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(Communicated by N. Elezović)

Abstract. The main objective of this paper is a further study of discrete Muckenhoupt and
Gehring weights. We first restate monotonicity properties of Muckenhoupt and Gehring classes
in terms of the corresponding norms. In addition, we establish some norm bounds for Muck-
enhoupt and Gehring weights. Next, we give a simple characterization of the weight belonging
to both Muckenhoupt and Gehring class. Finally, we show that the transition functions, aris-
ing from inclusion problems between Muckenhoupt and Gehring classes, are decreasing. As
an application, some particular examples of Muckenhoupt and Gehring power weights are also
considered.

1. Introduction

In 1972, Muckenhoupt [27], established a characterization of Muckenhoupt Ap

class of weights in connection with the boundedness of the Hardy-Littlewood maximal
operator in the space Lp

w(R+) , p > 1, where w is the corresponding weight. An-
other important class of weights, the Gehring class Gq , q > 1, has been introduced by
Gehring [14] in connection with local integrability properties of the gradient of quasi-
conformal mappings. Due to the importance of these two classes in mathematical and
harmonic analysis, their structure has been studied by numerous authors, and various
results regarding the relationship between them and their applications have been estab-
lished (see [2, 3, 9, 10, 12, 13, 14, 16, 17, 19, 20, 22, 23, 25, 27, 29, 30, 36] and the
references therein).

Nowadays, the study of discrete analogues in harmonic analysis is quite active
field of research. For example, the study of regularity and boundedness of discrete
operators on l p , higher summability theorems, as well as the study of structure of
discrete Muckenhoupt and Gehring classes are research topics of several authors (see
[4, 5, 6, 7, 8, 24, 31, 32, 34, 37] and the references therein). Although some results from
Euclidean harmonic analysis admit an obvious variant in the discrete setting, others do
not. The main objective of this paper is a study of some new fundamental properties of
discrete Muckenhoupt and Gehring weights.

Throughout this paper, N stands for a set of positive integers i.e. N = {1,2, . . . ,n} ,
while I is an interval in N . By interval I , we mean finite subset of N consisting of
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consecutive integers, i.e. I = {a + 1,a + 2, . . . ,a + n} , a ∈ N∪{0} , n ∈ N , and |I|
stands for its cardinality. A discrete weight on N is a sequence u = {u(n)}∞

n=1 of
nonnegative real numbers.

The weight u belongs to a discrete Muckenhoupt class Ap , p > 1, if there exist a
constant C > 1 such that the inequality

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� C (1)

holds for every interval I ⊂ N . In addition, Ap(C) is a subclass of Ap consisting
of weights u satisfying (1) for a fixed constant C > 1. The Ap -norm of weight u is
defined by

Ap(u) = sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

< ∞.

Due to the Hölder inequality, it follows that Ap(u) � 1. Moreover, if u ∈ Ap(C) , then
Ap(u) �C . A discrete weight u is said to belong to a discrete Muckenhoupt class A1 ,
if there exists a constant A > 1 such that the inequality

1
|I| ∑k∈I

u(k) � A inf
k∈I

u(k) (2)

holds for every interval I ⊂N . Similarly, A1(A) is a subclass of A1 satisfying (2) with
a fixed constant A > 1. The A1 -norm of u ∈ A1 is defined by

A1(u) = sup
I⊂N

1
|I|
(

∑k∈I u(k)
infk∈I u(k)

)
< ∞.

A class A∞ consists of all weights u such that their A∞(u)-norm is finite, i.e.

A∞(u) = sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
exp

1
|I| ∑k∈I

log
1

u(k)

)
< ∞.

It should be noticed here that limp→∞ Ap(u) = A∞(u) and limp→1+ Ap(u) = A1(u) ,
due to the well-known limit value limx→0

(
1+ x)1/x = e .

Sometimes it is convenient to consider a symmetric form equivalent to (2). Namely,
a discrete weight u belongs to the discrete Muckenhoupt class A2(A) , A > 1, if the
inequality

∑
k∈I

u(k)∑
k∈I

u−1(k) � A |I|2 (3)

holds for every subinterval I ⊂ N . This class has been used in harmonic analysis by
several authors. For example, Arińo and Muckenhoupt [1], proved that if u is nonin-
creasing and satisfies (3), then the space d(u−q∗/q,q∗) is the dual space of the classical
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discrete Lorentz space

d(v,q) =

⎧⎨
⎩x : ‖x‖v,q =

(
∞

∑
n=1

|x∗(n)|q u(n)

)1/q

< ∞

⎫⎬
⎭ ,

where x∗(n) is the nonincreasing rearrangement of |x(n)| and q∗ is the conjugate of
q. In [28], Pavlov gave a full description of all complete interpolating sequences on the
real line by using the integral form of (3). In particular, he proved that the real sequence
λn is a complete interpolating sequence if and only if the function w = |F(x+ iy)|2 ,
x,y ∈ R , satisfies the Muckenhoupt condition∫

I
w(t)dt

∫
I
w−1(t)dt � A |I|2 , (4)

for some constant A > 0, y �= 0, and for all intervals I ⊂ N , where

F(z) = lim
R→∞ ∏

|λn|<R

(
1− z

λn

)
.

Further, Lyubarskii and Seip [21], showed that condition (4) can be replaced by the
corresponding discrete version (3) and proved that the real sequence λn is a complete
interpolating sequence if and only if there is a relatively dense subsequence λnk such

that the numbers d(k) =
∣∣F ′

(λnk)
∣∣2 satisfy the discrete Muckenhoupt condition

∑
k∈I

d(k)∑
k∈I

d−1(k) � A |I|2 , (5)

for some constant A > 0 and for all intervals I ⊂ N . It seems that checking the Muck-
enhoupt condition (4) for a function F given by an infinite product is quite hard. At the
first sight, condition (5) is easier to verify since it involves only countably many sets
I instead of all finite intervals. In addition, in the case of the Lorentz sequence spaces
d(v,q) one can have a better feeling of the behavior of multiplication, composition op-
erators and inducing sequences, than in the case of the classical Lorentz spaces Lp,q as
well, as in Banach spaces (see, e. g. [18]).

These observations lead us to study the structure of the discrete Muckenhoupt
classes in [32], where we have proved that if v is a nonincreasing sequence satisfying
(2), then for p ∈ [1, C/(C−1)) the inequality

1
|I| ∑k∈I

vp(k) � A

(
1
|I| ∑k∈I

v(k)

)p

(6)

holds for every interval I ⊂ N . Relation (6) shows that any Muckenhoupt weight A1

belongs to certain Gehring classes of weights satisfying the reverse Hölder inequality.
More precisely, the weight u belongs to a discrete Gehring class Gq , q > 1, if there
exist a constant K > 1 such that the relation(

1
|I| ∑k∈I

uq(k)

) 1
q

� K
1
|I| ∑k∈I

u(k) (7)
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is satisfied for any interval I ⊂ N . Moreover, Gq(K) is a subclass of Gq consisting of
weights u satisfying (7) with a fixed constant K > 1. The Gq -norm of u∈ Gq is defined
by

Gq(u) = sup
I⊂N

⎡
⎣ |I|

∑k∈I u(k)

(
1
|I| ∑k∈I

uq(k)

) 1
q
⎤
⎦

q
q−1

< ∞.

Due to Hölder’s inequality it follows that Gq(u) � 1, while for u ∈ Gq(K) we have
Gq(u) � Kq/q−1 . Finally, we give specific definitions of classes G1 and G∞ . A discrete
class G1 consists of all weights u with finite G1(u)-norm, i.e.

G1(u) = sup
I⊂N

exp

(
1
|I| ∑k∈I

u(k)
uI

log
u(k)
uI

)
< ∞,

where uI = (1/ |I|)∑k∈I u(k) . Similarly, Gehring class G∞ consists of all weights with
finite G∞(u)-norm, i.e.

sup
I⊂N

supk∈I u(k)
1
|I| ∑k∈I u(k)

< ∞.

Recently, Saker et al. [34] (see also [32]), established several interesting properties of
discrete classes Ap and Gq , as well as some relationships between them. Those results
are discrete extensions of the previously known integral results established in the above
mentioned references. In particular, they proved that Muckenhoupt classes satisfy the
following properties:

(A1) A1 ⊂ Ap ⊂ Aq ⊂ A∞ , 1 < p < q ,

(A2) A∞ =
⋃

p>1 Ap .

Similarly, they also proved the corresponding properties for the Gehring classes:

(G1) G∞ ⊂ Gq ⊂ Gp ⊂ G1 , 1 < p < q ,

(G2) G1 =
⋃

q>1 Gq .

Saker et al. [35] proved the discrete result due to Korenovskii [19] and established
the so called self-improving property of Muckenhoupt weights. More precisely, they
proved that if u ∈ Ap(A) ⊂ Ap , p > 1, A > 1, then u ∈ Aq , for q ∈ [p0, p) , where p0

is the unique positive root of the equation

(Ap0)
1

q−1

(
q− p0

q−1

)
= 1.

Similarly, Saker et al. [33] proved the discrete version of the results due to D’Apuzzo
and Sbordone [11] and established the self-improving properties of the weighted Muck-
enhoupt and Gehring classes. In particular, they proved that if v ∈ Gq(K) ⊂ Gq , q > 1,



DISCRETE MUCKENHOUPT AND GEHRING WEIGHTS 5

K > 1, is a nonincreasing sequence, then v ∈ Gp for p ∈ [q,q∗) , where q∗ is a unique
positive solution of the equation

(
x−1

x

)(
x

x−q

) 1
q

= K.

To prove the main results in [35] and [33] the authors used the assumptions and ter-
minologies used in the classical setting and proved some new discrete inequalities.
This has been done by applying some algebraic inequalities to overcome the nonex-
istence of the power rules as well as the chain rules which are the main tools used in the
proof of the classical results. For the reader’s convenience, properties (A1) and (G1)
will be referred to as monotonicity properties of Muckenhoupt and Gehring classes.
These classes of weights are closely connected. Namely, it has been proved in [34]
that A∞ = G1 , so every Muckenhoupt class belongs to G1 , while every Gehring class
belongs to A∞ . Therefore, one of the most interesting problems in connection with
these classes is inclusion of Muckenhoupt classes into Gehring classes and vice versa.
Although there are lots of results for this topic in integral case (see, e.g. [22, 23]), such
problems are still unsolved in the discrete case, since techniques that have been used in
integral case do not have a discrete counterpart.

Therefore, we need a new approach to establish the corresponding discrete results.
In particular, it will be interesting to find indices s∗ = s∗(p,C) , r∗ = r∗(q,K) and the
corresponding constants Ks = Ks(p,C) , Cr = Cr(q,K) , such that the following inclu-
sions hold:

Ap(C) ⊂ Gs(Ks), for all s < s∗,

Gq(K) ⊂ Ar(Cr), for all r > r∗.

The main objective of the present paper is a further study of discrete Muckenhoupt and
Gehring classes. We first restate monotonicity properties (A1) and (A2) in terms of
the corresponding norms. We will show that these norms show similar behavior as the
corresponding classes. Some particular examples of Muckenhoupt and Gehring power
weights are also considered to illustrate the difficulties arising from discrete setting,
since there are no power rules as in the integral case. Next, we establish some norm es-
timates for Muckenhoupt and Gehring weights. We also give a simple characterization
of the weight belonging to both classes Ap and Gq . Finally, motivated by the above
inclusion problems, we define the so called transition functions between Muckenhoupt
and Gehring classes and show that they are decreasing.

2. Main results

The main tool in establishing our results will be the Hölder and the Jensen inequal-
ities. Recall that the Hölder inequality asserts that

n

∑
k=1

u(k)v(k) �
(

n

∑
k=1

up(k)

) 1
p
(

n

∑
k=1

vq(k)

) 1
q

, (8)
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where 1/p+ 1/q = 1, p > 1, and {u(k)}∞
k=1 , {v(k)}∞

k=1 are nonnegative sequences.
If 0 < p < 1, then the sign of inequality (8) is reversed. The Jensen inequality asserts
that if f : [a,b] → R is a convex function and (p1, p2, . . . , pn) is a nonnegative n -tuple
such that ∑n

k=1 pk = 1, then the inequality

f

(
n

∑
k=1

pkxk

)
�

n

∑
k=1

pk f (xk) (9)

holds for any n -tuple (x1,x2, . . . ,xn) ∈ [a,b]n . If f is concave function, then the sign
of (9) is reversed. An important consequence of the Jensen inequality is the generalized
mean inequality. Recall that a weighted power mean Mr(x1,x2, . . . ,xn) is defined by

Mr(x1,x2, . . . ,xn) =

(
n

∑
k=1

pkx
r
k

) 1
r

,

where ∑n
k=1 pk = 1, pk > 0, and (x1,x2, . . . ,xn) is a positive n -tuple. The nonweighted

means correspond to the setting pk = 1/n , k = 1,2, . . . ,n . Recall that for p = 1,0,−1
we obtain respectively, the arithmetic, geometric and harmonic mean. In addition,
M−∞(x1,x2, . . . ,xn) = min{x1,x2, . . . ,xn} and M∞(x1,x2, . . . ,xn) = max{x1,x2, . . . ,xn} .
The generalized mean inequality asserts that if r < s , then

Mr(x1,x2, . . . ,xn) � Ms(x1,x2, . . . ,xn). (10)

Inequality (10) is true for real values of r and s , as well as for positive and negative
infinity values. For more details about the Jensen inequality and means inequalities, the
reader is referred to [15, 26].

The results that follow can be considered as discrete versions of integral results
established in [10, 13, 30] with modifications in the proofs, in order to overcame the
lack of the appropriate tools on the discrete space like power rules, chain rules, etc.
Our first result refers to monotonicity properties (A1) and (G1) of Muckenhoupt and
Gehring classes. In fact, our intention is to restate these properties in terms of the
corresponding Muckenhoupt and Gehring norms. The following proposition asserts
that these norms show similar behavior as the corresponding classes.

PROPOSITION 1. Let u be a nonnegative weight and let 1 � r < p be real num-
bers.

(i) If u ∈ Ar , then A∞(u) � Ap(u) � Ar(u).

(ii) If u ∈ Gp , then G
1− 1

r
r (u) � G

1− 1
p

p (u) . In addition, if u ∈ G∞ , then G
1− 1

p
p (u) �

G∞(u) .

Proof. (i) Since u ∈ Ar , we know that u ∈ Ap ⊂ A∞ . We consider two cases
depending on whether r > 1 or r = 1. If r > 1, then, utilizing the generalized mean
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inequality (10), it follows that

(
1
|I| ∑k∈I

u−
1

p−1 (k)

)1−p

�
(

1
|I| ∑k∈I

u−
1

r−1 (k)

)1−r

,

since −1/(p−1) > −1/(r−1) , and consequently,

(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

�
(

1
|I| ∑k∈I

u−
1

r−1 (k)

)r−1

.

Therefore we obtain

Ap(u) = sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

r−1 (k)

)r−1

= Ar(u),

as claimed. The previous inequality also holds for r = 1. Namely, yet another use of
the generalized mean inequality implies

(
1
|I| ∑k∈I

u−
1

p−1 (k)

)1−p

� inf
k∈I

u(k),

where from we obtain

Ap(u) = sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� sup
I⊂N

(
1
|I|

∑k∈I u(k)
infk∈I u(k)

)
= A1(u).

It remains to prove that A∞(u) � Ap(u) . More precisely, applying (9) with n = |I| ,
pk = 1/|I| , k = 1,2, . . . , |I| , f (u) = exp [(1/(p−1))u] and xk = log(1/u(k)) , it fol-
lows that

(
exp

[
1
|I| ∑k∈I

log
1

u(k)

]) 1
p−1

= exp

[
1

p−1

(
1
|I| ∑k∈I

log
1

u(k)

)]

� 1
|I| ∑k∈I

exp

[
1

p−1
log

1
u(k)

]
=

1
|I| ∑k∈I

u−
1

p−1 (k),
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and consequently,

A∞(u) = sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)
exp

[
1
|I| ∑k∈I

log
1

u(k)

]

� sup
I⊂N

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

= Ap(u),

which proves our assertion.
(ii) Let r > 1 and let u ∈ Gp . Then, u ∈ Gr , so utilizing the generalized mean

inequality we obtain

G
1− 1

r
r (u) = sup

I⊂N

|I|
∑k∈I u(k)

(
1
|I| ∑k∈I

ur(k)

) 1
r

� sup
I⊂N

|I|
∑k∈I u(k)

(
1
|I| ∑k∈I

up(k)

) 1
p

= G
1− 1

p
p (u).

Obviously, the last inequality also holds for r = 1. It remains to prove that G
1− 1

p
p (u) �

G∞(u) , provided that u ∈ G∞ . Clearly, this also holds due to the weighted mean in-
equality since

G
1− 1

p
p (u) = sup

I⊂N

|I|
∑k∈I u(k)

(
1
|I| ∑k∈I

up(k)

) 1
p

� sup
I⊂N

|I|supk∈I u(k)
∑k∈I u(k)

= G∞(u). �

Now, our intention is to consider some particular examples of Muckenhoupt and
Gehring weights. In order to simplify our further discussion, from now on we study
classes Ap and Gq for real indices p, q > 1.

EXAMPLE 1. A bounded weight u such that 0 < m � u(k) � M , k ∈ N , belongs
to every Muckenhoupt class Ap . Namely, utilizing the generalized mean inequality
(10), it follows that

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� supk∈I u(k)
infk∈I u(k)

� M
m

,

which implies that Ap(u) < ∞ . However, Muckenhoupt weight does not have to be
a bounded function. The weight u defined by u(n) = (n+ a)α belongs to a class Ap

if −1 < α < p− 1. Clearly, the case α = 0 is trivial. We will show that u ∈ Ap for
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0 < α < p−1, the proof for −1 < α < 0 is similar and it is left to the reader. Hence,
let I = {a+1,a+2, . . .,a+n} , a ∈ N∪{0} , n ∈ N , and let

LI(u) = ∑n
k=1(a+ k)α

n

(
∑n

k=1(a+ k)−
α

p−1

n

)p−1

.

Our aim is to find an upper bound for LI(u) , not dependent on interval I . By the
generalized mean inequality we have

∑n
k=1(a+ k)α

n
� (n+a)α .

On the other hand, considering ∑n
k=1(a+k)−

α
p−1 as a lower Darboux sum of decreasing

function f (x) = (x+a)−
α

p−1 on interval [0,n] , we obtain the following estimate

n

∑
k=1

(a+ k)−
α

p−1 �
∫ n

0
(x+a)−

α
p−1 dx � p−1

p−1−α

[
(n+a)

p−1−α
p−1 −a

p−1−α
p−1

]
.

Therefore, the above two estimates provide the inequality

L
1

p−1
I (u) � p−1

p−1−α
· n+a−a

(
n+a
a

) α
p−1

n

� p−1
p−1−α

· n+a−a
n

=
p−1

p−1−α
,

and consequently, Ap(u) = supI⊂N LI(u) �
(

p−1
p−1−α

)p−1
< ∞ , i.e. u ∈ Ap .

EXAMPLE 2. Similarly to Example 1, it is obvious that a bounded weight v such
that 0 < m � v(k) � M , k ∈ N , belongs to every Gehring class Gq . Further, the weight
v(n) = (n + a)β belongs to a class Gq if β > −1/q . We will prove that v ∈ Gq for
−1/q < β < 0, the rest is proved similarly and it is left to the reader. Therefore, let

LI(v) =
n

∑n
k=1(a+ k)β

(
∑n

k=1(a+ k)βq

n

) 1
q

,

where I = {a+ 1,a+ 2, . . .,a+ n} , a ∈ N∪{0} , n ∈ N . Now, since −1/q < β < 0,
the generalized mean inequality yields

n

∑n
k=1(a+ k)β � (n+a)−β .

In addition, considering ∑n
k=1(a+k)βq as a lower Darboux sum of decreasing function

f (x) = (x+a)βq on interval [0,n] , we obtain

n

∑
k=1

(a+ k)βq �
∫ n

0
(a+ x)βqdx =

1
βq+1

[
(n+a)βq+1−aβq+1

]
.
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Thus, combining the previous two estimates, we obtain

Lq
I (v) � 1

βq+1
· n+a−a

(
a

n+a

)βq

n

� 1
βq+1

· n+a−a
n

=
1

βq+1
,

and consequently, Gq(v) = supI⊂N L
q

q−1
I (v) � (βq+1)

1
1−q < ∞ , i.e. v ∈ Gq .

It should be noticed here that Muckenhoupt and Gehring power weights discussed
in the previous two examples are in accordance to monotonicity properties and Propo-
sition 1.

Our next result provides a characterization of a nonnegative weight belonging to
both Muckenhoupt and Gehring classes Ap and Gs . We show that such weight can be
characterized via the corresponding Muckenhoupt class.

THEOREM 1. Let u be a nonnegative weight and let p,q,s be real numbers such
that p, s > 1 and q = s(p−1)+1 . Then, u ∈ Ap∩Gs if and only if us ∈ Aq .

Proof. We first prove that if u ∈ Ap∩Gs , then us ∈ Aq . Namely, since u ∈ Ap∩
Gs , then there exist positive constants A,B > 1 such that(

1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� A

and (
1
|I| ∑k∈I

us(k)

) 1
s

� B

(
1
|I| ∑k∈I

u(k)

)
.

Now, since q−1 = s(p−1) , the first inequality yields(
1
|I| ∑k∈I

(us)−
1

q−1 (k)

)q−1

� As 1(
1
|I| ∑k∈I u(k)

)s ,

while from the second one we obtain

1
|I| ∑k∈I

us(k) � Bs

(
1
|I| ∑k∈I

u(k)

)s

.

Clearly, by multiplying the last two inequalities, we have(
1
|I| ∑k∈I

us(k)

)(
1
|I| ∑k∈I

(us)−
1

q−1 (k)

)q−1

� AsBs

(
1
|I| ∑k∈I

u(k)

)s
1(

1
|I| ∑k∈I u(k)

)s = (AB)s,
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which implies that us ∈ Aq. It remains to prove the opposite direction. Since us ∈ Aq,
there exist a constant D > 0 such that(

1
|I| ∑k∈I

us(k)

)(
1
|I| ∑k∈I

(us)−
1

q−1 (k)

)q−1

� D,

and consequently,

(
1
|I| ∑k∈I

us(k)

) 1
s
(

1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� D
1
s , (11)

since q−1 = s(p−1) . In addition, due to the generalized mean inequality we have

(
1
|I| ∑k∈I

us(k)

) 1
s

� 1
|I| ∑k∈I

u(k),

which together with (11) yields

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

� D
1
s .

Clearly, the last relation implies that u∈Ap. On the other hand, yet another application
of the generalized mean inequality yields relation

(
1
|I| ∑k∈I

u(k)

)−1

�
(

1
|I| ∑k∈I

u−
1

p−1 (k)

)p−1

,

which together with (11) implies

(
1
|I| ∑k∈I

u(k)

)−1(
1
|I| ∑k∈I

us(k)

) 1
s

� D
1
s ,

respectively, (
1
|I| ∑k∈I

us(k)

) 1
s

� D
1
s

(
1
|I| ∑k∈I

u(k)

)
.

Finally, the last inequality implies that u ∈ Gs. Hence, we have u ∈ Ap ∩Gs and the
proof is complete. �

The above theorem will be utilized in establishing some norm estimates for Muck-
enhoupt and Gehring weights. In particular, we obtain mutual bounds for the norm of
Gehring weight u ∈ Gp , expressed in terms of suitable Muckenhoupt norms.



12 S. H. SAKER, M. KRNIĆ AND D. BALEANU

THEOREM 2. Let u be nonnegative weight and let p,q > 1 . If u ∈ A q+p−1
p

∩Gp ,

then up ∈ Aq and

Aq(up)
[
A q+p−1

p
(u)
]−p

� [Gp(u)]p−1 � Aq(up). (12)

If u ∈ Aq and u−
1

p−1 ∈ A1+ q−1
p−1

, then u ∈ Ap and

Ap(u) � Aq(u)
[
A1+ q−1

p−1
(u−

1
p−1 )

]p−1

. (13)

Proof. We prove (12) first. Since u ∈ A q+p−1
p

∩Gp , we conclude by Theorem 1

that up ∈ Aq . Furthermore, taking into account definition of Gp(u) , it follows that

1
|I| ∑k∈I

up(k) � [Gp(u)]p−1

(
1
|I| ∑k∈I

u(k)

)p

,

and so, (
1
|I| ∑k∈I

up(k)

)(
1
|I| ∑k∈I

u−
p

q−1 (k)

)q−1

� [Gp(u)]p−1

⎡
⎣( 1

|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
p

q−1 (k)

) q−1
p
⎤
⎦

p

= [Gp(u)]p−1

⎡
⎣( 1

|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u
− 1

q+p−1
p −1 (k)

) q+p−1
p −1

⎤
⎦

p

� [Gp(u)]p−1
[
A q+p−1

p
(u)
]p

.

This means that Aq(up) �
[
Gp(u)

]p−1[
A q+p−1

p
(u)
]p

, i.e. we obtain the first inequality

in (12). On the other hand, applying the generalized mean inequality, it follows that

(
1
|I| ∑k∈I

u−
p

q−1 (k)

) 1−q
p

� 1
|I| ∑k∈I

[
u−

p
q−1 (k)

] 1−q
p =

1
|I| ∑k∈I

u(k),

and consequently,

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u−
p

q−1 (k)

) q−1
p

� 1.



DISCRETE MUCKENHOUPT AND GEHRING WEIGHTS 13

Therefore we have

1
1
|I| ∑k∈I u(k)

(
1
|I| ∑k∈I

up(k)

) 1
p

=

[(
1
|I| ∑k∈I u

p(k)
)(

1
|I| ∑k∈I u

− p
q−1 (k)

)q−1
] 1

p

(
1
|I| ∑k∈I u(k)

)(
1
|I| ∑k∈I u

− p
q−1 (k)

) q−1
p

�

⎡
⎣( 1

|I| ∑k∈I

up(k)

)(
1
|I| ∑k∈I

u−
p

q−1 (k)

)q−1
⎤
⎦

1
p

� [Aq(up)]
1
p ,

which implies that
[
Gp(u)

]p−1 � Aq(up), as claimed.
It remains to prove (13). Let q∗ = q/(q−1) and p∗ = p/(p−1) . Then holds the

identity (
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u1−p∗(k)

)p−1

=

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u1−q∗(k)

)q−1

×
⎡
⎣( 1

|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

u1−q∗(k)

) 1−q
p−1
⎤
⎦

p−1

. (14)

Further, employing the Cauchy-Schwarz inequality, we have

|I|2 =

(
∑
k∈I

(
u1−q∗(k)

)1/2(
u1−q∗(k)

)−1/2
)2

�
(

∑
k∈I

u1−q∗(k)

)(
∑
k∈I

uq∗−1(k)

)
,

and consequently,

(
1
|I| ∑k∈I

u1−q∗(k)

) 1−q
p−1

�
(

1
|I| ∑k∈I

uq∗−1(k)

) q−1
p−1

,

since p,q > 1. Now, the previous inequality implies the following relation:⎡
⎣
(

1
|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

u1−q∗(k)

) 1−q
p−1
⎤
⎦

p−1

�

⎡
⎣( 1

|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

uq∗−1(k)

) q−1
p−1
⎤
⎦

p−1
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=

⎡
⎣
(

1
|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

(
u1−p∗

) q∗−1
1−p∗ (k)

) q−1
p−1
⎤
⎦

p−1

=

⎡
⎣( 1

|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

(
u1−p∗

) 1−p
q−1 (k)

) q−1
p−1
⎤
⎦

p−1

.

Finally, since 1− p∗ = −1/(p−1) , taking into account the last inequality and (14), we
obtain

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u1−p∗(k)

)p−1

�
(

1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u1−q∗(k)

)q−1

×
⎡
⎣( 1

|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

(
u1−p∗

) 1−p
q−1 (k)

) q−1
p−1
⎤
⎦

p−1

=

(
1
|I| ∑k∈I

u(k)

)(
1
|I| ∑k∈I

u1−q∗(k)

)q−1

×

⎡
⎢⎣
(

1
|I| ∑k∈I

u1−p∗(k)

)(
1
|I| ∑k∈I

[
u1−p∗(k)

]− 1(
1+ q−1

p−1

)
−1

)(
1+ q−1

p−1

)
−1
⎤
⎥⎦

p−1

� Aq(u)
[
A q−1

p−1+1(u
1−p∗)

]p−1

,

which means that u ∈ Ap and Ap(u) � Aq(u)
[
A1+ q−1

p−1
(u−

1
p−1 )

]p−1
. The proof is now

complete. �

Now, we consider a nonnegative weight of the form u = uθ
1 u1−θ

2 , 0 � θ � 1,
where u1 and u2 are arbitrary Muckenhoupt weights. We will show that u also belongs
to appropriate Muckenhoupt class and we will establish an upper bound for its norm.

THEOREM 3. Let p1, p2 > 1 be real numbers and let u1 ∈ Ap1 , u2 ∈ Ap2 be
nonnegative weights. If 0 � θ � 1 , then uθ

1u1−θ
2 ∈ Apθ and

Apθ (uθ
1 u1−θ

2 ) � (Ap1(u1))
θ (Ap2(u2))

1−θ , (15)

where pθ = θ p1 +(1−θ )p2.
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Proof. Let

L =

(
1
|I| ∑k∈I

uθ
1 (k)u1−θ

2 (k)

)(
1
|I| ∑k∈I

[
uθ

1 (k)u1−θ
2 (k)

]− 1
pθ−1

)pθ−1

=

(
1
|I| ∑k∈I

uθ
1 (k)u1−θ

2 (k)

)(
1
|I| ∑k∈I

u
− θ

pθ−1

1 (k)u
− 1−θ

pθ−1

2 (k)

)pθ−1

.

Applying the Hölder inequality to the first factor of the previous expression, we have

∑
k∈I

uθ
1 (k)u1−θ

2 (k) �
(

∑
k∈I

u1(k)

)θ (
∑
k∈I

u2(k)

)1−θ

.

Similarly, since pθ = θ p1+(1−θ )p2 � min{p1, p2}> 1, applying the Hölder inequal-
ity with parameters (pθ −1)/ [θ (p1−1)] > 1 and (pθ −1)/ [(1−θ )(p2−1)] > 1, to
the second factor of L , we have

∑
k∈I

u
− θ

pθ −1

1 (k)u
− (1−θ )

pθ −1

2 (k)

�
(

∑
k∈I

u
− 1

p1−1

1 (k)

) θ(p1−1)
pθ−1

(
∑
k∈I

u
− 1

p2−1

2 (k)

) (1−θ )(p2−1)
pθ−1

.

Therefore, utilizing the previous two estimates, as well as the fact that u1 ∈ Ap1 , u2 ∈
Ap2 , we obtain the following upper bound for L :

L �
(

1
|I| ∑k∈I

u1(k)

)θ (
1
|I| ∑k∈I

u2(k)

)1−θ

×

⎛
⎜⎝
(

1
|I| ∑k∈I

u
− 1

p1−1

1 (k)

) θ(p1−1)
pθ −1

(
1
|I| ∑k∈I

u
− 1

p2−1

2 (k)

) (1−θ )(p2−1)
pθ −1

⎞
⎟⎠

pθ−1

=

(
1
|I| ∑k∈I

u1(k)

)θ (
1
|I| ∑k∈I

u2(k)

)1−θ

×
(

1
|I| ∑k∈I

u
− 1

p1−1

1 (k)

)θ(p1−1)(
1
|I| ∑k∈I

u
− 1

p2−1

2 (k)

)(1−θ)(p2−1)
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=

⎡
⎣
(

1
|I| ∑k∈I

u1(k)

)(
1
|I| ∑k∈I

u
− 1

p1−1

1 (k)

)p1−1
⎤
⎦

θ

×
⎡
⎣( 1

|I| ∑k∈I

u2(k)

)(
1
|I| ∑k∈I

u
− 1

p2−1

2 (k)

)p2−1
⎤
⎦

1−θ

� [Ap1(u1)]
θ [Ap2(u2)]

1−θ .

Consequently, uθ
1 u1−θ

2 ∈ Apθ and (15) holds, as claimed. �

REMARK 1. In particular, if u1,u2 ∈ Ap , then Theorem 3 implies that the weight
u = uθ

1u1−θ
2 , 0 � θ � 1, also belongs to a class Ap . Moreover, since Ap(1) = 1, it

follows by Theorem 3 that if u ∈ Ap , then uθ ∈ Ap , for 0 � θ � 1. In addition, due to
(15), we obtain the following estimate: Ap

(
uθ)� (Ap(u))θ , 0 � θ � 1.

We have already discussed that every Muckenhoupt class belongs to G1 since
A∞ = G1 . In the same way, every Gehring class belongs to A∞ . Therefore, taking into
account monotonicity properties (A1) and (G1), it turns out that the following functions
are well defined for p � 1:

σ(p) = sup
{

σ � 1 : Ap ⊂ Gσ
}

,

θ (p) = inf
{

θ � 1 : Gp ⊂ Aθ
}

.
(16)

The above functions σ and θ are referred to as transition functions between Mucken-
houpt and Gehring classes, and vice versa. Our last result shows that σ(p) and θ (p)
are decreasing functions with respect to argument p � 1.

THEOREM 4. Let σ(p) and θ (p) be defined by (16). If p1 < p2 , then σ(p1) �
σ(p2) and θ (p1) � θ (p2) .

Proof. Let us denote Sp =
{

σ � 1 : Ap ⊂ Gσ
}

. Now, let p1 < p2 and let σ0 ∈
Sp2 . This means that Ap2 ⊂ Gσ0 . Further, due to monotonicity property of Muck-
enhoupt classes, we have Ap1 ⊂ Ap2 , which implies that Ap1 ⊂ Gσ0 , i.e σ0 ∈ Sp1 .
Therefore, Sp2 ⊂ Sp1 and consequently,

σ(p2) = supSp2 � supSp1 = σ(p1),

as claimed.
Similarly, let Tp =

{
θ � 1 : Gp ⊂ Aθ

}
and let θ0 ∈ Tp1 . Then, Gp1 ⊂Aθ0 . More-

over, since p2 > p1 , it follows that Gp2 ⊂ Gp1 ⊂ Aθ0 , i.e. θ0 ∈ Tp2 . Finally, Tp1 ⊂ Tp2

and
σ(p1) = infTp1 � infTp2 = σ(p2),

which completes the proof. �
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[7] A. BÖTTCHER, M. SEYBOLD, Discrete Wiener-Hopf operators on spaces with Muckenhoupt weight,
Studia Math. 143 (2000), 121–144.
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