian Home Page Instructor Home Page Student Home Page
Login Page Login Page Login Page

Insert User Page

Update User Page

Delete User Page

Figure 8.67 Navigation Map for Iteration E2

168

The Elaboration Iteration E2 activities continue with the construction of related user
interface prototypes. So that we are able to test out the user-interface design,
including its usability before the real development starts. Insert User page prototype
is depicted in the Figure 8.68. All other user interface prototypes that are related to
the Elaboration Iteration E2 can be found in the User Interface Prototype (see

Appendix C.I11.20) document.

(@ Gankaya University e-Reserve System - Windows Intemet Explorer (=Sl

@\J ~ | &) http://localnost:51756/eReserve/eReserve/Librarian/NewAccount.aspx [[¢][tive Search 2 -
— = =

W e I@gankayaUn\va;ityaResms System] I B B)r b Rage 7 ook

CANKAYA UNIVERSITY
E-RESERVE SYSTEM

User Accounts = Logout

User ID
Password
User Type () Student) Instructor () Librarian
Department
Address
Phone

e-mail

Cankaya University Library ©

[§ € Internet | Protected Mode: On #100% -

Figure 8.68 User Interface Prototype for Iteration E2

Additionally, database tables and relations are formed as shown in the Figure 8.69

that is detailed in Data Model (see Appendix C.II1.21) document.

UserAccess UserAccount
2 idNumber FI=——"C% | 2 idNumber
userPassword department
userType address
phone
eMail

Figure 8.69 Database Tables for Iteration E2

169

Implementing Elaboration Iteration E2 related components takes several days that is
detailed in the Iteration Plan of the Elaboration Iteration E2. These implementation
activities lead team members to achieve objectives with expected results for the

e-Reserve system within Elaboration Iteration E2.

In the next step, the implemented features are tested. First of all, unit tests are added
in this iteration to exercise the system’s user operations capability that determines
whether the individual units of source code fit for use. To perform these unit tests,
new test suite is created and implemented for the user operations. It is important to
verify that all the unit tests are executed successfully. After this verification the log
is prepared in which the results of unit tests for the user operations are presented.
Now it is time to prepare test cases to determine whether e-Reserve system meets
the required specifications by using the set of conditions and variables for the
Elaboration Iteration E2 features. So the test suite is updated to store these test cases.
After execution of test cases, the result of each test case is reported in a Test Log
(see Appendix C.I1.28) as shown in Table 8.12 that depicts a part of log for the test
case insert user. This Test Log is a raw data that will subsequently be analyzed to
help determine the results of some aspect of the test effort within the Test Results
(see Appendix C.I1.29) and more detailed in Test Evaluation Summary (see
Appendix C.I1.32). The defects that are captured during these test activities are
detailed in Defect Report (see Appendix C.I1.30 and C.I1.31) documents.

Finally new version of build for the e-Reserve system is ready that is developed
within the Elaboration Iteration E2. Now we have to prepare an Iteration Plan (see
Appendix C.I1.34) for the next iteration which will be the first iteration of the

Construction Phase.

Again we are in a critical point that we reached to the end of Elaboration Phase. So
we have to make a decision to continue on Construction Phase or go back to
Elaboration Phase. This decision is made by checking the objectives of Lifecycle

Architecture Milestone that whether it is satisfied or not.

170

adA1 13s7) PHEA

pIomsSEJ PIEA
{1 == oN
Q] *s] *m= 0] 25ed sSIIElg TI0 PIEA
Apoanod mAdmno| JUMOJ0E MAU UISUT U0 JEA o] 2dA] 1257 PUEA (1 2250 oND)
paoadxa atp Aedsyy| paderdsip st aSessam Jomg o] 288 pUeA| UOHWEpHEA 1921100U]
‘papeoja1
woneiado uonIasm 10T 520p WIo "2[QE[IRAR 10T ST JIMOJIE STE}G TI0] PYBAT]
Io)e suonJauuod| paie[dsp 2q j0UuRD MU B STHHI2ST JOJ ULI0 o] 2d4] 1251 PUEA
2SEQEIEP {291 afessamt Jourg| paderdswp st aSessaw Jomg o] 28ed pUEA IO] PBAU]
TAMOYS 24 J0UUED
“Ap221100 mdmo 28ed MO0y Map] Basu] o] 2d4] 1251 PUEA UORIREpaY
paoadxa atp Aedsyy| paderdsip st aSessam Jomg o] 25eJ prean] IoU] PYRAL]
"AR221100 mdmo o] 2dAT 1257 PUEA uonIImpay
pa1adxa atg Lepdsig padedsp st Wil palaafayg o] 28ed pUEA IoUU] Myssa0ong
“Ap221100 mdmo UAOYS 24 JOUUED Nua]y| o] 2dA] Ias)) pYeAl]
pa1oadya atp Aepdsyg| padepdsip st aBessam 1o o] 28eg PUEA NI2TA ON]
TALOTS
“Ap221100 mdmo 2q jouued afed uenmIqi]| o] 2di] Ios) pEAL] UORIREpaY
pa1oadya atp Aepdsyg| padepdsip st aBessam 1o o] 28 g peAl] MO PYRAL]
“Apo21100 mdmo padedsp o] 2dA] 1257 PUEA uonIampay
pa1oadya 2t Aepdsyy ST ULIOT 125N Pa122[2g o] 28eg PUEA WO MIssIIINg
OFuT JmMO30% PEA
2di1 s PRA
pIomsSEJ PIEA
I =511 PHEA
"AnIss200ns STIBlG WO] PUE A
“Apo21100 mdmo PaLI2SIN ST JUMOJIE o] 2dA] 1257 PUEA
pa1adxa atg Lepdsig 125 TWMOTs ST afessafy o] 288 pUeA| woniesu] Myssadong| Ias;) WPaAsU]

HONEPUSTHTIOI Y]

mdng empoy

mding papedxy

BSE))SA] AMPOTA ISAL

J35[))I3SU] JO JNSAY ASE) IS L TI'S I9EL

60/TT/TO

171

8.3 Lifecycle Architecture Milestone

Lifecycle Architecture Milestone marks the end of the Elaboration Phase as shown
in Figure 8.1. It is the second important major milestone of the project that we
reached at the end of second iteration of Elaboration Phase. Now we are standing at
a point that we have to you examine the detailed system objectives and scope, the

choice of architecture, and the resolution of the major risks.

Evaluation criteria for the Elaboration Phase can be listed as follows:

e The Vision and requirements of e-Reserve system are stable.

e The architecture is stable.

e The key approaches that are used in test and evaluation are proven.

e Test and evaluation of executable prototypes from the two elaboration
iterations have demonstrated that the major risk elements have been
addressed and have been credibly resolved.

e The Iteration Plan for the construction phase has sufficient detail and fidelity
to allow the work to proceed.

e Stakeholders agree that the current vision can be met if the current plan is
executed in the context of the presented architecture to develop the entire
system.

e The rate of actual resource expenditure to planned expenditure is acceptable.

The project may be aborted or considerably rethought if it fails to reach this
milestone same as in the previous milestone. The decision to proceed to the
Construction Phase is made based on mitigating the technical risks that are

identified.

Elaboration Phase Iteration E2 work products are tabulated in Table 8.13. All the
work products are given in the Appendix C of the thesis as C.1.1-39 and C.II1.1-35,
also on CD to be reached by:

e ~/Appendices/AppendixC/ElaborationlterationE1

e ~/Appendices/AppendixC/ElaborationlterationE2

172

Table 8.13 Elaboration Iteration E2 Work Products (APPENDIX C.II)

eReserve SoftwareDevelopmentPlan 3.0
eReserve WorkOrder 3.0
eReserve RiskList 3.0

eReserve IterationAssessment 3.0

eReserve StatusAssessment 3.0

eReserve Glossary 3.0

eReserve ChangeRequestCR 02 1.0

eReserve UseCaseModel 3.0

eReserve SoftwareRequirementsSpecifications 3.0
eReserve SupplementarySpecification 3.0
eReserve AnalysisModel 2.0

eReserve UseCaseRealizationSpecification 2.0
eReserve DesignModel 2.0

eReserve DesignModel 2.1

eReserve SoftwareArchitectureDocument 3.0
eReserve ImplementationModel 2.0

eReserve SoftwareArchitectureDocument 3.1
eReserve UseCaseRealizationSpecification 2.1
eReserve NavigationMap 2.0

eReserve UserInterfacePrototype 2.0
eReserve DataModel 2.0
eReserve IntegrationBuildPlan 2.0

eReserve TestSuite 2.0
eReserve DeveloperTest 2.0

eReserve TestLog 2.0

eReserve TestCase 2.0

eReserve TestSuite 2.1

eReserve TestLog 2.1

eReserve TestResults 2.0

eReserve DefectReportDF 02 1.0
eReserve DefectReportDF 03 1.0
eReserve TestEvaluationSummary 2.0
eReserve ProjectPhasePlan 3.0
eReserve IterationPlanC1 1.0
eReserve Build 2.0

173

CHAPTER 9

CONSTRUCTION PHASE

We already completed the Inception and Elaboration phases of our project
successfully and ready for the next phase. The next point in delivery processes is the
Construction phase that focuses on completing the analysis then, design and the
implementation of the system as mentioned in Chapter 3. Construction Phase of our
project consists of three iterations in which each of them includes several activities

and concluded by a milestone as shown in the Figure 9.1.

?

|} :-\I
5]
Construction [teration C1
| :ﬁ
5]
Caonstruction lteration C2
| :-\I
5]

Construction lterafion C3

|

~h

Initial O perational Capability Milestone

®

Figure 9.1 Construction Phase

174

9.1 Construction Iterations

The Construction phase has three iterations that are decided for e-Reserve project.
The activities performed in Construction Iterations of the construction phase are
shown in the Figure 9.2. The activity diagram in the Figure 9.2 and all of its

activities and tasks can be obtained from RMC and modified to adapt on projects.

!

5]

Prepare Environmentfor an lteration

5]

Refinethe Architecture

5] 5]

Develop Components [within Scope] Integrate and Test

5]

Ongoing Management and Support

|

5]

Plan for Mext lteration

Figure 9.2 Construction Phase Activity Diagram

All of the three iterations performed in Construction phases, consist of same
activities and tasks with the same work breakdown structure. As we mentioned in
Chapter 3, this repetition is the major functionality of iterative development

methodology.

175

The work breakdown structure that is depicted in Figure 9.2 contains the same
activities with Elaboration Phase iterations but not all of them. Within elaboration
phase, we mainly focus on to baseline the architecture of the system. Also design
and implementation of the system is done with a little effort. Because of this,
elaboration phase includes activities that are used for implementation issues. We
know that construction phase iterations focuses on design and implementation of the
current system. So iterations for the construction phase have to include activities that
are related with design and implementation. As a result we should use some of the
activities that were already used in elaboration phase iterations which are highly
related with design and implementation issues. By using RMC, we can easily see the
differences and the similarities between iterations that are performed in elaboration

and construction phases that are depicted in Figure 9.3.

File Edit Diagram Search Configuration Estimation Window Help

Ci-HE ’Cankaya University Library e-Reserve Proj v] LR O R B)| [| =i, Authoring 2

[aiat - B 1A B sy o BBy BT [Tailoring

o RuWIAaww laboration_ teration, RUP for eReserve |7 =m
. ‘L + | — Palette — 4
1 % Select

‘L ‘L ¥, Zoom
E}Bﬂ E}‘_%ﬂ = N.ote
— |= Flows b
. /' Control Flow

= Modes *
= Activity Partition

h

Reviseand Complete Project Plan E}‘r‘ Develop Components [within Scope]
ey

@ Define a Candidate Architecture E}lu'
Lrs

Ongoing Management and Support E}‘Fﬂ ,L

b S Integrate and Test @ Start Node
Refinethe System Deffnition qu @® End Node
Refine the Architecture [IZ Fork Node
‘L 3[] Join Node
‘1(0 & Decisiovn MNode

EH
[}
m

4 m | + (.= Geometric Shapes |

+ — Palette — 4

,L % h Select
= v &, Zoom
E)j v E Note

Refinethe Architefture E})l’:] El'ﬂ (= Flows *|
= IS =i

ES IActwity: construckion_iteration, RUP for eReser\.reIEX :

v Develop Components [within Scope] r iF :
Integrate and Test e

= Modes *|l
= Activity Partition
\lf @ Start Node

E}E;ﬂ @ End Node

5
Plan for Mext Iteration I Fork Node
,L W 3” Join Mode

B3 |

Ongoing Management and Support

m

% Decision Node
) o Z
Fl [(= Geometric Shapes ||
s B 4

Figure 9.3 Elaboration and Construction Phase Activity Diagrams

176

The top window shows a part of activity diagram that represents the activities used
in an iteration of elaboration phase. The bottom window shows a part of activity
diagram that represents the activities used in an iteration of construction phase. As
shown in the Figure 9.3 some of the activities within elaboration phase iterations are
also used in the construction phase iterations. As we mentioned before, these
activities are highly related with design and implementation of the system, so they

are performed again in construction phase iterations with more effort.

All tasks and activities performed in each iteration are depicted briefly in iteration
plans. The Iteration Plan (see Appendix C.II.34) for the Construction Iteration CI is
created at the end of Elaboration Iteration E2. The Iteration Plan (see Appendix
D.I.31) for the Construction Iteration C2 is created at the end of Construction
Iteration C1. Finally, the Iteration Plan (see Appendix D.I1.31) for the Construction
Iteration C3 is created at the end of Construction Iteration C2. All of these plans can

be found in related work products.

In the previous iterations of Elaboration Phase, we implemented the system access
capability and user operations of the e-Reserve System. These are the core
capabilities for the system that will form a baseline for our Construction Phase. The
use cases that are implemented within each iteration of Construction Phase are listed

as follows.

We give system the capability of course operations that includes the use cases which
are implemented within Construction Iteration C1 as follows:

e Activate Course

e Update Course

e Deactivate Course

e Search Course

We give system the capability of material operations that includes the use cases
which are implemented within Construction Iteration C2 as follows:

e Insert Material

e Update Material

e Delete Material

177

We update the system capability of material operations by giving additional
properties that includes the use cases which are implemented within Construction
Iteration C3 as follows:

e View Material

e Search Material

e Download Material

Construction phase is the main development phase during which the first operational
release of the product is realized. The analysis and design activities in the
Elaboration phase have shown what to do and how to do it. The critical parts have

also been implemented and interfaces stabilized to make sure that the design works.

The construction phase involved a continuation of design and implementation of
components in the project, finalization of more predictive components such as the
user interface, and the identification of limitations within the system. The iterations
of construction phase are focused on implementation of features. During these
iterations all high priority and major features were implemented and tested. In the
last iteration of the construction phase development was completed for the overall

e-Reserve system.

As we mentioned before, the primary goal of Construction Phase is the design and
implementation of components for e-Reserve System. Within each iteration of
Construction Phase, firstly all iteration specific components are designed in details.
As an example, in Construction Iteration C1, while we are studying on Activate
Course use case the design element named as CourseData is produced as shown in
Figure 9.4. The design element CourseData can also be found in Design Model (see

Appendix D.I.11) in more details.

E CourseData
[Eg sad : SystemAccessData
[Eg oprtr: Operator
3 getlnstructorlist [) : DataSet
2 isDuplicate [code: String) : Boclean
2 activateCourse [code : String, name : String, year : String, semester : String, instructor : String, instructorlD : String) : Boolean
3 findCourse [code : String, userType : String) : DataSet
§2 updateCourse [cCode : String, cede : String, name : String, year : String, semester : String, instructor : String) ¢ Boclean
{2 deactivateCourse [code : String) : Boolean
2 stopDirectoryMenitoring)

Figure 9.4 Design Class of CourseData

178

The most important activity of Construction Phase iterations is implementation of
the components that are designed within these iterations. Implementation has a great
effort within this phase. Implementation of iteration specific components is
performed in a thoughtful manner by satistfying all requirements that are captured
during the design activities. In the previous example we examined the design of
CourseData element during Construction Iteration C1. Now, the CourseData element
is implemented as shown in Figure 9.5 by adhering to restrictions of the design that
are previously defined as depicted in Figure 9.4. All attributes and methods for the
CourseData class are clearly implemented as shown in Figure 9.5. Now the system is
ready to be programmed for the desired activities that are previously defined in

Activate Course use case.

44 CourseData * @ sad -
B public class CourseData 1
¢ =
public 5 ccessData sad = new Sy ata
public Operator oprtr = new Operator():
= public CourseData()
{
= public DataSet getInstructorList ()
{
= public bool isDuplicate (string code)

{

m

public bool activateCourse (string code, string name, string year, string semester,
= string instructor, string instructorID)
{

= public DataSet findCourse (string code, string userType)
{

public bool updateCourse (string cCode, string code, string name, string year,

= string semester, string instructor)
{
= public bool deactivateCourse (string code)
{
= public void stopDirectoryMonitoring()
{
4 [l +

Figure 9.5 CourseData Class Implementation

179

As we mentioned before, the system is designed using Design Classes and in the
next step all of these design issues are satisfied during the implementation of classes.
All attributes and methods of our CourseData class are shown in Figure 9.5. All of
these methods have empty bodies that are ready to provide the required functionality
of the system. So all method bodies are completed based on the required
functionality that is necessary to satisfy the system integrity. As an example the first
method in CourseData class is the isDuplicate method. This method provides one of
the control mechanisms of the system that checks for the duplicate insertions on
accounts. This method is firstly created by the help of its related Design Class with
an empty body. Finally, the method implementation is completed by providing its

behavior to perform successfully.

“i§ CourseData ¥ W activateCourse(string code, string name, string year, string semes v
B public class CourseData [
{ =
public Systemlc emficcessData (

public Cpe

=] public CourseDatal

i E
= public DataSet getInstructorList ()

i
=] public bool isDuplicate (string code)

{

Command ("StoredProcedureSelectCourseCode™,

nd sglCommand = new 5gl
sad.createConnection()):
sglCommand . CommandType = CommandType.StoredProcedure;

zqgqlCommand. Parameters.Add ("@cCode™, SglD e.VarChar, 50):
2glCommand.Parameters.Add ("@courszeCode™, S5glDbType.VarChar, 50):

z2glCommand.Parameters ["EcourseCode™] .Direction = ParameterDirection.Output;
sqlCommand. Parameters ["@cCode™] . Value = code;

sad.openConnection():
sglCommand .ExecuteNonQuery () ;

if (code.Equals|((sglCommand.Parameters["@courseCode™].Value.ToString())}))

{
sad.closeConnection():
return true;

else

if
sad.closeConnection()
return false:

4 n 2

Figure 9.6 CourseData Method Implementation

180

Again some of the artifacts from previous iterations are updated with changes
implemented during iterations. Remaining work products are created newly to suit
the specific objectives of each iteration of construction phases that are listed in the
iteration plans. Complete set of work products that are created and updated within
the Construction Iteration C1 can be found in Appendix D.I, work products for
Construction Iteration C2 can be found in Appendix D.II, and work products for

Construction Iteration C3 can be found in Appendix D.III.

Again we are in a critical point that we reached to the end of Construction Phase.
The finalization of the construction phase marked the completion of all major
components and modules of the e-Reserve system. At the conclusion of the
Construction phase, we expect the product is suitable for beta testing or end user
testing. We have to make a decision to continue on Transition Phase or postpone it.
This decision is made by checking the objectives of Initial Operational Capability

Milestone that whether it is satisfied or not.

9.2 Initial Operational Capability Milestone

As it is shown in Figure 9.1, Initial Operational Capability Milestone marks the end
of the Construction Phase. It is the third important major milestone of the project
that we reached at the end of third iteration of Construction Phase. Now we are
standing on a point that e-Reserve system is ready to be handed over to the
Transition Phase. All functionality has been developed and all alpha testing has been

completed.

Evaluation criteria for the Construction Phase involves the answers of the questions
listed as follows:
e s this product release stable and mature enough to be deployed in the user
community?
e Are all the stakeholders ready for the transition into the user community?

e Are actual resource expenditures versus planned still acceptable?

If the project fails to reach this milestone for any reason then, move to the Transition

Phase may have to be postponed by one release.

181

Construction Phase Iteration C1, C2 and C3 work products are tabulated in ~ Table
9.1, Table 9.2 and Table 9.3 respectively. All the work products are given in the
Appendix D of the thesis as D.[.1-32, D.II.1-32 and D.IIL.1-32, also on CD to be
reached by:

e ~/Appendices/ AppendixD/ConstructionlterationC1

e ~/Appendices/ AppendixD/ConstructionlterationC2

e ~/Appendices/ AppendixD/ConstructionlterationC3

182

Table 9.1 Construction Iteration C1 Work Products (APPENDIX D.I)

eReserve WorkOrder 4.0

eReserve RiskList 4.0

eReserve IterationAssessment 4.0

eReserve StatusAssessment 4.0

eReserve Glossary 4.0

eReserve ChangeRequestCR 03 1.0

eReserve UseCaseModel 4.0

eReserve SoftwareRequirementsSpecifications 4.0
eReserve AnalysisModel 3.0

eReserve UseCaseRealizationSpecification 3.0

eReserve DesignModel 3.0

eReserve DesignModel 3.1

eReserve SoftwareArchitectureDocument 4.0

eReserve ImplementationModel 3.0

eReserve SoftwareArchitectureDocument 4.1
eReserve UseCaseRealizationSpecification 3.1
eReserve NavigationMap 3.0

eReserve UserInterfacePrototype 3.0

eReserve DataModel 3.0

eReserve IntegrationBuildPlan 3.0

eReserve TestSuite 3.0

eReserve DeveloperTest 3.0

eReserve TestLog 3.0

eReserve TestCase 3.0

eReserve TestSuite 3.1

eReserve TestLog 3.1

eReserve TestResults 3.0

eReserve DefectReportDF 04 1.0
eReserve TestEvaluationSummary 3.0
eReserve ProjectPhasePlan 4.0

eReserve IterationPlanC2 1.0
eReserve Build 3.0

183

Table 9.2 Construction Iteration C2 Work Products (APPENDIX D.II)

eReserve WorkOrder 5.0

eReserve RiskList 5.0

eReserve IterationAssessment 5.0

eReserve StatusAssessment 5.0

eReserve Glossary 5.0

eReserve ChangeRequestCR 04 1.0

eReserve UseCaseModel 5.0

eReserve SoftwareRequirementsSpecifications 5.0
eReserve AnalysisModel 4.0

eReserve UseCaseRealizationSpecification 4.0

eReserve DesignModel 4.0

eReserve DesignModel 4.1

eReserve SoftwareArchitectureDocument 5.0

eReserve ImplementationModel 4.0
eReserve SoftwareArchitectureDocument 5.1
eReserve UseCaseRealizationSpecification 4.1
eReserve NavigationMap 4.0

eReserve UserInterfacePrototype 4.0
eReserve DataModel 4.0

eReserve IntegrationBuildPlan 4.0

eReserve TestSuite 4.0

eReserve DeveloperTest 4.0

eReserve TestLog 4.0

eReserve TestCase 4.0

eReserve TestSuite 4.1

eReserve TestLog 4.1

eReserve TestResults 4.0

eReserve DefectReportDF 05 1.0

eReserve TestEvaluationSummary 4.0

eReserve ProjectPhasePlan 5.0

eReserve IterationPlanC3 1.0
eReserve Build 4.0

184

Table 9.3 Construction Iteration C3 Work Products (APPENDIX D.III)

eReserve WorkOrder 6.0

eReserve RiskList 6.0

eReserve IterationAssessment 6.0

eReserve StatusAssessment 6.0

eReserve Glossary 6.0

eReserve ChangeRequestCR 05 1.0

eReserve UseCaseModel 6.0

eReserve SoftwareRequirementsSpecifications 6.0
eReserve AnalysisModel 5.0

eReserve UseCaseRealizationSpecification 5.0

eReserve DesignModel 5.0

eReserve DesignModel 5.1

eReserve SoftwareArchitectureDocument 6.0
eReserve ImplementationModel 5.0

eReserve SoftwareArchitectureDocument 6.1
eReserve UseCaseRealizationSpecification 5.1
eReserve NavigationMap 5.0

eReserve UserInterfacePrototype 5.0
eReserve DataModel 5.0
eReserve IntegrationBuildPlan 5.0

eReserve TestSuite 5.0

eReserve DeveloperTest 5.0

eReserve TestLog 5.0

eReserve TestCase 5.0

eReserve TestSuite 5.1

eReserve TestLog 5.1

eReserve TestResults 5.0

eReserve DefectReportDF 06 1.0
eReserve TestEvaluationSummary 5.0

eReserve ProjectPhasePlan 6.0

eReserve IterationPlanT1 1.0
eReserve Build 5.0

185

CHAPTER 10

TRANSITION PHASE

We completed the Construction phase of our project successfully and ready for the
next and the last phase of our project. The next point in delivery processes is the
Transition phase that focuses on beta testing and deployment as mentioned in
Chapter 3. Transition Phase of our project will consist of two iterations in which
each of them includes several activities and concluded by a milestone as shown in

the Figure 10.1.

o I v &h

Transition lteration T1 Transition lteration T2 Product Release Milestone

Figure 10.1 Transition Phase

10.1 Transition Iterations

The Transition phase has two major iterations that are decided for e-Reserve project.
The activities performed in Transition Iterations of the transition phase are shown in
the Figure 10.2. The activity diagram in the Figure 10.2 and all of its activities and
tasks can be obtained from RMC and modified to adapt on any type of project.

All of the two iterations performed in Transition phases, consist of same activities
and tasks with the same work breakdown structure as already done in the previous

phases which are Elaboration and Construction.

186

!

5]

Prepare Environment for an lteration

|

"
25

Fix Defects in Components E’_I L]
5]

Develop Components N

[within Scope] E_lﬂ

Integrate and Test

I

=5 l

I:ﬂ
Ongoing Management and Support E&)’.‘I

Plan for Mext Iteration

|

Figure 10.2 Transition Phase Activity Diagram

The work breakdown structure that is depicted in Figure 10.2 contains the same
activities with Construction Phase iterations but not all of them. Within construction
phase, we mainly focus on to design and implementation of the e-Reserve system by
refining it. Also testing of the system is performed as done in elaboration phase.
Testing activities has a great importance both in elaboration and construction phases.
These testing activities provide a feedback to team members about the status,

stability and reliability of the system that is developed up to that point.

We know that transition phase iterations focuses on testing and deployment of the
current system. While performing testing activities within transition phase it is
possible to capture any new defects that could not be handled before. So there must
be some activities that are related to design and implementation again in iterations of

transition phase to fix these captured defects. However these design and

187

implementation activities will not be as detailed as in construction phase in which
there will be only small changing, if needed. So iterations for the transition phase
have to include activities that are related with design, implementation and test. As a
result we should use some of the activities that were already used in construction
phase iterations which are highly related with design, implementation and test
issues. By using RMC, we can easily see the differences and the similarities between
iterations that are performed in construction and transition phases that are depicted

in Figure 10.3.

File Edit Diagram Search Configuration Estimation Window Help

Ci~H @ ’Cankaya University Library e-Reserve Proj v] LR O R | [| = Authoring 2

a I
Tahoma 9 | L ¥ > R v| | Byw0f v io v| [Tailoring

5 RUP for eReserve } | Activity: construction_teration, RUP for eR | P -=
| o Palette [>

l [Select

= '*, Zoom
3 = =
. B3 B3 B3 =
| | Flows *
/" Control Flow
= Nodes *
= Activity Partition
—! | @ Start Node

@ End Node
Plan for Mext Iteration 12 Fork Node
‘L 3[Join Node

& Decisiovn MNode

E Refinethe Architecturs Develop Components Integrate and Test

l [within Scope]
I |

- ES

Ongoing Management and Support

m |

1l } = Geometric Shapes

?gIActivity: transition_iteration), RUP for eReser\reIEX

- + | —Palette 3
/ l v v h Select
— == &, Zoom

B3 o e -

Fix Defects in Components Develop Componentsy § Integrate and Test BHOW_S »|
A 4 l Jwithin ~cope /" Control Flow

— ‘L ‘ = Nodes |
E_I)j v E] = Activity Partition

@ Start Node
_| | @ End Node
Plan for Mext Iteration U: Fork Node
3[Join Node
2 Decision Node
.

Ongoing Management and Support Ei-;
_Dj

Fl [| == Geometric Shapes

= @ &3

Figure 10.3 Construction and Transition Phase Activity Diagrams

The top window shows a part of activity diagram that represents the activities used
in an iteration of construction phase. The bottom window shows a part of activity
diagram that represents the activities used in an iteration of transition phase. As
shown in the Figure 10.3 some of the activities within construction phase iterations
are also used in the transition phase iterations. As we mentioned before, these
activities are highly related with design, implementation and test of the system, so

188

they are accommodated again in transition phase iterations and ready for use if
needed after performing the activities that are related with fixing defects that will be

captured.

As shown in Figure 10.3 the main difference between the construction phase
iterations and the transition phase iterations is the activity called “Fix Defects in
Components” which is placed in the iterations of transition phase. This is the key
activity that forms the iterations of transition phase. Fix Defects in Components
activity completes a part of the implementation so that it can be delivered for

integration, if any defect is captured.

All tasks and activities performed in each iteration are depicted briefly in iteration
plans. The Iteration Plan (see Appendix D.III.31) for the Transition Iteration T1 is
created at the end of Construction Iteration C3. Finally, the Iteration Plan (see
Appendix E.I.7) for the Transition Iteration T2 is created at the end of Transition

Iteration T1. All of these plans can be found in related work products.

In the previous iterations of Elaboration and Construction phases, we implemented
the system access capability, user operations, course operations, material operations,
and browse operations of the e-Reserve System. These capabilities form the overall

structure of the e-Reserve system by implementing the following use cases:

e Login e Search Course

e Logout e Insert Material

e Insert User e Update Material

e Update User e Delete Material

e Delete User e View Material

e Activate Course e Search Material

e Update Course e Download Material

e Deactivate Course

Each iteration of the transition phase tries to improve the functionality of these use
cases by resolving defects. Final release of the system includes all of these use cases
that are implemented successfully without any defects at the end of the transition

phase.

189

As we mentioned in this section, the Transition phase focuses on delivering the
system into production. In other words, the principal objective of the transition
phase is to integrate the product in the user’s environment and correct the
operational version until customers provide positive acceptance tests. The transition
phase involved final user feedback and acceptance, rollout of beta testing and bug
elimination. There will be testing by both system testers and end-users, and
corresponding rework and fine tuning. Our e-Reserve system is a Web application
for the Internet. So the beta version is tested by a group of acceptance testers before

going online.

As we did in the previous phases, some of the artifacts from previous iterations are
updated with changes occurred while iterations are performed. Remaining work
products are created newly to suit the specific objectives of each iteration of
transition phases that are listed in the iteration plans. Complete set of work products
that are created and updated within the Transition Iteration T1 can be found in
Appendix E.I, and work products for Transition Iteration T2 can be found in

Appendix E.II.

Again we are in a critical point that we reached to the end of Transition Phase. The
finalization of the transition phase marked the completion of components and
modules, tests of the e-Reserve system with corrected defects. At the conclusion of
the Transition phase, we expect the product ready for release. We have to make a
decision to release the product or to postpone it. This decision is made by checking

the objectives of Product Release Milestone that whether it is satisfied or not.

10.2 Product Release Milestone

Product Release Milestone marks the end of the Transition Phase in Figure 10.1 also
the end of the project. It is the fourth important major milestone of the project that
we reached at the end of second iteration of Transition Phase. Now we are standing
on a point that e-Reserve system is ready to be released. All functionality has been
developed and all beta testing has been completed. At this point, we have to decide
if the objectives were met, and if we should start another development cycle. In

some cases this milestone may coincide with the end of the inception phase for the

190

next cycle. The Product Release Milestone is the result of the customer reviewing

and accepting the project deliverables.

Evaluation criteria for the Transition Phase involves the answers of the questions
listed as follows:
e Is the user satisfied?

e Are actual resources expenditures versus planned expenditures acceptable?

If the project fails to reach this milestone for any reason then, release of the product

may have to be postponed.

Transition Phase Iteration T1 and T2 work products are tabulated in Table 10.1 and
Table 10.2 respectively. All the work products are given in the Appendix E of the
thesis as E.I.1-7 and E.II.1-5, also on CD to be reached by:

e ~/Appendices/ AppendixE/TransitionlterationT1

e ~/Appendices/ AppendixE/TransitionlterationT2

Table 10.1 Transition Iteration T1 Work Products (APPENDIX E.I)

eReserve WorkOrder 7.0
eReserve RiskList 7.0
eReserve IterationAssessment 7.0

eReserve StatusAssessment 7.0

eReserve TestEvaluationSummary 6.0
eReserve ProjectPhasePlan 7.0
eReserve IterationPlanT2 1.0

Table 10.2 Transition Iteration T2 Work Products (APPENDIX E.II)

eReserve WorkOrder 8.0
eReserve RiskList 8.0

eReserve IterationAssessment 8.0
eReserve StatusAssessment 8.0

eReserve TestEvaluationSummary 7.0

191

CHAPTER 11

SUMMARY AND CONCLUSIONS

11.1 Summary

This thesis has described the adoption of RUP on a software development project as
a case study. Without any reliable document, developing a required system or
understanding of an existing software system can be a very wearisome and
expensive task. Consequently, some standard methodology should be applied on

software development projects to manage them properly.

After some introductory remarks in Chapterl, in Chapter 2, we started with a
literature review concerning with UML. UML plays a central role to capture
requirements, to analyze and design the system. It provides the communication
between the project team members and stakeholders that reduces the misunderstood
issues. Today UML uses version 2.0 which is the strongest version and has more
advantages than its older versions. So we concentrated on version 2.0 with its

thirteen diagrams in our study.

Chapter 3 also continues with literature review concerning with RUP. There are
totally nine disciplines defined in RUP, six of which are core disciplines and three
core supporting disciplines. These disciplines provide us to construct and manage
our project safely with high quality. All nine disciplines should be applied carefully
within a project lifecycle that uses RUP to obtain a successfully developed product

192

by the help of best practices that is suitable for a wide range of projects and

organizations.

In order to achieve determined thesis goals we have used two different IBM tools
which are IBM Rational Method Composer (RMC) and IBM Rational Software
Modeler (RSM) that are briefly explained in Chapter 4. RUP has to be applied
correctly to get a successful result from the project. At this point RMC provides
everything you need to conduct your software development project based on RUP. It
helps you to define, configure and tailor processes with its guidance in details.
During the development of the project we produce some work products which
requires some modeling work. The models that are needed in development were
produced using the RSM which is a visual modeling and design tool of IBM based
on UML 2.0.

We treated a real world problem for our software development project in Chapter 5
as a case study. Features and functioning of the existing system that is still working
in the organization is summarized to form a better understanding for the structure of
the system. Existing problems, in other words the complaints of users, of this system
is determined in details. Possible solutions are identified to reduce or eliminate these

problems according to the requests of users.

After determining the problem, project is initiated as discussed in Chapter 6. In the
first step, RMC environment is prepared by creating method plug-ins where all
content about the project is organized in this package. RMC also provides its method
plug-ins to reference other method plug-ins that will have content contributed to
extended or replaced. Then the method content is created to provide step-by-step
explanations, describing how specific development goals are achieved independent
of the placement of these steps within a development lifecycle. By creating method
configuration we are able to specify working sets of content and processes for a
specific context. In the next step, we begin to construct our capability patterns that
are used as building blocks to assemble delivery processes. These capability patterns
form four sequential phases of our project. The construction of capability patterns
concludes with defining them by identifying activities and tasks for each of these
activities. Finally in the last step of RMC preparation, delivery processes are created

that describes a complete and integrated approach for performing a specific type of

193

project. By the help of delivery processes we can easily figure out what is produced,
how it is produced and the required staffing for the entire project lifecycle. The
construction of delivery processes concludes with defining them by using the
capability patterns that we have constructed in the previous step. As a result, RMC
preparation is terminated when we obtained delivery processes including inception,
elaboration, construction, and transition phases. For UML modeling of the system
RSM environment is prepared by creating model project that holds our UML 2.0
model artifacts which will be created while the development of the project

continues.

During the development of our project we perform four sequential phases as defined
in delivery processes. They are Inception Phase, Elaboration Phase, Construction
Phase, and Transition Phase which are discussed in details respectively in Chapter 7,
Chapter 8, Chapter 9, and Chapter 10, respectively. In Inception Phase, we define
the scope of the system and establish the feasibility of the system. In Elaboration
Phase, we capture the functional requirements of the system. In Construction Phase,
we focus on completing the analysis of the system, performing the majority of the
design and the implementation of the system. Finally in the Transition Phase, we
move the system into the user’s environment. These four phases have a great
importance on managing iterative-incremental software development projects based
on RUP methodology. Each phase concludes with a milestone that checks whether
the requirements for the current phases are satisfied or not. This control mechanism
provides project managers to take decisions about the continuation of the project.
These four sequential phases are split into several iterations. Number of iterations
may vary from project to project depending on features and requirements of the
software development project. In our project Inception Phase has one iteration,
Elaboration Phase has two iterations, Construction Phase has three iterations, and
Transition Phase has two iterations. All iterations consist of several activities. Some
of these activities contain same features but some of them differentiate from each
other depending on the phases they belong. Processing activities in parallel, which
are not sequential, prevents loss of time and provides resolving possible risks
quickly. Each activity consists of one or more tasks. Tasks are the major elements

where the actual part of the job is done. Each task is concluded by a work product

194

that points the critical parts and summarizes the task. Work products are important
to complete the project successfully and achieve its objectives. So they are prepared
correctly by following unique method that will be easily understood by team
members and an appropriate format with universal practices. All these structures are
properly established and managed by the help of the RMC tool. Here the most
important thing is to produce work products properly and in time, because some of
these work products are used as input to initiate another task. So management of the
process is critical. Some work products require using UML diagrams in order to
perform desired analysis and design of the system. This problem was overcome by
using the RSM tool based on UML 2.0. Both RMC and RSM are IBM developed
and supported tools.

The work products resulted using RMC for the software development are placed as
APPENDIX B, C, D and E. Their lists are given at the end of thesis. The
documentation of appendices B-E is placed on a CD that is attached to the Thesis at
the end.

11.2 Conclusions

In this thesis we have presented how RUP is applied on a software development
project. We studied a real world problem as a case study to reflect most possible
problems encountered by project teams. Eventually, we tried to find suitable

solutions to such problems.

A successful software development means not only a reliable and secure product; it
should also be ready on the date previously agreed. So accurate scheduling is an
important issue in software development projects while managing the development
of the project. Projects that do not end on delivery dates causes budget to be
exceeded and especially credibility of the developer organization gets a loss by
customers. It is possible to prevent these major problems by applying RUP on our
software development projects. For this purpose, we use RMC tool to apply RUP
properly and efficiently. During our project, we have experienced that, RMC
provides guidelines for project team members to develop projects safely and rapidly.

Each task within an activity tells clearly which job to do at that moment. Such an

195

approach eliminates the confusion within the project team. Everybody knows their
liabilities and concentrates on it. Every work product that is produced at the end of
each task provides a safe development activity and saves time through previously
determined risks on the project. All components used in the processes ranging from
tasks to phases are identified in detailed plans based on RUP methodology. Thus,
the desired product has been approached in a safe manner at the end of each
successful iteration. All actions that are taken within our software development

project are clearly explained step by step by the help of RMC tool.

As noted earlier, we studied a small sized software development project. An overall
attitude of software groups about small sized projects is that, RUP for such projects
is not agile enough and is too rigid. At this point we have benefited from RMC tool
to show that this claim is not true. RMC includes several best practices and
templates for many kind of projects including small sized ones. We can easily add,
remove or change processes based on these templates and best practices of RMC to
adapt them into our small sized project. This feature allows us to get a smaller and
lighter process framework and validate the decisions with real work efforts. So the
desired agility was protected in terms of overall functioning of RUP methodology.
On the other hand, successfully created and updated work products, that are a
consequence of applying RUP, provide a clear and safe path in the process during
the development of our project. Our study shows that creation of work products does
not cause loss of agility. Contrarily well defined work products form a better
understanding about the system that is to be developed. Also it provides a better
communication between team members and especially stakeholders which
eliminates major problems, such as scheduling and budget problems, encountered in
software development projects. As a result, RMC supports many kind of projects
regardless of their sizes. Thus, desired agility is reached also in small projects that

use RUP.

A criticism that is often cited in the software engineering circles is the large volume
of documentation that RUP produces. At the end of the project the bulk of the
documentation is placed in the APPENDIX. That material is summarized in the

following table:

196

Table 11.1 Volume of Work Products

APPENDIX A B C D

I II I Ir | or | I II
No. of Pages 9 181 256 | 311 | 392 | 460 | 535 | 42 | 34
Total 2220

As it is seen in the above table even for such a small project hundreds even a few

thousand pages of documentation is tremendous. In order to see the real picture we

put no limitation on the number and size of the work products of the project. We,

therefore, may say that volume would not differ much for medium or even large

projects. The crucial point here is that RMC provides us the relevant templates and

even examples so that filling them up are not that hard. Moreover, some of the

information in the templates is repeated. One can, therefore, reduce the size easily

for practical limits. In fact, one can state that the original number of pages of work

products is about 684. Yet, for critical and long life application projects, the author

strongly believes that the documentation, say long, will be very vital and useful for

efficient maintenance and enhancement purposes.

197

REFERENCES

Ambler, S. W. (2005a), 4 Manager’s Introduction to The Rational Unified Process
(RUP), Prentice Hall.

Ambler, S. W. (2005b), The Elements of UML 2.0 Style, Cambridge University
Press.

Ambler, S. W., J. Nalbone and M. Vizdos (2005), Enterprise Unified Process:
Extending the Rational Unified Process, Prentice Hall.

Aniszezyk, C. and Gallardo, D. (2007), Get started with the Eclipse Platform, IBM
Corporation Software Group, New York.

Bell, D. (2003), UML basics: An introduction to the Unified Modeling Language,
The Rational Edge.

Boggs, W. and M. Boggs (2002), Mastering UML with Rational Rose, SYBEX.

Booch, G., J. Rumbaugh and 1. Jacobson (2005), The Unified Modeling Language
User Guide, Addison Wesley.

Brown, A.W. (2008), MDA Redux: Practical Realization of Model Driven
Architecture, ACM/IEEE International Conference on Composition Based Software
Systems (ICCBSS) 2008, Washington, DC.

Cernosek, G. (2004), Next-generation model-driven development, IBM Corporation
Software Group, New York.

Cernosek, G. and E. Naiburg (2004), 4 technical discussion of software modeling:
The Value of Modeling, IBM Corporation Software Group, New York.

Erickson, M. and Mclntyre, A. (2001), What is Eclipse, and how do I use it?, IBM
Corporation Software Group.

R1

Fowler, M. (2003), UML Distilled: A Brief Guide to the Standard Object Modeling
Language, Third Edition, Addison Wesley.

Gornik, D. (2001), IBM Rational Unified Process: Best Practices for Software
Development Teams, IBM Corporation Software Group, New York.

Hamilton, K. and R. Miles (2006), Learning UML 2.0, O’Reilly.

Haumer, P. (2005), IBM Rational Method Composer: Part 1: Key concepts, The
Rational Edge.

Hunt, J. (2003), Guide to the Unified Process featuring UML, Java and Design
Patterns, Second Edition, Springer.

IBM (June 2006a), On Demand Business: IBM Rational Method Composer, IBM
Corporation Software Group, New York.

IBM (December 2006b), On Demand Business: IBM Rational Method Composer,
IBM Corporation Software Group, New York.

IBM (2007a), On Demand Business: Supporting Agile Development, 1BM
Corporation Software Group, New York.

IBM (2007b), Rational Unified Process, RAH11027usen-00.

IBM Rational University (2004), Essentials of Visual Modeling with UML 2.0,
IBM Corporation, California.

IBM Redbooks (2007), The IBM Rational Unified Process for System z, Vervante.

Kroll, P. and B. Maclsaac (2000), Agility and Discipline Made Easy: Practices
from OpenUP and RUP, Addison Wesley.

Kroll, P. and W. Royce (2005), Key principles for business-driven development,
The Rational Edge.

Kruchten, P. (2003), The Rational Unified Process: An Introduction, Third Edition,
Addison Wesley.

Mittal, K. (2005), Introducing Rational Software Modeler: Gain true application
visualization, IBM Developer Works.

Pilone, D. and N. Pitman (2005), UML 2.0 in a Nutshell, O'Reilly.

R2

Selic, B. (2005), Unified Modeling Language version 2.0, IBM Developer Works.

Shuja, A. K. and J. Krebs (2008), /BM Rational Unified Process Reference and
Certification Guide, IBM Press.

Smith, B. (2006), Model Structure Guidelines For Rational Software Modeler,
Rational Systems Developer, and Rational Software Architect (“Traditional RUP”
Orientation), IBM Corporation Software Group.

Smith, W. T. (2008), IBM Rational Architecture Management software model
structure guidelines: Part 1. Fundamentals, IBM Corporation Software Group.

Wessberg, M. (2005), Introducing the IBM Rational Unified Process essentials by
analogy, IBM Developer Works.

West, D. (2002), Planning a Project with the Rational Unified Process, 1BM
Corporation Software Group.

http://library.cankava.edu.tr/faalivetraporu.htm

R3

APPENDIX A

RUP DISCIPLINE WORKFLOWS

The capability patterns can be in the form of discipline workflows. These discipline
workflows are captured from the RUP poster [e.g. IBM, 2007b] and more details can
be found in RMC.

1. PROJECT MANAGEMENT

1.1 Conceive New Project

1.1.1 Identify and Assess Risks
1.1.2 Develop Business Case
1.1.3 Initiate Project

1.1.4 Project Approval Review

1.2 Evaluate Project Scope and Risk
1.2.1 Identify and Assess Risks
1.2.2 Develop Business Case

1.3 Plan the Project
1.3.1 Develop Measurement Plan
1.3.2 Develop Risk Management Plan
1.3.3 Develop Product Acceptance Plan
1.3.4 Develop Problem Resolution Plan
1.3.5 Develop Quality Assurance Plan
1.3.6 Define Project Organization and Staffing
1.3.7 Define Monitor and Control Processes
1.3.8 Plan Phases and Iterations
1.3.9 Compile Software Development Plan
1.3.10 Project Planning Review

1.4 Plan Reminder of Initial Iteration
1.4.1 Develop Iteration Plan
1.42 Develop Business Case
1.4.3 Iteration Plan Review

Al

1.5 Monitor & Control Project
1.5.1 Schedule and Assign Work
1.5.2 Monitor Project Status
1.5.3 Report Status
1.5.4 Handle Exceptions and Problems
1.5.5 Project Review Authority (PRA) Project Review
1.5.6 Organize Review
1.5.7 Conduct Review

1.6 Manage Iteration
1.6.1 Acquire Staff
1.6.2 Initiate Iteration
1.6.3 Iteration Evaluation Criteria Review
1.6.4 Identify and Assess Risks
1.6.5 Assess Iteration
1.6.6 Iteration Acceptance Review

1.7 Reevaluate Project Scope and Risk
1.7.1 Identify and Assess Risks
1.7.2 Develop Business Case

1.8 Plan for Next Iteration
1.8.1 Develop Iteration Plan
1.8.2 Develop Business Case
1.8.3 Iteration Plan Review

1.9 Refine the Development Plan
1.9.1 Develop Measurement Plan
1.9.2 Develop Risk Management Plan
1.9.3 Develop Product Acceptance Plan
1.9.4 Develop Problem Resolution Plan
1.9.5 Develop Quality Assurance Plan
1.9.6 Define Project Organization and Staffing
1.9.7 Define Monitor and Control Processes
1.9.8 Plan Phases and Iterations
1.9.9 Compile Software Development Plan
1.9.10 Project Planning Review

1.10 Close Out Phase
1.10.1 Prepare for Phase Close-Out
1.10.2 Lifecycle Milestone Review

1.11 Close Out Project

1.11.1 Prepare for Project Close-Cut
1.11.2 Project Acceptance Review

A2

2. BUSINESS MODELING

2.1 Assess Business Status
2.1.1 Assess Target Organization
2.1.2 Set and Adjust Objectives
2.1.3 Identify Business Goals and KPIs
2.1.4 Business Architectural Analysis
2.1.5 Capture a Common Business Vocabulary
2.1.6 Maintain Business Rules

2.2 Describe Current Business
2.2.1 Assess Target Organization
2.2.2 Set and Adjust Objectives
2.2.3 Identify Business Goals and KPIs
2.2.4 Find Business Actors and Use Cases
2.2.5 Business Architectural Analysis
2.2.6 Capture a Common Business Vocabulary
2.2.7 Maintain Business Rules
2.2.8 Functional Area Analysis

2.3 Define Business
2.3.1 Identify Business Processes
2.3.2 Refine Business Process Definitions
2.3.3 Design Business Process Realizations
2.3.4 Define Business Operations
2.3.5 Refine Roles and Responsibilities

2.4 Explore Process Automation
2.4.1 Set and Adjust Objectives
2.4.2 Define Automation Requirements
2.4.3 Construct Business Architectural
2.44 Proof-of-Concept

2.5 Develop Domain Model
2.5.1 Capture a Common Business Vocabulary
2.5.2 Maintain Business Rules
2.5.3 Business Architecture Analysis
2.5.4 Detail a Business Entity
2.5.5 Review the Business Analysis Model

3. REQUIREMENTS

3.1 Analyze the Problem
3.1.1 Capture a Common Vocabulary
3.1.2 Find Actors and Use Cases
3.1.3 Develop Vision
3.1.4 Develop Requirements Management Plan

A3

3.2 Understand Stakeholder Needs
3.2.1 Capture a Common Vocabulary
3.2.2 Elicit Stakeholder Requests
3.2.3 Develop Vision
3.2.4 Find Actors and Use Cases
3.2.5 Develop Supplementary Specification
3.2.6 Manage Dependencies

33 Define the System
3.3.1 Develop Vision
3.3.2 Capture a Common Vocabulary
3.3.3 Find Actors and Use Cases
3.3.4 Develop Supplementary Specifications
3.3.5 Manage Dependencies

3.4 Manage the Scope of the System
3.4.1 Develop Vision
3.4.2 Manage Dependencies
3.4.3 Prioritize Use Cases

3.5 Refine the System Definition
3.5.1 Detail a Use Case
3.5.2 Develop Supplementary Specifications
3.5.3 Detail the Software Requirements

3.6 Manage Changing Requirements
3.6.1 Structure the Use-Case Model
3.6.2 Manage Dependencies
3.6.3 Review Requirements

. ANALYSIS & DESIGN

4.1 Perform Architectural Synthesis
4.1.1 Define a System Context
4.1.2 Architectural Analysis
4.1.3 Construct Architectural Proof-of-Concept
4.1.4 Assess Viability of Architectural Proof-of-Concept

4.2 Define a Candidate Architecture
4.2.1 Define a System Context
4.2.2 Architectural Analysis
4.2.3 Use-Case Analysis
424 Operation Analysis
4.2.5 Identify Security Patterns

4.3 Service Identification
4.3.1 Domain Decomposition
4.3.2 Goal-Service Modeling

A4

S.

4.3.3 Existing Asset Analysis

4.4 Refine the Architecture
4.4.1 Identify Design Mechanisms
4.4.2 Identify Design Elements
4.43 Operation Analysis
4.4.4 Incorporate Existing Design Elements
4.4.5 Structure the Implementation Model
4.4.6 Describe the Run-time Architecture
4.47 Describe Distribution
4.4.8 Review the Architecture

4.5 Analyze Behavior
4.5.1 Identify Design Elements
4.5.2 Use-Case Analysis
4.5.3 Operation Analysis
4.5.4 Design the User Interface
4.5.5 Prototype the User Interface
4.5.6 Review the Design

4.6 Design Components
4.6.1 Use-Case Design
4.6.2 Subsystem Design
4.6.3 Operation Design
4.6.4 Class Design
4.6.5 Define Testability Elements
4.6.6 Design Testability Elements
4.6.7 Capsule Design
4.6.8 Review the Design

4.7 Design the Database
4.7.1 Class Design
4.7.2 Specify Data Migration
4.7.3 Database Design
4.7.4 Review the Design

4.8 Service Specification
4.8.1 Perform Service Specification
4.8.2 Perform Subsystem Analysis
4.8.3 Perform Component Specification

IMPLEMENTATION

5.1 Structure the Implementation Model
5.1.1 Structure the Implementation Model

5.2 Plan the Integration
5.2.1 Plan System Integration

A5

5.3 Service Realization
5.3.1 Realize Decisions

5.4 Implement Components
5.4.1 Plan Subsystem Integration
5.4.2 Implement Design Elements
5.4.3 Analyze Runtime Behavior
5.4.4 Implement Testability Elements
5.4.5 Implement Developer Test
5.4.6 Execute Developer Tests
5.4.7 Review Code

5.5 Integrate Each Subsystem
5.5.1 Implement Developer Test
5.5.2 Execute Developer Test
5.5.3 Integrate Subsystem

5.6 Integrate the System
5.6.1 Integrate System

. TEST

6.1 Define Evaluation Mission
6.1.1 Identify Test Motivators
6.1.2 Agree on the Mission
6.1.3 Identify Targets of Test
6.1.4 Define Assessment and Traceability Needs
6.1.5 Identify Test Ideas
6.1.6 Define Test Approach

6.2 Verify Test Approach
6.2.1 Define Test Environment Configurations
6.2.2 Identify Testability Mechanisms
6.2.3 Define Testability Elements
6.2.4 Define Test Details
6.2.5 Implement Test
6.2.6 Implement Test Suite
6.2.7 Obtain Testability Commitment

6.3 Validate Build Stability
6.3.1 Define Test Details
6.3.2 Implement Test
6.3.3 Execute Test Suite
6.3.4 Analyze Test Failure
6.3.5 Determine Test Results
6.3.6 Assess and Advocate Quality

A6

6.4 Test and Evaluate
6.4.1 Define Test Details
6.4.2 Implement Test
6.4.3 Implement Test Suite
6.4.4 Execute Test Suite
6.4.5 Analyze Test Failure
6.4.6 Structure the Test Implementation
6.4.7 Identify Test Ideas
6.4.8 Determine Test Results

6.5 Achieve Acceptable Mission
6.5.1 Assess and Improve Test Effort
6.5.2 Assess and Advocate Quality
6.5.3 Determine Test Results

6.6 Improve Test Assets
6.6.1 Prepare Guidelines for the Project
6.6.2 Define Test Approach
6.6.3 Define Testability Elements
6.6.4 Structure the Test Implementation
6.6.5 Identify Test Ideas
6.6.6 Define Test Details
6.6.7 Define Assessment and Traceability Needs
6.6.8 Implement Test
6.6.9 Implement Test Suite

7. DEPLOYMENT

7.1 Plan Deployment
7.1.1 Develop Deployment Plan
7.1.2 Define Bill of Materials

7.2 Develop Supporting Material
7.2.1 Develop Training Material
7.2.2 Develop Support Material
7.2.3 Create Product Artwork
7.2.4 Develop Installation Work Products

7.3 Manage Acceptance Test
7.3.1 Manage Acceptance Test
7.3.2 Support Development
7.3.3 Execute Test Suite
7.3.4 Determine Test Results

7.4 Produce Deployment Unit

7.4.1 Write Release Notes
7.4.2 Create Deployment Unit

A7

7.5 Beta Test Product
7.5.1 Manage Beta Test

7.6 Manage Acceptance Test for Custom Install
7.6.1 Manage Acceptance Test
7.6.2 Support Development
7.6.3 Execute Test Suite
7.6.4 Determine Test Results

7.7 Package Product
7.7.1 Release to Manufacturing
7.7.2 Verify Manufactured Product

7.8 Provide Access to Download Site
7.8.1 Provide Access to Download Site

. CONFIGURATION & CHANGE MANAGEMENT

8.1 Manage Change Requests
8.1.1 Submit Change Request
8.1.2 Update Change Request
8.1.3 Review Change Request
8.1.4 Confirm Duplicate or Reject CR
8.1.5 Schedule and Assign Work
8.1.6 Verify Changes in Build

8.2 Plan Project Configuration & Change Control
8.2.1 Establish Configuration Management (CM) Policies
8.2.2 Write Configuration Management (CM) Plan
8.2.3 Establish Change Control Process

8.3 Create Project Configuration Management (CM) Environments
8.3.1 Set Up Configuration Management (CM) Environment
8.3.2 Create Integration Workspaces

8.4 Monitor & Report Configuration Status
8.4.1 Report on Configuration Status
8.4.2 Perform Configuration Audit

8.5 Change & Deliver Configuration Items
8.5.1 Create Development Workspace
8.5.2 Make Changes
8.5.3 Deliver Changes
8.5.4 Update Workspace
8.5.5 Create Baseline
8.5.6 Promote Baselines

A8

9.

8.6 Manage Baselines & Releases

8.6.1 Create Deployment Unit

8.6.2 Create Baselines

8.6.3 Promote Baselines
ENVIRONMENT

9.1 Prepare Environment for Project

9.1.1
9.12
9.13
9.14
9.1.5

Tailor the Process for the Project
Develop Development Case
Prepare Guidelines for the Project
Prepare Templates for the Project
Select and Acquire Tools

9.2 Prepare Environment for an Iteration

9.2.1
922
923
924
925
9.2.6
9.2.7

Develop Development Case

Prepare Guidelines for the Project
Develop Manual Styleguide

Prepare Templates for the Project
Launch Development Process

Set Up Tools

Verity Tool Configuration & Installation

9.3 Support Environment for an Iteration

9.3.1

Support Development

A9

B.I.1
B.1.2
B.I.3
B.1.4
B.I.5
B.I.6
B.I.7
B.I.8
B.I.9
B.I.10
B.I.11
B.I.12
B.I.13
B.1.14
B.I.15
B.I.16
B.I.17
B.I.18
B.I.19
B.1.20
B.I.21
B.1.22
B.1.23
B.1.24
B.I.25
B.1.26

APPENDIX B

INCEPTION PHASE WORK PRODUCTS

Inception Iteration I1 Work Products (B.I)

eReserve RiskList 1.0

eReserve BusinessCase 1.0

eReserve SoftwareDevelopmentPlan 1.0
eReserve ReviewRecord 11 11 08 1.0
eReserve DevelopmentCase 1.0

eReserve ConfigurationManagementPlan 1.0
eReserve SoftwareDevelopmentPlan 1.1
eReserve ProjectPhasePlan 1.0

eReserve IterationPlanll 1.0

eReserve WorkOrder 1.0

eReserve StatusAssessment 1.0

eReserve Vision 1.0

eReserve SoftwareArchitectureDocument 1.0
eReserve SoftwareRequirementsSpecifications 1.0
eReserve Vision 1.1

eReserve Glossary 1.0

eReserve UseCaseModel 1.0

eReserve SupplementarySpecification 1.0
eReserve DeploymentModel 1.0

eReserve SoftwareArchitectureDocument 1.1
eReserve ReferenceArchitecture 1.0
eReserve TestStrategy 1.0

eReserve WorkOrder 1.1

eReserve IterationAssessment 1.0

eReserve ProjectPhasePlan 1.1

eReserve IterationPlanE1 1.0

All of the Inception Iteration I1 work products can be found in the CD with detailed
documentation and can be accessed separately as follows:

~/Appendices/AppendixB/Inceptionlterationl 1

Samples and detailed explanations for work products can be found in RMC.

Al0

C.I1

Cl2

C.I3

C.l4

C.L5

C.L6

C.L17

C.L8

C.I19

C.L10
C.I.11
C.L12
C.I.13
C.L14
C.I.15
C.L16
C.I.17
C.I.18
C.I.19
C.120
C.I.21
C.122
C.I1.23
C.L24
C.I1.25
C.L26
C.1.27
C.1.28
C.I1.29
C.130
C.I1.31

APPENDIX C

ELABORATION PHASE WORK PRODUCTS

Elaboration Iteration E1 Work Products (C.I)

eReserve SoftwareDevelopmentPlan 2.0
eReserve IntegrationBuildPlan 1.0

eReserve WorkOrder 2.0

eReserve RiskList 2.0

eReserve IterationAssessment 2.0

eReserve StatusAssessment 2.0

eReserve UseCaseModel 2.0

eReserve Glossary 2.0

eReserve ChangeRequestCR 01 1.0
eReserve DevelopmentInfrastructure 1.0
eReserve UseCaseModel 2.1

eReserve SoftwareRequirementsSpecifications 2.0
eReserve SupplementarySpecification 2.0
eReserve SoftwareArchitectureDocument 2.0
eReserve AnalysisModel 1.0

eReserve UseCaseRealizationSpecification 1.0
eReserve DesignModel 1.0

eReserve DesignModel 1.1

eReserve DesignModel 1.2

eReserve SoftwareArchitectureDocument 2.1
eReserve ImplementationModel 1.0

eReserve SoftwareArchitectureDocument 2.2
eReserve UseCaseRealizationSpecification 1.1
eReserve NavigationMap 1.0

eReserve UserInterfacePrototype 1.0
eReserve DataModel 1.0

eReserve IntegrationBuildPlan 1.1

eReserve TestSuite 1.0

eReserve DeveloperTest 1.0

eReserve TestLog 1.0

eReserve TestCase 1.0

All

C.1.32 eReserve TestSuite 1.1

C.I1.33 eReserve TestLog 1.1

C.1.34 eReserve TestResults 1.0

C.1.35 eReserve DefectReportDF 01 1.0
C.1.36 eReserve TestEvaluationSummary 1.0
C.1.37 eReserve ProjectPhasePlan 2.0
C.1.38 eReserve IterationPlanE2 1.0

C.1.39 eReserve Build 1.0

All of the Elaboration Iteration E1 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixC/ElaborationlterationE1

Samples and detailed explanations for work products can be found in RMC.

II1. Elaboration Iteration E2 Work Products (C.II)

C.IL1 eReserve SoftwareDevelopmentPlan 3.0
C.IL.2 eReserve WorkOrder 3.0

C.IL.3 eReserve RiskList 3.0

C.I.4 eReserve IterationAssessment 3.0

C.IL5 eReserve StatusAssessment 3.0

C.I1.6 eReserve Glossary 3.0

C.IL7 eReserve ChangeRequestCR 02 1.0

C.II.8 eReserve UseCaseModel 3.0

C.IL9 eReserve SoftwareRequirementsSpecifications 3.0
C.II.10 eReserve SupplementarySpecification 3.0
C.IL11 eReserve AnalysisModel 2.0

C.II.12 eReserve UseCaseRealizationSpecification 2.0
C.IL.13 eReserve DesignModel 2.0

C.I1.14 eReserve DesignModel 2.1

C.IL.15 eReserve SoftwareArchitectureDocument 3.0
C.II.16 eReserve ImplementationModel 2.0

C.I1.17 eReserve SoftwareArchitectureDocument 3.1
C.II.18 eReserve UseCaseRealizationSpecification 2.1
C.I.19 eReserve NavigationMap 2.0

C.I1.20 eReserve UserInterfacePrototype 2.0

C.IL.21 eReserve DataModel 2.0

C.I1.22 eReserve IntegrationBuildPlan 2.0

C.IL.23 eReserve TestSuite 2.0

C.I1.24 eReserve DeveloperTest 2.0

C.IL.25 eReserve TestLog 2.0

C.I1.26 eReserve TestCase 2.0

C.I1.27 eReserve TestSuite 2.1

C.I1.28 eReserve TestLog 2.1

C.IL29 eReserve TestResults 2.0

C.I1.30 eReserve DefectReportDF 02 1.0

C.I1.31 eReserve DefectReportDF 03 1.0

Al12

C.I1.32 eReserve TestEvaluationSummary 2.0
C.I1.33 eReserve ProjectPhasePlan 3.0

C.I1.34 eReserve IterationPlanC1 1.0

C.I1.35 eReserve Build 2.0

All of the Elaboration Iteration E2 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixC/ElaborationlterationE2

Samples and detailed explanations for work products can be found in RMC.

Al13

I

D.I.1

D.I.2

D.I3

D.I.4

D.I.5

D.IL.6

D.I.7

D.IL8

D.I.9

D.I.10
D.I.11
D.I.12
D.I.13
D.I.14
D.I.15
D.I.16
D.I.17
D.I.18
D.I.19
D.I1.20
D.I.21
D.I1.22
D.I.23
D.I1.24
D.I.25
D.I1.26
D.I1.27
D.I1.28
D.I1.29
D.1.30
D.I.31

APPENDIX D

CONSTRUCTION PHASE WORK PRODUCTS

Construction Iteration C1 Work Products (D.I)

eReserve WorkOrder 4.0

eReserve RiskList 4.0

eReserve IterationAssessment 4.0

eReserve StatusAssessment 4.0

eReserve Glossary 4.0

eReserve ChangeRequestCR 03 1.0
eReserve UseCaseModel 4.0

eReserve SoftwareRequirementsSpecifications 4.0
eReserve AnalysisModel 3.0

eReserve UseCaseRealizationSpecification 3.0
eReserve DesignModel 3.0

eReserve DesignModel 3.1

eReserve SoftwareArchitectureDocument 4.0
eReserve ImplementationModel 3.0

eReserve SoftwareArchitectureDocument 4.1
eReserve UseCaseRealizationSpecification 3.1
eReserve NavigationMap 3.0

eReserve UserInterfacePrototype 3.0
eReserve DataModel 3.0

eReserve IntegrationBuildPlan 3.0

eReserve TestSuite 3.0

eReserve DeveloperTest 3.0

eReserve TestLog 3.0

eReserve TestCase 3.0

eReserve TestSuite 3.1

eReserve TestLog 3.1

eReserve TestResults 3.0

eReserve DefectReportDF 04 1.0

eReserve TestEvaluationSummary 3.0
eReserve ProjectPhasePlan 4.0

eReserve IterationPlanC2 1.0

Al4

D.I.32 eReserve Build 3.0
All of the Construction Iteration C1 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixD/ConstructionlterationC1

Samples and detailed explanations for work products can be found in RMC.

II. Construction Iteration C2 Work Products (D.II)

D.II.1 eReserve WorkOrder 5.0

D.I1.2 eReserve RiskList 5.0

D.II.3 eReserve IterationAssessment 5.0

D.II.4 eReserve StatusAssessment 5.0

D.IL.5 eReserve Glossary 5.0

D.I.6 eReserve ChangeRequestCR 04 1.0

D.II.7 eReserve UseCaseModel 5.0

D.IL.8 eReserve SoftwareRequirementsSpecifications 5.0
D.II.9 eReserve AnalysisModel 4.0

D.IL.10 eReserve UseCaseRealizationSpecification 4.0
D.II.11 eReserve DesignModel 4.0

D.IL.12 eReserve DesignModel 4.1

D.II.13 eReserve SoftwareArchitectureDocument 5.0
D.II.14 eReserve ImplementationModel 4.0

D.II.15 eReserve SoftwareArchitectureDocument 5.1
D.II.16 eReserve UseCaseRealizationSpecification 4.1
D.II.17 eReserve NavigationMap 4.0

D.II.18 eReserve UserlnterfacePrototype 4.0

D.II.19 eReserve DataModel 4.0

D.I1.20 eReserve IntegrationBuildPlan 4.0

D.I1.21 eReserve TestSuite 4.0

D.I1.22 eReserve DeveloperTest 4.0

D.I1.23 eReserve TestLog 4.0

D.I1.24 eReserve TestCase 4.0

D.I1.25 eReserve TestSuite 4.1

D.I1.26 eReserve TestLog 4.1

D.I1.27 eReserve TestResults 4.0

D.I1.28 eReserve DefectReportDF 05 1.0

D.I1.29 eReserve TestEvaluationSummary 4.0
D.I1.30 eReserve ProjectPhasePlan 5.0

D.II.31 eReserve IterationPlanC3 1.0

D.I1.32 eReserve Build 4.0

All of the Construction Iteration C2 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixD/ConstructionlterationC2

Samples and detailed explanations for work products can be found in RMC.

Al5

III. Construction Iteration C3 Work Products (D.III)

D.III.1 eReserve WorkOrder 6.0

D.II.2 eReserve RiskList 6.0

D.III.3 eReserve IterationAssessment 6.0

D.II1.4 eReserve StatusAssessment 6.0

D.IL5 eReserve Glossary 6.0

D.III.6 eReserve ChangeRequestCR 05 1.0

D.IIL.7 eReserve UseCaseModel 6.0

D.III.8 eReserve SoftwareRequirementsSpecifications 6.0
D.II1.9 eReserve AnalysisModel 5.0

D.II.10 eReserve UseCaseRealizationSpecification 5.0
D.IIIL.11 eReserve DesignModel 5.0

D.III.12 eReserve DesignModel 5.1

D.III.13 eReserve SoftwareArchitectureDocument 6.0
D.IIL.14 eReserve ImplementationModel 5.0

D.III.15 eReserve SoftwareArchitectureDocument 6.1
D.III.16 eReserve UseCaseRealizationSpecification 5.1
D.III.17 eReserve NavigationMap 5.0

D.III.18 eReserve UserlnterfacePrototype 5.0

D.III.19 eReserve DataModel 5.0

D.IIL.20 eReserve IntegrationBuildPlan 5.0

D.III.21 eReserve TestSuite 5.0

D.II1.22 eReserve DeveloperTest 5.0

D.I1.23 eReserve TestLog 5.0

D.II1.24 eReserve TestCase 5.0

D.IIL.25 eReserve TestSuite 5.1

D.II1.26 eReserve TestLog 5.1

D.II1.27 eReserve TestResults 5.0

D.II1.28 eReserve DefectReportDF 06 1.0

D.II1.29 eReserve TestEvaluationSummary 5.0
D.II1.30 eReserve ProjectPhasePlan 6.0

D.III.31 eReserve IterationPlanT1 1.0

D.II1.32 eReserve Build 5.0

All of the Construction Iteration C3 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

o ~/Appendices/AppendixD/ConstructionlterationC3

Samples and detailed explanations for work products can be found in RMC.

Ale6

APPENDIX E

TRANSITION PHASE WORK PRODUCTS

L Transition Iteration T1 Work Products (E.I)

E.I.1 eReserve WorkOrder 7.0

E.I2 eReserve RiskList 7.0

E.I.3 eReserve IterationAssessment 7.0
E.I4 eReserve StatusAssessment 7.0

E.I.5 eReserve TestEvaluationSummary 6.0
E.I6 eReserve ProjectPhasePlan 7.0

E.I.7 eReserve IterationPlanT2 1.0

All of the Transition Iteration T1 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixE/TransitionlterationT1

Samples and detailed explanations for work products can be found in RMC.

II. Transition Iteration T2 Work Products (E.II)

E.Il.1 eReserve WorkOrder 8.0

E.Il.2 eReserve RiskList 8.0

E.IL.3 eReserve IterationAssessment 8.0
E.I.4 eReserve StatusAssessment 8.0
E.IL5 eReserve TestEvaluationSummary 7.0

All of the Transition Iteration T2 work products can be found in the CD with
detailed documentation and can be accessed separately as follows:

e ~/Appendices/AppendixE/TransitionlterationT2

Samples and detailed explanations for work products can be found in RMC.

Al17

APPENDIX F

IBM RATIONAL TOOL PLUG-INS

All RMC and RSM materials that are used in our software development project can
be found in the CD as in the form of plug-ins with details and can be accessed
separately as follows:

e ~/Appendices/AppendixF/RMC
e ~/Appendices/AppendixF/RSM

These plug-ins can be easily integrated into RMC and RSM tools to reach the
content.

Al18

