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Abstract: We established several novel inequalities of Gronwall–Pachpatte type on time scales. Our
results can be used as handy tools to study the qualitative and quantitative properties of the solutions
of the initial boundary value problem for a partial delay dynamic equation. The Leibniz integral
rule on time scales has been used in the technique of our proof. Symmetry plays an essential role in
determining the correct methods to solve dynamic inequalities.
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1. Introduction

Stefan Hilger initiated the theory of time scales in his PhD thesis [1] in order to unify
discrete and continuous analysis. Since then, this theory has received a lot of attention.
The basic notion is to establish a result for a dynamic equation or a dynamic inequality
where the domain of the unknown function is so-called time scale T, which is an arbitrary
closed subset of the reals R. The three most common examples of calculus on time scales
are continuous calculus, discrete calculus, and quantum calculus, i.e., when T = R,T = N
and T = qZ = {qz : z ∈ Z} ∪ {0} where q > 1. The books due to Bohner and Peterson [2,3]
on the subject of time scales brief and organize much of time scales calculus.

Gronwall–Bellman-type inequalities, which have many applications in qualitative
and quantitative behavior, have been developed by many mathematicians and several
refinements and extensions have been made to the previous results. We refer the reader to
the works [4–14].

Anderson [15] presented the following result on time scales.

ω(u(t, s)) ≤ a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
ω′(u(τ, η))[d(τ, η)w(u(τ, η)) + b(τ, η)]∇η∆τ, (1)

where u, a, c, and d are non-negative continuous functions defined for (t, s) ∈ T×T and b
is a non-negative continuous function for (t, s) ∈ [t0, ∞)T × [t0, ∞)T, and ω ∈ C1(R+,R+)
with ω′ > 0 for u > 0.

In [16], the authors discussed the following results:

ω(u(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)v(u(ς, η))

+
∫ ς

0
=2(χ, η)v(u(χ, η))dχ

]
dηdς,
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ω(u(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)v(u(ς, η))η(u(ς, η))

+
∫ ς

0
=2(χ, η)v(u(χ, η))dχ

]
dηdς,

and

ω(u(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)ζ(u(ς, η))v(u(ς, η))

+
∫ ς

0
=2(χ, η)ζ(u(χ, η))v(u(χ, η))dχ

]
dηdς,

where u, f , = ∈ C(I1 × I2,R+) and a ∈ C(ζ,R+) are nondecreasing functions, I1, I2 ∈ R,
θ ∈ C1(I1, I1) and ϑ ∈ C1(I2, I2) are nondecreasing with θ(`) ≤ ` on I1, ϑ(t) ≤ t on
I2, =1, =2 ∈ C(ζ,R+), and ω, ζ, v ∈ C(R+,R+) with {ω, ζ, v}(u) > 0 for u > 0, and
lim

u→+∞
ω(u) = +∞.

In this paper, by applying Leibniz integral rule on time scales, see Theorem 1 (iii)
below, we established the delayed time scale version of the inequalities proved in [16].
Further, the results that are proved in this paper extended some known results in [17–19].
The paper is arranged as follows: In Section 2, we briefly presented the basic definitions
and concepts related to the calculus of time scales. In Section 3, we proved the auxiliary
results. In Section 4, we stated and proved the main results. In Section 5, we presented
an application to discuss the boundedness of the solutions of an initial boundary value
problem on time scales. In Section 6, we stated the conclusion. Symmetry plays an essential
role in determining the correct methods to solve dynamic inequalities.

2. Preliminaries

We begin with the definition of time scale.

Definition 1. A time scale T is an arbitrary nonempty closed subset of the set of all real numbers R.

Now, we define two operators playing a central role in the analysis on time scales.

Definition 2. If T is a time scale, then we define the forward jump operator σ : T → T and the
backward jump operator ρ : T→ T by

σ(ξ) = inf{s ∈ T : s > ξ},

and
ρ(ξ) = sup{s ∈ T : s < ξ}.

In the above definitions, we put inf ∅ = supT (i.e., if ξ is the maximum of T, then
σ(ξ) = ξ) and sup ∅ = infT (i.e., if ξ is the minimum of T, then ρ(ξ) = ξ), where ∅ is the
empty set.

If T ∈ {[a, b], [a, ∞), (−∞, a],R}, then σ(ξ) = ρ(ξ) = ξ. We note that σ(ξ) and ρ(ξ) in
T when ξ ∈ T because T is a closed nonempty subset of R.

Next, we define the graininess functions as follows:

Definition 3.

(i) The forward graininess function µ : T→ [0, ∞) is defined by

µ(ξ) = σ(ξ)− ξ.
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(ii) The backward graininess function ν : T→ [0, ∞) is defined by

ν(ξ) = ξ − ρ(ξ).

With the operators defined above, we can begin to classify the points of any time scale
depending on the proximity of their neighboring points in the following manner.

Definition 4. Let T be a time scale. A point ξ ∈ T is said to be:

(1) Right-scattered if σ(ξ) > ξ;

(2) Left-scattered if ρ(ξ) < ξ;

(3) Isolated if ρ(ξ) < ξ < σ(ξ);

(4) Right-dense if σ(ξ) = ξ;

(5) Left-dense if ρ(ξ) = ξ;

(6) Dense if ρ(ξ) = ξ = σ(ξ).

The closed interval on time scales is defined by

[a, b]T = [a, b] ∩T = {ξ ∈ T : a ≤ ξ ≤ b}.

Open intervals and half-open intervals are defined similarly.
Two sets we need to consider are Tκ and Tκ which are defined as follows:

Tκ = T \ {M} if T has M as a left-scattered maximum and Tκ = T otherwise. Simi-
larly, Tκ = T \ {m} if T has m as a right-scattered minimum and Tκ = T otherwise. In fact,
we can write

Tκ =

{
T \

(
ρ(supT), supT

]
, if supT < ∞,

T, if supT = ∞,

and

Tκ =

{
T \

[
infT, σ(infT)

)
, if infT > −∞,

T, if infT = −∞.

Definition 5. Let f : T→ R be a function defined on a time scale T. Then we define the function
f σ : T→ R by

f σ(ξ) = ( f ◦ σ)(ξ) = f (σ(ξ)), ξ ∈ T,

and the function f ρ : T→ R by

f ρ(ξ) = ( f ◦ ρ)(ξ) = f (ρ(ξ)), ξ ∈ T.

Assume f : T → R is a function and ξ ∈ Tκ . Then f ∆(ξ) ∈ R is said to be the delta
derivative of f at ξ if for any ε > 0 there exists a neighborhood U of ξ such that, for every
s ∈ U, we have ∣∣[ f (σ(ξ))− f (s)]− f ∆(ξ)[σ(ξ)− s]

∣∣ ≤ ε|σ(ξ)− s|.

Moreover, f is said to be delta differentiable on Tκ if it is delta differentiable at every ξ ∈ Tκ .
Let f , ϕ : T → R be delta differentiable functions at ξ ∈ Tκ . Then we have the

following:

(i) ( f + ϕ)∆(ξ) = f ∆(ξ) + ϕ∆(ξ);

(ii) ( f ϕ)∆(ξ) = f ∆(ξ)ϕ(ξ) + f (σ(ξ))ϕ∆(ξ) = f (ξ)ϕ∆(ξ) + f ∆(ξ)ϕ(σ(ξ));
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(iii)
(

f
ϕ

)∆

(ξ) =
f ∆(ξ)ϕ(ξ)− f (ξ)ϕ∆(ξ)

ϕ(ξ)ϕ(σ(ξ))
, ϕ(ξ)ϕ(σ(ξ)) 6= 0.

A function ϕ : T → R is said to be right-dense continuous (rd-continuous) if ϕ is
continuous at the right-dense points in T and its left-sided limits exist at all left-dense
points in T.

We say that a function F : T→ R is a delta antiderivative of f : T→ R if F∆(ξ) = f (ξ)
for all ξ ∈ Tκ . In this case, the definite delta integral of f is given by∫ ϑ

θ
f (ξ)∆ξ = F(ϑ)− F(θ) f or all θ, ϑ ∈ T.

If ϕ ∈ Crd(T) and ξ, ξ0 ∈ T, then the definite integral F(ξ) :=
∫ ξ

ξ0

ϕ(s)∆s exists, and

F∆(ξ) = ϕ(ξ) holds.

Let θ, ϑ, γ ∈ T, c ∈ R, and f , ϕ be right-dense continuous functions on [θ, ϑ]T. Then

(i)
∫ ϑ

θ

[
f (ξ) + ϕ(ξ)

]
∆ξ =

∫ ϑ
θ f (ξ)∆ξ +

∫ ϑ
θ ϕ(ξ)∆ξ;

(ii)
∫ ϑ

θ c f (ξ)∆ξ = c
∫ ϑ

θ f (ξ)∆ξ;

(iii)
∫ ϑ

θ f (ξ)∆ξ =
∫ γ

θ f (ξ)∆ξ +
∫ ϑ

γ f (ξ)∆ξ;

(iv)
∫ ϑ

θ f (ξ)∆ξ = −
∫ θ

ϑ f (ξ)∆ξ;

(v)
∫ θ

θ f (ξ)∆ξ = 0;

(vi) if f (ξ) ≥ ϕ(ξ) on [θ, b]T, then
∫ ϑ

θ f (ξ)∆ξ ≥
∫ ϑ

θ ϕ(ξ)∆ξ.

We use the following crucial relations between calculus on time scales T and differen-
tial calculus on R and difference calculus on Z. Note that:

(i) If T = R, then

σ(ξ) = ξ, µ(ξ) = 0, f ∆(ξ) = f ′(ξ),
∫ ϑ

θ
f (ξ)∆ξ =

∫ ϑ

θ
f (ξ)dξ. (2)

(ii) If T = Z, then

σ(ξ) = ξ + 1, µ(ξ) = 1, f ∆(ξ) = f (ξ + 1)− f (ξ),
∫ ϑ

θ
f (ξ)∆ξ =

ϑ−1

∑
ξ=θ

f (ξ). (3)

Theorem 1 ([10], Leibniz integral rule on time scales). In the following, by Ψ∆(r1, r2) we mean
the delta derivative of Ψ(r1, r2) with respect to r1. Similarly, Ψ∇(r1, r2) is understood. If Ψ , Ψ∆,
and Ψ∇ are continuous and u, h : T → T are delta-differentiable functions, then the following
formulas hold ∀r1 ∈ Tκ :

(i)[∫ h(r1)

u(r1)
Ψ(r1, r2)∆r2

]∆

=
∫ h(r1)

u(r1)
Ψ∆(r1, r2)∆r2 + h∆(r1)Ψ(σ(r1), h(r1))− u∆(r1)Ψ(σ(r1), u(r1));

(ii)[∫ h(r1)

u(r1)
Ψ(r1, r2)∆r2

]∇
=
∫ h(r1)

u(r1)
Ψ∇(r1, r2)∆r2 + h∇(r1)Ψ(ρ(r1), h(r1))− u∇(r1)Ψ(ρ(r1), u(r1));

(iii)[∫ h(r1)

u(r1)
Ψ(r1, r2)∇r2

]∆

=
∫ h(r1)

u(r1)
Ψ∆(r1, r2)∇r2 + h∆(r1)Ψ(σ(r1), h(r1))− u∆(r1)Ψ(σ(r1), u(r1));
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(iv)[∫ h(r1)

u(r1)
Ψ(r1, r2)∇r2

]∇
=
∫ h(r1)

u(r1)
Ψ∇(r1, r2)∇r2 + h∇(r1)Ψ(ρ(r1), h(r1))− u∇(r1)Ψ(ρ(r1), u(r1)).

3. Auxiliary Result

We prove the following fundamental lemma that will be needed in our main results.

Lemma 1. Suppose T1 and T2 are two time scales and a ∈ C(Ω = T1×T2,R+) is nondecreasing
with respect to ($, t) ∈ Ω. Assume that τ, κ, f ∈ C(Ω,R+), `1 ∈ C1(T1,T1), and `2 ∈
C1(T2,T2) are nondecreasing functions with `1($) ≤ $ on T1 and `2(t) ≤ t on T2 . Furthermore,
suppose Λ, ζ ∈ C(R+,R+) are nondecreasing functions with {Λ, ζ}(κ) > 0 for κ > 0 and

lim
κ→+∞

Λ(κ) = +∞. If κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)ζ(κ(ς, η))∆η∇ς (4)

for ($, t) ∈ Ω, then

κ($, t) ≤ Λ−1
{

Υ−1
[

Υ(a($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)∆η∆ς

]}
(5)

for 0 ≤ $ ≤ $1 and 0 ≤ t ≤ t1, where

Υ(v) =
∫ v

v0

∆ς

ζ(Λ−1(ς))
, v ≥ v0 > 0, Υ(+∞) =

∫ +∞

v0

∆ς

ζ(Λ−1(ς))
= +∞ (6)

and ($1, t1) ∈ Ω is chosen so that(
Υ(a($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

)
∈ Dom

(
Υ−1

)
.

Proof. Suppose that a($, t) > 0. Fixing an arbitrary ($0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ($, t) by

ψ($, t) = a($0, t0) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)ζ(κ(ς, η))∆η∇ς (7)

for 0 ≤ $ ≤ $0 ≤ $1 and 0 ≤ t ≤ t0 ≤ t1. Then, ψ($0, t) = ψ($, t0) = a($0, t0) and

κ($, t) ≤ Λ−1(ψ($, t)). (8)

Takingthe ∆-derivative for (7) with employing Theorem 1(iii), we have

ψ∆$($, t) = `∆
1 ($)

∫ `2(t)

t0

τ(`1($), η) f (`1($), η)ζ(κ(`1($), η))∆η

≤ `∆
1 ($)

∫ `2(t)

t0

τ(`1($), η) f (`1($), η)ζ
(

Λ−1(ψ(`1($), η))
)

∆η

≤ ζ
(

Λ−1(ψ(`1($), `2(t)))
)
`∆

1 ($)
∫ `2(t)

t0

τ(`1($), η) f (`1($), η)∆η. (9)

The inequality (9) can be written in the form

ψ∆$($, t)
ζ(Λ−1(ψ($, t)))

≤ `∆
1 ($)

∫ `2(t)

t0

τ(`1($), η) f (`1($), η)∆η. (10)
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Taking the ∆-integral for inequality (10) we obtain

Υ(ψ($, t)) ≤ Υ(ψ($0, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)∆η∆ς

≤ Υ(a($0, t0)) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)∆η∆ς.

Since ($0, t0) ∈ Ω is chosen arbitrarily,

ψ($, t) ≤ Υ−1
[

Υ(a($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ(ς, η) f (ς, η)∆η∆ς

]
. (11)

From (11) and (8), we obtain the desired result (5). We carry out the above procedure
with ε > 0 instead of a($, t) when a($, t) = 0 and subsequently let ε→ 0.

Remark 1. If we take T = R, $0 = 0, and t0 = 0 in Lemma 1, then, inequality (4) becomes the
inequality obtained in ([16], Lemma 2.1).

4. Main Results

In the following theorems, with the help of the Leibniz integral rule on time scales
and Theorem 1 (item (iii)) and employing Lemma 1, we establish some new dynamic
inequalities of the Gronwall–Bellman–Pachpatte type of time scale.

Theorem 2. Let κ, a, f , `1, and `2 be as in Lemma 1. Let also τ1, τ2 ∈ C(Ω,R+). If
κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)ζ(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)ζ(κ(χ, η))∆χ

]
∆η∇ς (12)

for ($, t) ∈ Ω, then

κ($, t) ≤ Λ−1
{

Υ−1
(

p($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

)}
(13)

for 0 ≤ $ ≤ $1 and 0 ≤ t ≤ t1, where Υ is defined by (6) and

p($, t) = Υ(a($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς (14)

and ($1, t1) ∈ Ω is chosen so that(
p($, t) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

)
∈ Dom

(
Υ−1

)
.

Proof. By the same steps of the proof of Lemma 1, we can obtain (13), with suitable changes.

Remark 2. If we take τ2($, t) = 0, then Theorem 2 reduces to Lemma 1.
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Corollary 1. Let the functions κ, f , τ1, τ2, a, `1, and `2 be as in Theorem 2. Further, suppose that
q > p > 0 are constants. If κ($, t) satisfies

κq($, t) ≤ a($, t) +
q

q− p

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)κp(ς, η)

+
∫ ς

$0

τ2(χ, η)κp(χ, η)∆χ

]
∆η∇ς (15)

for ($, t) ∈ Ω, then

κ($, t) ≤
{

p($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

} 1
q−p

(16)

where

p($, t) = (a($, t))
q−p

q +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς.

Proof. Applying Theorem 2, by letting Λ(κ) = κq and ζ(κ) = κp, we have

Υ(v) =
∫ v

v0

∆ς

ζ(Λ−1(ς))
=
∫ v

v0

∆ς

ς
p
q
≥ q

q− p

(
v

q−p
q − v

q−p
q

0

)
, v ≥ v0 > 0

and

Υ−1(v) ≥
{

v
q−p

q
0 +

q− p
q

v
} 1

q−p

and we obtain the inequality (16).

Theorem 3. Under the hypotheses of Theorem 2, suppose Λ, ζ, v ∈ C(R+,R+) are nondecreasing
functions with {Λ, ζ, v}(κ) > 0 for κ > 0 and κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)ζ(κ(ς, η))v(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)ζ(κ(χ, η))∆χ

]
∆η∇ς (17)

for ($, t) ∈ Ω. Then,

κ($, t) ≤ Λ−1
{

Υ−1
(

F−1
[

F(p($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])}
(18)

for 0 ≤ $ ≤ $1 and 0 ≤ t ≤ t1, where Υ and p are as in (6) and (14), respectively, and

F(v) =
∫ v

v0

∆ς

v(Λ−1(Υ−1(ς)))
, v ≥ v0 > 0, F(+∞) = +∞ (19)

and ($1, t1) ∈ Ω is chosen so that[
F(p($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

)
.
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Proof. Assume that a($, t) > 0. Fixing an arbitrary ($0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ($, t) by

ψ($, t) = a($0, t0) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)ζ(κ(ς, η))v(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)ζ(κ(χ, η))∆χ

]
∆η∇ς (20)

for 0 ≤ $ ≤ $0 ≤ $1, and 0 ≤ t ≤ t0 ≤ t1. Then, ψ($0, t) = ψ($, t0) = a($0, t0) and

κ($, t) ≤ Λ−1(ψ($, t)) (21)

Taking the ∆-derivative for (20) with employing Theorem 1 (iii) gives

ψ∆$($, t) = `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)[ f (`1($), η)ζ(κ(`1($), η))v(κ(`1($), η))

+
∫ `1($)

$0

τ2(χ, η)ζ(κ(χ, η))∆χ

]
∆η

≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)
[

f (`1($), η)ζ
(

Λ−1(ψ(`1($), η))
)

v
(

Λ−1(ψ(`1($), η))
)

+
∫ `1($)

$0

τ2(χ, η)ζ
(

Λ−1(ψ(χ, η))
)

∆χ

]
∆η (22)

≤ `∆
1 ($).ζ

(
Λ−1(ψ(`1($), `2(t)))

)
×∫ `2(t)

t0

τ1(`1($), η)

[
f (`1($), η)v

(
Λ−1(ψ(`1($), η))

)
+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η

From (22), we have

ψ∆$($, t)
ζ(Λ−1(ψ($, t)))

≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)
[

f (`1($), η)v
(

Λ−1(ψ(`1($), η))
)

+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η. (23)

Taking the ∆-integral for (23) gives

Υ(ψ($, t)) ≤ Υ(ψ($0, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[

f (ς, η)v
(

Λ−1(ψ(ς, η))
)

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς

≤ Υ(a($0, t0)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[

f (ς, η)v
(

Λ−1(ψ(ς, η))
)

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς.

Since ($0, t0) ∈ Ω is chosen arbitrarily, the last inequality can be rewritten as

Υ(ψ($, t)) ≤ p($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)v
(

Λ−1(ψ(ς, η))
)

∆η∆ς. (24)
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Since p($, t) is a nondecreasing function, an application of Lemma 1 to (24) gives us

ψ($, t) ≤ Υ−1
(

F−1
[

F(p($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])
. (25)

From (21) and (25), we obtain the desired inequality (18).
Suppose that a($, t) = 0 for some ($, t) ∈ Ω. Let aε($, t) = a($, t) + ε, for all ($, t) ∈ Ω,

where ε > 0 be arbitrary. Then, aε($, t) > 0 and aε($, t) ∈ C(Ω,R+) are nondecreasing
with respect to ($, t) ∈ Ω. We carry out the above procedure with aε($, t) > 0 instead of
a($, t), and we obtain

κ($, t) ≤ Λ−1
{

Υ−1
(

F−1
[

F(pε($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])}
where

pε($, t) = Υ(aε($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς.

Letting ε→ 0+, we obtain (18). The proof is complete.

Remark 3. If we take T = R, $0 = 0, and t0 = 0 in Theorem 3, then the inequality (17) becomes
the inequality obtained in ([16], Theorem 2.2(A_2)).

Corollary 2. Let the functions κ, a, f , τ1, τ2, `1, and `2 be as in Theorem 2. Further suppose that
q, p, and r are constants with p > 0, r > 0, and q > p + r. If κ($, t) satisfies

κq($, t) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)κp(ς, η)κr(ς, η)

+
∫ ς

$0

τ2(χ, η)κp(χ, η)∆χ

]
∆η∇ς (26)

for ($, t) ∈ Ω, then

κ($, t) ≤
{
[p($, t)]

q−p−r
q−p +

q− p− r
q

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

} 1
q−p−r

(27)

where

p($, t) = (a($, t))
q−p

q +
q− p

q

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς

Proof. An application of Theorem 3 with Λ(κ) = κq, ζ(κ) = κp, and v(κ) = κr yields the
desired inequality (27).

Theorem 4. Under the hypotheses of Theorem 3, if κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)ζ(κ(ς, η))v(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)ζ(κ(χ, η))v(κ(χ, η))∆χ

]
∆η∇ς (28)

for ($, t) ∈ Ω, then

κ($, t) ≤ Λ−1
{

Υ−1
(

F−1
[

p0($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])}
(29)
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for 0 ≤ $ ≤ $1 and 0 ≤ t ≤ t1, where

p0($, t) = F(Υ(a($, t))) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς

and ($1, t1) ∈ Ω is chosen so that[
p0($, t) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a($, t) > 0. Fixing an arbitrary ($0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ($, t) by

ψ($, t) = a($0, t0) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)ζ(κ(ς, η))v(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)ζ(κ(χ, η))v(κ(χ, η))∆χ

]
∆η∇ς

for 0 ≤ $ ≤ $0 ≤ $1 and 0 ≤ t ≤ t0 ≤ t1. Then, ψ($0, t) = ψ($, t0) = a($0, t0), and

κ($, t) ≤ Λ−1(ψ($, t)). (30)

By the same steps as in the proof of Theorem 3, we obtain

ψ($, t) ≤ Υ−1
{

Υ(a($0, t0)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[

f (ς, η)v
(

Λ−1(ψ(ς, η))
)

+
∫ ς

$0

τ2(χ, η)v
(

Λ−1(ψ(χ, η))
)

∆χ

]
∆η∆ς

}
.

We define a non-negative and nondecreasing function v($, t) by

v($, t) = Υ(a($0, t0)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[[

f (ς, η)v
(

Λ−1(ψ(ς, η))
)]

+
∫ ς

$0

τ2(χ, η)v
(

Λ−1(ψ(χ, η))
)

∆χ

]
∆η∇ς

Then, v($0, t) = v($, t0) = Υ(a($0, t0)),

ψ($, t) ≤ Υ−1[v($, t)] (31)

and then, employing Theorem 1 (iii), we have

v∆$($, t) ≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)
[

f (`1($), η)v
(

Λ−1
(

Υ−1(v(`1($), t))
))

+
∫ `1($)

$0

τ2(χ, η)v
(

Λ−1
(

Υ−1(v(χ, t))
))

∆χ

]
∆η

≤ `∆
1 ($)v

(
Λ−1

(
Υ−1(v(`1($), `2(t)))

)) ∫ `2(t)

t0

τ1(`1($), η)[ f (`1($), η)

+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η
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or

v∆$($, t)
v(Λ−1(Υ−1(v($, t))))

≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)[ f (`1($), η)

+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η.

Taking the ∆-integral for the above inequality gives

F(v($, t)) ≤ F(v($0, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

[
f (ς, η) +

∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς

or

v($, t) ≤ F−1
{

F(Υ(a($0, t0))) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς

}
. (32)

From (30)–(32), and since ($0, t0) ∈ Ω is chosen arbitrarily, we obtain the desired
inequality (29). If a($, t) = 0, we carry out the above procedure with ε > 0 instead of a($, t)
and subsequently let ε→ 0. The proof is complete.

Remark 4. If we take T = R and $0 = 0 and t0 = 0 in Theorem 4, then, inequality (28) becomes
the inequality obtained in ([16], Theorem 2.2(A3)).

Corollary 3. Under the hypotheses of Corollary 2, if κ($, t) satisfies

κq($, t) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)[ f (ς, η)κp(ς, η)κr(ς, η)

+
∫ ς

$0

τ2(χ, η)κp(χ, η)κr(χ, η)∆χ

]
∆η∇ς (33)

for ($, t) ∈ Ω, then

κ($, t) ≤
{

p0($, t) +
q− p− r

q

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

} 1
q−p−r

(34)

where

p0($, t) = (a($, t))
q−p−r

q +
q− p− r

q

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς

Proof. An application of Theorem 4 with Λ(κ) = κq, ζ(κ) = κp, and v(κ) = κr yields the
desired inequality (34).

Theorem 5. Under the hypotheses of Theorem 3, if κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)v(κ(ς, η))×[
f (ς, η)ζ(κ(ς, η)) +

∫ ς

$0

τ2(χ, η)∆χ

]
∆η∇ς (35)
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for ($, t) ∈ Ω, then

κ($, t) ≤ Λ−1
{

Υ−1
1

(
F−1

1

[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])}
(36)

for 0 ≤ $ ≤ $2 and 0 ≤ t ≤ t2, where

Υ1(v) =
∫ v

v0

∆ς

v(Λ−1(ς))
, v ≥ v0 > 0, Υ1(+∞) =

∫ +∞

v0

∆ς

v(Λ−1(ς))
= +∞ (37)

F1(v) =
∫ v

v0

∆ς

ζ
[
Λ−1

(
Υ−1

1 (ς)
)] , v ≥ v0 > 0, F1(+∞) = +∞ (38)

p1($, t) = Υ1(a($, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς (39)

and ($2, t2) ∈ Ω is chosen so that[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

1

)
.

Proof. Suppose that a($, t) > 0. Fixing an arbitrary ($0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ($, t) by

ψ($, t) = a($0, t0) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)v(κ(ς, η))[ f (ς, η)ζ(κ(ς, η))

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∇ς

for 0 ≤ $ ≤ $0 ≤ $2 and 0 ≤ t ≤ t0 ≤ t2. Then, ψ($0, t) = ψ($, t0) = a($0, t0), and

κ($, t) ≤ Λ−1(ψ($, t)). (40)

Employing Theorem 1 (iii),

ψ∆$ ($, t) ≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)η
[
Λ−1(ψ(`1($), η))

][
f (`1($), η)ζ

(
Λ−1(ψ(`1($), η))

)
+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η

≤ `∆
1 ($)η

[
Λ−1(ψ(`1($), `2(t)))

] ∫ `2(t)

t0

τ1(`1($), η)
[

f (`1($), η)ζ
(

Λ−1(ψ(`1($), η))
)

+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η

Then,

ψ∆$($, t)
η[Λ−1(ψ($, t))]

≤ `∆
1 ($)

∫ `2(t)

t0

τ1(`1($), η)
[

f (`1($), η)ζ
(

Λ−1(ψ(`1($), η))
)

+
∫ `1($)

$0

τ2(χ, η)∆χ

]
∆η.
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Taking the ∆-integral for the above inequality gives

Υ1(ψ($, t)) ≤ Υ1(ψ(0, t)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[

f (ς, η)ζ
(

Λ−1(ψ(ς, η))
)

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς

Then,

Υ1(ψ($, t)) ≤ Υ1(a($0, t0)) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)
[

f (ς, η)ζ
(

Λ−1(ψ(ς, η))
)

+
∫ ς

$0

τ2(χ, η)∆χ

]
∆η∆ς.

Since ($0, t0) ∈ Ω is chosen arbitrarily, the last inequality can be restated as

Υ1(ψ($, t)) ≤ p1($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)ζ
(

Λ−1(ψ(ς, η))
)

∆η∆ς (41)

It is easy to observe that p1($, t) be a positive and nondecreasing function for all
($, t) ∈ Ω. Then, an application of Lemma 1 to (41) yields the inequality

ψ($, t) ≤ Υ−1
1

(
F−1

1

[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])
. (42)

From (42) and (40), we obtain the desired inequality (36).
If a($, t) = 0, we carry out the above procedure with ε > 0 instead of a($, t) and

subsequently let ε→ 0. The proof is complete.

Remark 5. If we take T = R and $0 = 0 and t0 = 0 in Theorem 5, then, inequality (35) becomes
the inequality obtained in ([16], Theorem 2.7).

Theorem 6. Under the hypotheses of Theorem 3, let p be a non-negative constant. If κ($, t) satisfies

Λ(κ($, t)) ≤ a($, t) +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)κp(ς, η)×[
f (ς, η)ζ(κ(ς, η)) +

∫ ς

$0

τ2(χ, η)∆χ

]
∆η∇ς (43)

for ($, t) ∈ Ω, then

κ($, t) ≤ Λ−1
{

Υ−1
1

(
F−1

1

[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

])}
(44)

for 0 ≤ $ ≤ $2 and 0 ≤ t ≤ t2, where

Υ1(v) =
∫ v

v0

∆ς

[Λ−1(ς)]
p , v ≥ v0 > 0, Υ1(+∞) =

∫ +∞

v0

∆ς

[Λ−1(ς)]
p = +∞ (45)

and F1 and p1 are as in Theorem 5 and ($2, t2) ∈ Ω is chosen so that[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∆ς

]
∈ Dom

(
F−1

1

)
.

Proof. An application of Theorem 5, with v(κ) = κp, yields the desired inequality (44).
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Remark 6. TakeT = R, the inequality established in Theorem 6 generalizes ([18], Theorem 1)
(with p = 1, a($, t) = b($) + c(t), $0 = 0, t0 = 0, τ1(ς, η) f (ς, η) = h(ς, η),
and τ1(ς, η)

(∫ ς
$0

τ2(χ, η)∆χ
)
= g(ς, η)).

Corollary 4. Under the hypotheses of Theorem 6, let q > p > 0 be constants. If κ($, t) satisfies

κq($, t) ≤ a($, t) +
p

p− q

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)κp(ς, η)×[
f (ς, η)ζ(κ(ς, η)) +

∫ ς

$0

τ2(χ, η)∆χ

]
∆η∇ς (46)

for ($, t) ∈ Ω, then

κ($, t) ≤
{

F−1
1

[
F1(p1($, t)) +

∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η) f (ς, η)∆η∇ς

]} 1
q−p

(47)

for 0 ≤ $ ≤ $2 and 0 ≤ t ≤ t2, where

p1($, t) = [a($, t)]
q−p

q +
∫ `1($)

$0

∫ `2(t)

t0

τ1(ς, η)

(∫ ς

$0

τ2(χ, η)∆χ

)
∆η∇ς

and F1 is defined in Theorem 5.

Proof. An application of Theorem 6 with Λ(κ($, t)) = κp to (46) yields the inequality (47);
to save space we omit the details.

Remark 7. Taking T = R, $0 = 0, t0 = 0, a($, t) = b($) + c(t), τ1(ς, η) f (ς, η) = h(ς, η), and
τ1(ς, η)

(∫ ς
$0

τ2(χ, η)∆χ
)
= g(ς, η) in Corollary 4, we obtain ([20], Theorem 1).

Remark 8. Taking T = R, $0 = 0, t0 = 0, a($, t) = c
p

p−q , τ1(ς, η) f (ς, η) = h(η), and
τ1(ς, η)

(∫ ς
$0

τ2(χ, η)∆χ
)
= g(η) and keeping t fixed in Corollary 4, we obtain ([21], Theorem 2.1).

5. Application

In the following, we discuss the boundedness of the solutions of the initial boundary
value problem for a partial delay dynamic equation of the form

(Ξq)∆$∇t($, t) = A
(

$, t, Ξ($− h1($), t− h2(t)),
∫ $

$0

B(ς, t, Ξ(ς− h1(ς), t))∆ς

)
(48)

Ξ($, t0) = a1($), Ξ($0, t) = a2(t), a1($0) = at0(0) = 0

for ($, t) ∈ Ω, where Ξ, b ∈ C(Ω,R+), A ∈ C(Ω × R2, R), B ∈ C(ζ × R, R), and h1 ∈
C1(T1,R+) and h2 ∈ C1(T2,R+) are nondecreasing functions such that h1($) ≤ $ on T1,
h2(t) ≤ t on T2, and h∆

1 ($) < 1 and h∆
2 (t) < 1.

Theorem 7. Assume that the functions a1, a2, A, and B in (48) satisfy the conditions

|a1($) + a2(t)| ≤ a($, t), (49)

|A(ς, η, Ξ, κ)| ≤ q
q− p

τ1(ς, η)
[

f (ς, η)|Ξ|p + |κ|
]
, (50)

|B(χ, η, Ξ)| ≤ τ2(χ, η)|Ξ|p, (51)
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where a($, t), τ1(ς, η), f (ς, η), and τ2(χ, η) are as in Theorem 2 and q > p > 0 are constants. If
Ξ($, t) satisfies (48), then

|Ξ($, t)| ≤
{

p($, t) + M1M2

∫ `1($)

$0

∫ `2(t)

t0

−
τ1(ς, η)

−
f (ς, η)∆η∆ς

} 1
q−p

(52)

where

p($, t) = (a($, t))
q−p

q

+M1M2

∫ `1($)

$0

∫ `2(t)

t0

−
τ1(ς, η)

(
M1

∫ ς

$0

−
τ2(χ, η)∆χ

)
∆η∇ς

and
M1 = Max

$∈I1

1
1− h∆

1 ($)
, M2 = Max

t∈I2

1
1− h∆

2 (t)

and
−
τ1(γ, ξ) = τ1(γ + h1(ς), ξ + h2(η)),

−
τ2(µ, ξ) = τ2(µ, ξ + h2(η)), and

−
f (γ, ξ) =

f (γ + h1(ς), ξ + h2(η)).

Proof. If Ξ($, t) is any solution of (48), then

Ξq($, t) = a1($) + a2(t)

+
∫ $

$0

∫ t

t0

A
(

ς, η, Ξ(ς− h1(ς), η − h2(η)),
∫ ς

$0

B(χ, η, Ξ(χ− h1(χ), η))∆χ

)
∆η∇ς. (53)

Using the conditions (49)–(51) in (53), we obtain

|Ξ($, t)|q ≤ a($, t) +
q− p

q

∫ $

$0

∫ t

t0

τ1(ς, η)
[

f (ς, η)|Ξ(ς− h1(ς), η − h2(η))|p

+
∫ ς

$0

τ2(χ, η)|Ξ(χ, η)|p∆χ

]
∆η∇ς. (54)

Now, making a change in variables on the right side of (54), ς− h1(ς) = γ, η − h2(η) = ξ,
$− h1($) = `1($) for $ ∈ T1, and t− h2(t) = `2(t) for t ∈ T2. We obtain the inequality

|Ξ($, t)|q ≤ a($, t) +
q− p

q
M1M2

∫ `1($)

$0

∫ `2(t)

t0

−
τ1(γ, ξ)

[−
f (γ, ξ)|Ξ(γ, ξ)|p

+M1

∫ γ

$0

−
τ2(µ, ξ)|Ξ(µ, η)|p∆µ

]
∆ξ∆γ. (55)

We can rewrite the inequality (55) as follows:

|Ξ($, t)|q ≤ a($, t) +
q− p

q
M1M2

∫ `1($)

$0

∫ `2(t)

t0

−
τ1(ς, η)

[−
f (ς, η)|Ξ(ς, η)|p

+M1

∫ ς

$0

−
τ2(χ, η)|Ξ(χ, η)|p∆χ

]
∆η∆ς. (56)

As an application of Corollary 1 to (56) with κ($, t) = |Ξ($, t)|, we obtain the desired
inequality (52).

6. Conclusions

In this work, by employing the Leibniz integral rule on time scales, we studied further
extensions of the delay dynamic inequalities proved in [15,16] and generalized a few of
those inequalities to a generic time scale. We also looked at the qualitative characteristics of
various different dynamic equations’ time scale solutions. Furthermore, as future work,
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we intend to give more generalizations of these results in other directions by using the
(q, ω)-Hahn difference operator.
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