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A B S T R A C T

Hyper-heuristics are search techniques for selecting, generating, and sequencing (meta)-heuristics to solve
challenging optimization problems. They differ from traditional (meta)-heuristics methods, which primarily
employ search space-based optimization strategies. Due to the remarkable performance of hyper-heuristics in
multi-objective and machine learning-based optimization, there has been an increasing interest in this field.
With a fresh perspective, our work extends the current taxonomy and presents an overview of the most
significant hyper-heuristic studies of the last two decades. Four categories under which we analyze hyper-
heuristics are selection hyper-heuristics (including machine learning techniques), low-level heuristics, target
optimization problems, and parallel hyper-heuristics. Future research prospects, trends, and prospective fields
of study are also explored.
1. Introduction

Hyper-heuristics have evolved as a means to increase the generality
of search and optimization algorithms. The term ‘‘hyper-heuristics’’
was first mentioned by studies in the 1960s (Crowston et al., 1963).
Today, there is an ongoing interest in this field, leading to an increasing
number of high-quality studies. As of May 2023, when the keyword
‘‘hyper-heuristic’’ is searched, more than 9,660 and 1,003 studies are
reported on Google Scholar and Web of Science websites, respectively.
Hyper-heuristics work on top of a set of heuristics to select, generate,
and sequence the best problem-specific heuristics to solve a particular
problem. They are distinct methodologies developed to solve hard
optimization problems. In order to be able to use a metaheuristic
for solving a specific issue, domain knowledge is necessary. However,
hyper-heuristics are innovative rather than attempting to solve the
problem optimally. The algorithms look for the most appropriate ap-
proach or sequence of heuristics. They can determine and apply the
most effective heuristic to address a specific issue. The flowchart of a
hyper-heuristic can be seen in Fig. 1.

As new heuristics and (meta)-heuristics are being proposed daily
due to widespread interest, many new opportunities for hyper-heuristics
emerge, capturing the attention of research communities.

Hyper-heuristics generally use lower-level heuristics and/or meta-
heuristics by selecting/generating the most suitable (meta)-heuristics
rather than traversing the search space itself, as this can be performed
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Fig. 1. The flowchart of the hyper-heuristic algorithms using selection/generation of
heuristics.

more efficiently by a lower-level heuristic and/or a metaheuristic algo-
rithm. Unlike traditional hyper-heuristics, recent state-of-the-art hyper-
heuristic studies are mostly inclined to solve multi-objective optimiza-
tion, machine-learning-supported techniques, and parallel computing.
We have decided that it is necessary to extend the existing taxon-
omy of hyper-heuristics by preparing a new survey, considering these
new issues that have not been mentioned in previous surveys. Our
study is the first to categorize the most influential hyper-heuristic
studies in the last two decades with a new approach. We examine the
hyper-heuristics under four new headings: selection hyper-heuristics,
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Fig. 2. Our proposed classification of hyper-heuristics.
Fig. 3. The increasing number of hyper-heuristic studies between 2000 and 2021
(Google scholar).

low-level heuristics, target optimization problems, and parallel hyper-
heuristics (see Fig. 2 for the details of the proposed classification).

Wolpert and Macready (1997) prepared a set of rules called No
Free Lunch (NFL) theorems in 1997 to illustrate the components of
information-theoretic optimization and performance benchmarking.
According to these theorems, every improvement in one class of jobs
is offset by an improvement in another. If algorithm 𝐴 can outperform
algorithm 𝐵 on a specific problem, then algorithm 𝐵 can outperform
algorithm 𝐴 on other problem sets. Numerous search problems, their
geometry, and information-theoretic aspects are investigated in this
study. This strategy allows researchers to develop mathematical rules
for evaluating the performance of a certain search method. The NFL
theorem indicates hyper-heuristics have a stronger theoretical founda-
tion than heuristic and metaheuristic algorithms. Therefore, the NFL
theorem is an important theoretical criterion to justify the performance
of hyper-heuristics

Fig. 3 gives the number of academic studies on hyper-heuristics
using Google Scholar from 2000 until 2022. It is observed that the num-
ber of studies has been increasing at a higher rate with every passing
year. After 2017, the increase in studies becomes more visible, and this
tendency is likely to continue in the upcoming years. Unlike previous
hyper-heuristic surveys written by the same researchers repeatedly, we
think our survey brings a different perspective to the developments
in the hyper-heuristics of the last two decades. More than 150 recent
papers are inspected in our survey.

The rest of this study is organized as follows: Section 2 gives brief
information about recent reviews, state-of-the-art studies, and frame-
works related to hyper-heuristics. Section 3 gives detailed information
about the hyper-heuristics of our extended classification regarding
four subsections: selection hyper-heuristics, low-level heuristics, target
optimization problems, and parallel hyper-heuristics. The last section
presents our concluding remarks, new research areas, and future work.
2

2. Previous surveys, state-of-the-art studies and frameworks of
hyper-heuristic algorithms

This section gives detailed information about previous surveys/
reviews and proposed frameworks of hyper-heuristics (see Table 1) in
the literature in chronological order.

Burke et al. (2003) introduced the main concepts of hyper-heuristics,
briefly explained these algorithms, and reviewed the latest studies in
the field. Özcan, Bilgin, and Korkmaz (2008) investigated the necessity
for domain expertise while using a metaheuristic to solve problems.
The authors proposed hyper-heuristics as a new search optimization
strategy. A new hyper-heuristic technique function was proposed on
top of a series of heuristics. In their work, hyper-heuristics are sub-
jected to a thorough examination. The best technique was consistently
compared to genetic and memetic algorithms. New frameworks of
hyper-heuristics were also explored to cast doubt on the concept of
issue independence. Burke et al. (2009) addressed genetic program-
ming as the most employed approach. The methods required to use
this methodology, several example case studies, and a discussion of
important concerns were covered in depth. Their presentation aimed to
illustrate this novel technique’s tremendous possibilities for automating
the heuristic design process.

Ouelhadj and Petrovic (2010) studied the low-level heuristics’ role
of interaction and cooperation. The authors developed a population
of heuristic agents, called ‘‘cooperative agents’’, as a framework of
hyper-heuristics. In their model, the cooperative agent uses a set of
low-level heuristic solutions to decide the best heuristics. The pro-
posed cooperative framework outperformed sequential hyper-heuristics
in studies conducted on flow shop benchmarks. Burke, Hyde, et al.
(2010) gave a categorization of hyper-heuristics and a description that
encompasses the current research on this topic. The authors divided
hyper-heuristics into selection and creation categories. Each category
was described in length with several exemplary cases. The authors
explained the key aspects of existing methodologies and proposed new
avenues for researching hyper-heuristics. Burke, Curtois, et al. (2010)
studied permutation flow shop, bin packing, and scheduling problems
(with Hyper-heuristics Flexible framework, HyFlex). Durillo and Nebro
(2011) developed jMetal, a hyper-heuristic for multi-objective opti-
mization problems. jMetal uses state-of-the-art optimization tools. The
framework presents a user-friendly graphical interface and statistical
values of the results using multi-core processors.

Kheiri, Özcan, and Parkes (2012) surveyed the well-known hyper-
heuristics of high school scheduling problems. In their experiments, the
authors searched for the best heuristics. Burke et al. (2013) analyzed
the selection hyper-heuristics and explored recent frameworks. The sur-
vey included research trends and future works. Furthermore, the cur-
rent taxonomy of selection hyper-heuristics was reported. Pappa et al.
(2014) studied automated algorithm design and similarities between
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supervised machine learning and hyper-heuristics. The authors dis-
cussed research directions and challenges in meta-learning and hyper-
heuristics. Burke, Burke, Kendall, and Kendall (2014) prepared a tu-
torial for implementing hyper-heuristics and discussed relevant re-
search issues in application domains. The study gives short hyper-
heuristics with examples. Ryser-Welch and Miller (2014) examined
novel frameworks for hyper-heuristics and the field’s general back-
ground. This research adds to current reviews and gives the scholarly
community a different viewpoint on this important and emerging topic.
The authors pointed out that some frameworks are heavily limited,
remarking on the difficulty of performing better than state-of-the-
art algorithms. Sabar, Ayob, Kendall, and Qu (2014a) offered a gene
expression programming approach for generating the hyper-heuristic
framework’s high-level heuristic throughout the instance-solving pro-
cess. The created heuristic takes information from the current issue and
chooses the best low-level heuristic. The suggested hyper-universality
heuristics are tested using the HyFlex framework (Ochoa et al., 2012)
to solve well-known combinatorial optimization problems. According
to empirical data, the proposed technique performs well for multiple
cases across many domains.

López-Camacho, Terashima-Marin, Ross, and Ochoa (2014) devel-
oped a hyper-heuristic framework that uses a deterministic technique
to produce solutions for packing and cutting problems. The framework
can solve one and two-dimensional issues involving irregular concave
polygons. Thousands of problems with concave polygons are used to
validate the technique. Branke, Nguyen, Pickardt, and Zhang (2015)
investigated the topic of production scheduling. The authors provided
a comprehensive overview of the design choices and crucial challenges
that arise throughout the development of such systems. The authors
outlined state-of-the-art techniques and provided a taxonomy and sug-
gestions for creating hyper-heuristics in scheduling algorithms. The
challenges, open questions, and numerous avenues for further research
are mentioned.

Elhag and Özcan (2015) presented a new selection hyper-heuristic
framework for solving grouping problems using grouping low-level
heuristics and a move acceptance mechanism. High-quality solutions
are retained, reflecting the trade-off between the number of groups and
the extra target for the specific grouping issue. The move acceptance
mechanism incorporates a local search strategy capable of advancing
improvements on such trade-off solutions. The performance of selection
hyper-heuristics is examined on graph coloring as a grouping problem.
The experimental findings demonstrate the framework’s usefulness in
grouping hyper-heuristics to create high-quality answers.

Pillay (2016) introduced hyper-heuristics for educational scheduling
and its research areas to give a generic solution. Kheiri and Özcan
(2016) studied designing an adaptive heuristic selection method to
improve the performance of a selection hyper-heuristic. They described
an iterated multi-stage hyper-heuristic that iterates through interact-
ing hyper-heuristics. This study is based on the principle that not
all low-level heuristics are useful for the search process. Gómez and
Coello (2017) presented a hyper-heuristic for continuous search spaces
that combined various scalarizing functions to generate Pareto opti-
mal solutions in multi-objective optimization problems. The selection
of scalarizing functions is guided by the s-energy measure, which
evaluates the distribution of points in k-dimensional manifolds. The
proposed approach outperforms other state-of-the-art algorithms in the
majority of global test problems. Pillay and Qu (2018) investigated
recent techniques to solve real-world optimization problems. Theory,
fundamentals, and applications of hyper-heuristics are analyzed in
biology, optimization, and operations research. The paper by Choong,
Wong, and Lim (2018) discusses the automation of hyper-heuristic
methodologies for solving optimization problems. Traditional models
use a high-level heuristic with heuristic selection and move acceptance
components. The article proposes an automatic design method using
reinforcement learning, specifically Q-learning, to guide the selection
3

of components. Extensive evaluations on benchmark instances from six
problem domains show the method’s comparability to top-performing
hyper-heuristic models in the existing literature.

Burke et al. (2019) overviewed categorizations of hyper-heuristics
and provided a unified classification. They distinguished between
heuristic selection and generation. Some examples are discussed, and
recent trends are highlighted. In their study, Abd Elaziz and Mirjalili
(2019) enhanced the Whale Optimization Algorithm (WOA) by intro-
ducing a hyper-heuristic called DEWCO. This approach automatically
selects a suitable chaotic map and a portion of the population using the
Differential Evolution (DE) algorithm. DEWCO improves exploration
and avoids local optima in WOA, as demonstrated through experiments
on 35 standard CEC2005 functions using seven algorithms. The results
confirm the superior performance of DEWCO in determining optimal
solutions for test function problems. In a study by Hao, Qu, and
Liu (2020) highlights the growing interest in hyper-heuristics, which
aim to provide generalized solutions to optimization problems by
searching in a higher-level space of heuristics. The article proposes a
unified framework called evolutionary multitasking graph-based hyper-
heuristic (EMHH) that combines the advantages of knowledge transfer
and cross-domain optimization from evolutionary multitasking with
heuristic search in hyper-heuristics. The effectiveness and generality of
the EMHH framework are demonstrated through experiments on exam
timetabling and graph-coloring problems, showing improved efficiency
compared to single-tasking hyper-heuristics.

Nesi and da Rosa Righi (2020) demonstrated a hyper-heuristic
that employs stochastic automata networks with learning to govern
a series of meta-heuristics. This research looks at the search space
motions as examined by heuristic methods. The approach works with
eight meta-heuristics. The findings illustrated the effectiveness of the
proposed hyper-heuristic framework. An efficient hyper-heuristic ca-
pable of selecting and setting the parameters of low-level heuristics is
developed. Drake, Kheiri, Ozcan, and Burke (2020) analyzed current
selection hyper-heuristics and described new frameworks of hyper-
heuristics. The current taxonomy of selection hyper-heuristics was ex-
panded to include the present research issues. This study concentrated
on selection hyper-heuristics and included open questions. Sánchez
et al. (2020) studied hyper-heuristics proposed for solving the most
challenging combinatorial optimization problems. In their framework,
the authors studied well-known combinatorial optimization problems.
The authors identified problem domains that might assist hyper-
heuristics to have a more significant impact. Mısır (2021) gave an
overview of the shortcomings and recommendations for future hyper-
heuristic studies. In a recent study, Duflo, Danoy, Talbi, and Bouvry
(2022) prepared a framework of hyper-heuristics with Q-Learning,
Hyper-Heuristic Framework (QLHHF) that reduces any problem to
a graph-based problem. Therefore, many (multi-objective and multi-
agent) optimization problems can be modeled, requiring only the
problem’s parameters. Karimi-Mamaghan, Mohammadi, Meyer, Karimi-
Mamaghan, and Talbi (2022) prepared a review on machine learning
in metaheuristics. This review has many new ideas about the selec-
tion of heuristics, fitness evaluation (surrogate, approximate fitness),
population initialization, evolution, parameter tuning, and coopera-
tion of individuals. Most of these topics are related to the design of
hyper-heuristics. The authors defined a new taxonomy and a technical
discussion on future research directions.

Li, Özcan, Drake, and Maashi (2023) introduced existing learning
automata-based multiobjective hyper-heuristic. The authors investi-
gated the generality of the proposed method and another learning
automata-based selection hyper-heuristic for multiobjective evolution-
ary algorithms.

As a novel contribution, this survey differs from previous sur-
veys regarding categorization. We reveal a new and extended clas-
sification of hyper-heuristics. The best practices of selection hyper-
heuristics, low-level heuristics, target optimization problems, and par-
allel hyper-heuristics of the last twenty years are listed and examined
in detail.

Table 1 presents the list of well-known hyper-heuristic frameworks

(and the problem domains).
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Table 1
The list of well-known hyper-heuristic frameworks.

Study Name Problem domain

Burke, Curtois, et al. (2010) HyFlex flow shop, bin packing, scheduling

Van Onsem and Demoen (2013) ParHyFlex maximum satisfiability

Durillo and Nebro (2011) jMetal (multi-objective) generic

Swan, Özcan, and Kendall (2011) Hyperion generic

Urra, Cabrera-Paniagua, and Cubillos (2013) hMod generic

Bleuler, Laumanns, Thiele, and Zitzler (2003) PISA (multi-objective) generic

Cora, Uyar, and Etaner-Uyar (2013) HH-DSL generic

Xu, Hutter, Hoos, and Leyton-Brown (2008) SATzilla satisfiability problems

Pillay and Beckedahl (2017) EvoHyp generic

Cruz-Duarte, Amaya, Ortiz-Bayliss, Terashima-Marín, and Shi (2020) CUSTOMHyS generic

Cruz-Duarte, Ortiz-Bayliss, and Amaya (2022) MatHH job shop scheduling
3. Extended taxonomy and recent applications of hyper-heuristics

This section examines the most cited/valuable state-of-the-art hyper-
heuristics published in the best journals and conferences for the last
twenty years. According to our classification, we give the details of
applied selection hyper-heuristics, low-level heuristics, target optimiza-
tion problems, and parallel hyper-heuristics. It should be noted that
in this study, we intentionally defer from using the term taxonomy, as
some of the hyper-heuristics can be labeled with more than a single
category. For example, a low-level heuristic can also be a member of
parallel hyper-heuristics.

3.1. Selection hyper-heuristics

The main goal of selection hyper-heuristics is to find the best
technique or sequence of heuristics that will use a generic method to
produce solutions with appropriate quality. Low-level heuristics are
used by the selection heuristic while performing these activities. The
selection hyper-heuristics perform selection, generation, and sequenc-
ing on low-level heuristics (the layer that focuses on optimizing the
problem). Sequencing the (meta)-heuristics, i.e., selecting a sequence of
heuristics though a single solution process, can be considered a differ-
ent category than the selection and generation of the (meta)-heuristics
because this process can provide additional means to compensate the
downsides of each heuristic in the sequence rather than relying on the
performance of a single heuristic on each run.

A selection hyper-heuristic handles a set of low-level heuristics to
select the best one using performance measures for low-level heuristics.
The stages of hyper-heuristics include the selection of heuristics and
move acceptance strategies. The main purpose of selection hyper-
heuristics is to manage this process according to the success of low-level
heuristics.

The selection or generation of heuristics has always been one of the
most important issues of this domain since the introduction of hyper-
heuristics. Fig. 4 presents an overview of the selection and low-level
categories of the proposed hyper-heuristics’ taxonomy. The machine
learning component learns (or a learning layer might not be used) from
the results of the examined heuristics and suggests new methods. The
hyper-heuristic layer uses a selection strategy to select the best method
depending on the information coming from the machine learning layer.
This process is usually an iterative task to accept the candidate solution.

Cowling, Kendall, and Soubeiga (2000) introduced a choice function
for heuristic selection in hyper-heuristics. Since then, the choice func-
tion has been a well-known method, maintaining a score for each low-
level heuristic. A low-level heuristic’s score is determined by whether
the heuristic provides improvement when employed alone, in combina-
tion with other heuristics, or how much effort has been invested. The
success of the choice function is verified by many studies using different
move acceptance methods on various problems.
4

Fig. 4. The overview of selection and low-level categories of the proposed
hyper-heuristics’ taxonomy.

In order to design better hyper-heuristics, the selection heuris-
tics level should have as much information as possible about the
problem domain. Limited information is required in classical hyper-
heuristic frameworks (the number of low-level heuristics, the type
of optimization problem, and the objective function) (Kendall et al.,
2002).

Branke et al. (2015) gave a heuristic-generation review with a
focus on the design of construction heuristics. The authors developed
the representation of heuristics, the optimization algorithm, and the
fitness value function. The authors classified hyper-heuristics based
on learning methods. Pillay (2016) provided an overview of con-
structive hyper-heuristics for educational timetabling with selection
and generation of constructive/perturbative hyper-heuristics. Interest-
ingly, Kotthoff (2016) addressed the selection hyper-heuristic issues
from the perspective of Operations Research and prepared a survey
to determine the most suitable algorithm for solving a problem. He
showed significant performance improvements in algorithm selection
techniques, closely related to our survey.

Ross, Schulenburg, Marín-Bläzquez, and Hart (2002) proposed to
generate a solution process applicable to many problem instances us-
ing a hyper-heuristic to remove the drawbacks of the evolutionary
algorithms. The authors addressed the long execution times and no
guarantee of finding the optimal solutions. Simple non-evolutionary
heuristics were applied, and the proposed method was successfully
tested on 1D bin packing problems. Bilgin, Özcan, and Korkmaz (2006)
analyzed common heuristic selection techniques and moved acceptance
methods of hyper-heuristics. Various methods were examined on exam
timetabling problem instances. The authors implemented many heuris-
tic selection techniques and acceptance criteria. Their study on 21
exam timetabling problem instances comprehensively compared these
methods.
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Iterative selection hyper-heuristics use different operators to per-
form single-point search strategies, heuristic selection, and move ac-
ceptance. In order to improve performance, learning mechanisms are
introduced by recent studies. For example, Burke, Kendall, Mısır, and
Özcan (2012) proposed Monte Carlo-based hyper-heuristics. One of the
selection hyper-heuristics works with the simulated annealing move
acceptance method. This method has a significant improvement in the
experiments. Experiments revealed that the choice function is the best
alternative for simulated annealing.

To develop better scheduling for cloud computing, Tsai, Huang,
Chiang, Chiang, and Yang (2014) introduced a new hyper-heuristic
(HHSA). The authors selected low-level strategies to locate superior
candidate solutions. The results were compared with some cutting-edge
scheduling methods. The findings demonstrated that the HHSA could
dramatically shorten the make-span of task scheduling on Hadoop.

Metaheuristics are also being used as selection hyper-heuristics.
Koulinas, Kotsikas, and Anagnostopoulos (2014) suggested a hyper-
heuristic using the well-known metaheuristic Particle Swarm Opti-
mization (PSO) for resource-restricted project planning. The proposed
hyper-heuristic manages low-level heuristics. The method was eval-
uated using a collection of typical issue situations from the PSPLIB
library and contrasted with other methods in the literature. The out-
comes confirmed the efficacy of the suggested strategy. Chen, Li, Yang,
and Rudolph (2015) studied the energy optimization problems on a
quantum-inspired learning approach. The rapid solution assessment
improved search speed, and the suggested technique had higher con-
vergence performance. Chen, Ding, Qin, and Zhang (2021) proposed a
hyper-heuristic with genetic programming for solving project schedul-
ing problems with Simulated Annealing (to avoid local optima). Shao,
Shao, and Pi (2022) suggested a selection hyper-heuristic framework
for a flow-shop scheduling problem. The algorithm included high and
low-level heuristics. The findings revealed that the algorithm outper-
formed the Gurobi solver substantially.

Reward-based selection heuristics are important components of
hyper-heuristics. Sabar, Ayob, Kendall, and Qu (2014b) developed a
new reward-based heuristic selection technique. A gene expression
programming was proposed for the acceptance criteria. The results
verified that the framework could generalize well for different domains.
In a recent study, Lara-Cárdenas et al. (2020) studied the Job-Shop
Scheduling Problem. The authors intended to create hyper-heuristics
using reinforcement and unsupervised learning. The solution employs
a feature space clustering algorithm via a reward-based system.

Tree-based and hierarchical selection heuristics can be seen in
hyper-heuristics. Sabar and Kendall (2015) suggested a Monte Carlo
tree search to determine the best heuristic sequence. The authors link
it with a memory system that uses various population update algo-
rithms. The test suites for the hyper-heuristic competition were used to
illustrate the generality of the framework. The outcomes showed that
the suggested method generalizes successfully across all six domains
and produces competitive results. Guerriero and Saccomanno (2022)
tackled the 2D irregular bin packing problem. A dynamic hierarchical
strategy was provided to handle the problem. The low-level heuristics
were chosen according to the primary characteristics of the case to be
solved. The hyper-heuristic can execute simple or recursive heuristics.
A comparison with cutting-edge techniques is also performed. The
computational findings were promising. Ochoa et al. (2021) proposed
machine learning techniques to speed up the generation of algorithm
selection strategies to improve reproducibility and modularity. The
techniques are implemented on a domain-independent module. The au-
thors produced four new algorithm selectors for constraint satisfaction
problems.

Machine learning-based hyper-heuristics can combine the advan-
tages of low-level heuristics when they are used as a high-level selection
strategy after learning about the characteristics of optimization meth-
5

ods. Reinforcement learning, Q-learning, and deep learning are the
most used machine learning methods in the literature that achieve
significant improvements compared to single metaheuristics.

Özcan, Misir, Ochoa, and Burke (2012) developed a hyper-heuristic
with a great deluge on examination timetabling problems using heuris-
tic selection methods. Hunt, Neshatian, and Zhang (2012) suggested
a hyper-heuristic for the feature selection problem using genetic pro-
gramming. Using some fundamental components, the suggested tech-
nique generates new heuristics. The study developed heuristic functions
as new search techniques that can explore the subsets of features.
Classifier performance was then increased by employing tiny subsets
of features discovered through evolving heuristics. Maashi, Özcan, and
Kendall (2014) presented a selection function to solve multi-objective
problems. This high-level technique controlled and combined the low-
level heuristics, which regulates and combines the advantages of multi-
objective evolutionary algorithms. The performance was investigated
on the Walking Fish Group test suite benchmark (Meneghini, Alves,
Gaspar-Cunha, & Guimaraes, 2020). Furthermore, the hyper-heuristic
is tested on the automobile crashworthiness design problem.

Deep learning (LeCun, Bengio, & Hinton, 2015) extracts hidden
patterns, and the advantages of low-level heuristics are combined. The
proposed algorithm outperformed existing metaheuristic algorithms
and conventional methods on large-scale problems. Abd Elaziz and
Mirjalili (2019) improved the Whale Optimization Algorithm (WOA)
by developing a hyper-heuristic to mitigate the disadvantages of em-
ploying the Differential Evolution (DE) (Price, 2013) to select a chaotic
map and a subset of the population.

Qin, Zhuang, Huang, and Huang (2021) investigated a vehicle rout-
ing problem with varying capacities serving customers while minimiz-
ing the maximum service time. For this purpose, the study developed
a deep reinforcement learning hyper-heuristic. In their method, meta-
heuristics were considered low-level, whereas reinforcement learn-
ing was used as a high-level heuristic selection strategy. Lassouaoui,
Boughaci, and Benhamou (2022) developed a novel approach for the
feature selection problem using a selection hyper-heuristic with Thomp-
son sampling. The method employed reinforcement learning to evaluate
low-level heuristics and predict the most efficient one. The proposed
method was used in conjunction with a single nearest neighbor clas-
sifier. It reports the best subset of features for maximizing accuracy.
Experiments show that the proposed method can perform better than
many conventional classifiers compared to existing approaches. Lin, Li,
and Song (2022) presented a hyper-heuristic with Q-learning (QHH) to
address the final testing scheduling of semiconductors. The Q-learning
algorithm is used to select low-level heuristics. The selected heuristic is
performed on the solution space of the optimization process. The results
verify the high performance of the QHH method.

Juntama, Delahaye, Chaimatanan, and Alam (2022) addressed a
strategic planning problem based on linear dynamical systems to min-
imize traffic complexity. A hyper-heuristic framework based on rein-
forcement learning was employed to improve the searching capacity.
The approach reduced air traffic complexity by 92.8%, according to
the results. Zhang, Bai, Qu, Tu, and Jin (2022) created a hyper-
heuristic framework using deep reinforcement to deal with various
levels of uncertainty. The approach had a data-driven heuristic se-
lection component with low-level heuristics to improve uncertainties
while optimizing many problems (see Fig. 5 for the deep reinforce-
ment learning hyper-heuristic architecture (deep RL)). The actions are
low-level heuristics, and the selection of the actions is based on the his-
torical experience of the deep RL agent. Venske, Almeida, Lüders, and
Delgado (2022) developed a Multi-objective Evolutionary Algorithm
(MOEA) and Differential Evolution for the QAP up to ten objectives.
The proposed algorithm provides information to find the best crossover
operator, and according to the results, it outperforms the other methods

with classical crossover operators.
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Fig. 5. The deep reinforcement learning-based hyper-heuristic architecture.

3.2. Low-level heuristics

Low-level heuristics are mostly simple methods for visiting the
neighboring solutions with swap, add, and delete operators and local
search methods. However, our survey extends this category according
to the new studies that use simple heuristics, metaheuristics, memetic
algorithms, and matheuristics. State-of-the-art approaches and the best
practices of the low-level heuristic applications are explained with
summaries of recent papers.

3.2.1. Heuristics
The heuristics we have examined in this category are simple meth-

ods, local search techniques (visiting neighboring solutions using swap,
add, and delete techniques) and they cannot be called metaheuristics
or their derivatives.

Ouelhadj and Petrovic (2010) looked at how low-level heuristics
might cooperate. A set of heuristics and a cooperative hyper-heuristic
algorithm made up their framework. By sharing the results, the heuris-
tics interact with each other. The hyper-heuristic used a set of low-level
heuristics for the general selection and the exchange of solutions.

Hybrid heuristics mostly give better results than single heuris-
tics (Blum, Puchinger, Raidl, & Roli, 2011). Therefore, these methods
have been used successfully in recent studies. Sabar, Ayob, Qu, and
Kendall (2012) researched how to solve exam scheduling issues us-
ing a novel graph coloring constructive hyper-heuristic. The authors
use four low-level graph coloring methods (largest, saturation, largest
colored, and largest enrollment degrees) that have been hierarchi-
cally hybridized. The suggested method was evaluated using the 2007
International Timetabling Competition datasets. Results show that con-
structive hyper-heuristic graph coloring gives better solutions than
other procedures.

Routing/scheduling problems is another field where heuristic-based
hyper-heuristics are applied frequently. For resolving challenging cases
of the dynamic vehicle routing issue, Garrido and Riff (2010) devised
and examined an evolution-based hyper-heuristic strategy. Perturba-
tive, constructive, and noise were low-level heuristics used in their
study. The heuristics are used complexly to create a new hyper-heuristic
algorithm.

Pickardt, Hildebrandt, Branke, Heger, and Scholz-Reiter (2013) de-
veloped one of the first examples of hyper-heuristics that combine
heuristic generation and selection in their study. The authors proposed
a new hyper-heuristic for the generation of efficient dispatching rules.
The method uses an evolutionary algorithm to search for a good
assignment of rules. The results demonstrated that hyper-heuristics
could generate rules with lower mean weighted tardiness than bench-
mark rules. The two-stage algorithm outperformed the evolutionary
algorithm hyper-heuristic.

Ahmed, Mumford, and Kheiri (2019) examined selection hyper-
heuristics for the bus network route design problem to minimize the
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passenger journey time and operator expenses. Combining a sequence-
based selection with the great flood acceptance technique yielded
greater outcomes in shorter run times than the best-known options.
Timetabling and scheduling problems are staple problems for exam-
ining the performance of heuristic-based hyper-heuristics in the lit-
erature, presenting numerous works. For example, Olgun, Koç, and
Altıparmak (2021) investigated the minimization of fuel consumption
costs. The authors developed a hyper-heuristic with variable neighbor-
hood heuristics and iterative local search. According to the findings,
the green objective function significantly impacted total consumption
costs. Compared to other state-of-the-art heuristics, the algorithm can
produce competitive results.

3.2.2. Metaheuristics
Metaheuristics are state-of-the-art methods for solving NP-Hard op-

timization problems (Boussaïd, Lepagnot, & Siarry, 2013; Dokeroglu,
Sevinc, Kucukyilmaz, & Cosar, 2019; Talbi, 2009). Selecting the most
appropriate metaheuristic from a pool of solutions often provides better
solutions than working with simple heuristics. These features make
them a valuable solution. In addition to this, hybrid metaheuristics that
combine various metaheuristics and exact algorithms are known to pro-
vide excellent solutions (Blum et al., 2011). In this part of our survey,
metaheuristics are considered low-level heuristics of hyper-heuristic
algorithms, and their advantages and disadvantages are examined.

A study on the past literature indicates that there are three main
categories of strategies where metaheuristics are utilized as hyper-
heuristics: solver selection out of a pool of metaheuristics, using meta-
heuristics parameter selection, and using metaheuristics for candidate
solution generation.

Using metaheuristic algorithms for tuning parameters of complex
problems in the presence of extensive number of heuristic- or domain-
dependent parameters, or when these parameters do not require
domain-specific knowledge, is accepted as an attractive solution in
many studies. Cutillas-Lozano, Giménez, and Almeida (2015) used the
unified parameterized scheme to implement hyper-heuristics on top
of parameterized metaheuristics to select the best set of parameters.
The authors verified the proposed hyper-heuristic to solve computa-
tional optimization problems (the power consumption in wells, the
determination of the chemical reaction kinetic constants and the max-
imum diversity problem) using Greedy Randomized Adaptive Search
Process (GRASP) (Feo & Resende, 1995), tabu search, genetic algo-
rithms and Scatter Search. The hyper-heuristic algorithm provides
satisfying results for the metaheuristic with the selected parametriza-
tion. Navajas-Guerrero, Manjarres, Portillo, and Landa-Torres (2022)
designed a hyper-heuristic to set the time series parameters to enable
failure prediction. In their study, the authors use harmony search
and feature-based machine learning algorithms for optimizing failure
prediction parameters such as window size, time series-related features,
and thresholds. Abd Aziz (2015) created a hyper-heuristic technique
based on Ant Colony Optimization (ACO) (Dorigo, Birattari, & Stutzle,
2006) for the traveling salesman problem. The optimization focused
on automated tuning for non-domain-specific parametrization setups.
Two novel pheromone updating procedures were also included in the
proposed hyper-heuristic.

Some hyper-heuristics also adopt metaheuristics as low-level solu-
tion strategies. Cruz-Duarte et al. (2021) proposed a strategy using a
single-solution metaheuristic that has adopted ten different search tech-
niques while using simulated annealing to set the parameters of meta-
heuristics. In their experiments, the authors validated the results on
one hundred-seven continuous problems having 50 dimensions. Gölcük
and Ozsoydan (2021) proposed a recommendation architecture with
Q-learning to decide the best algorithm from metaheuristics, Manta
Ray Foraging Optimization, Artificial Bee Colony (ABC), Whale Opti-
mization (WOA), and Salp Swarm (SS). The hyper-heuristic selects the
optimizer using a comparative judgment strategy. The performances
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were assessed using an experimental analysis that included appro-
priate statistical tests on knapsack problems. Tabataba and Mousavi
(2012) proposed a beam search metaheuristic-based hyper-heuristic al-
gorithm for the longest common subsequence (LCS) problem. The algo-
rithm was tested on real-life biological sequences. Experiments showed
that the hyper-heuristic could perform better than the state-of-the-art
approaches in the literature.

Some hyper-heuristic approaches in the literature also examine the
problem of achieving a high-quality initial solution set to reduce the
search space complexity, especially when the optimization problems
involve a high level of complexity. Pandiri and Singh (2018) addressed
the 𝑘-interconnected multi-depot multi-traveling salesman problem.
Experimental results showed that the approach could outperform other
state-of-the-art methods.

3.2.3. Memetic algorithms
The evolutionary algorithms implemented with local search meth-

ods are called memetic algorithms (Knowles & Corne, 2000; Krasnogor
& Smith, 2005). The memetic algorithms are based on the notion of
a meme, which is a unit of cultural development capable of local im-
provement. The memetic algorithms use local refinement, perturbation,
or constructive methods. Recently, there have been some studies to
integrate these state-of-the-art algorithms into hyper-heuristic methods.
It is seen that very impressive results have been obtained in this
regard. This section presents brief information about hyper-heuristics
developed with memetic algorithms.

In the most intuitive sense, most memetic algorithms are evolu-
tionary algorithms where local search is handled separately via the
feedback from other algorithms. Wang and Tang (2017) studied the
permutation flowshop scheduling problem using a genetic algorithm
supported by machine learning techniques for speeding up and im-
proving local search. In the proposed method, while the evolutionary
algorithm processes the solution instances, they are associated with an
archive where all generated solution is stored for further processing
and machine learning techniques are applied for selecting high-quality
but non-dominating solutions that may have merit. With a similar no-
tion, jing Wang and Wang (2022) presented a solution for a distributed
flow-shop scheduling problem. In their setting, the authors examined
the job sequencing and machine assignment problems simultaneously
and proposed heuristic decomposition techniques for solving the prob-
lem. The proposed strategy is to record the overall search history
and further examine non-dominant solutions via heuristics based on
their Pareto distributions. Although the study does not involve an
evolutionary algorithm, the framework proposes two simple assembly
scheduling and local intensification heuristics that involve stochastic
local search operations very reminiscent of the mutation operators in
an evolutionary algorithm.

Pereira, Ritt, and Vásquez (2018) proposed using memetic optimiza-
tion for a robotic assembly line balancing problem. In their problem
definition, the authors consider the assembly line balancing problem
and equipment scheduling decisions together and propose a memetic
approach that is based on a genetic algorithm. In their approach, a
solution for both with and without uncertainty is generated where the
problem without uncertainty is solvable with dynamic programming
while the case with uncertainties is NP-hard. Leite, Fernandes, Melício,
and Rosa (2018) examined the challenging exam timetabling problem
due to the existence of deterministic hard constraints. The authors
propose using a novel cellular evolutionary algorithm for generating so-
lutions while enhancing the local searches using a Threshold Annealing
heuristic over feasible sub-optimal solutions.

Lei, Gong, Jiao, and Zuo (2015) studied the examination timetabling
problem. The authors applied the evolutionary strategy and tabu search
(variable neighborhoods) to improve global search performance. The
evolutionary operators (crossover and mutation) are implemented to
obtain appropriate heuristics. Experiments conducted with benchmark
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instances demonstrated that the algorithm could outperform the other
approaches. Beyaz, Dokeroglu, and Cosar (2015) studied the well-
known offline 2D bin packing problem (2DBPP). The authors developed
new hyper-heuristics that select/combine heuristics and local search
methods to minimize the number of bins. The hyper-heuristics use the
first fit, next fit, best fit, tabu search, genetic and memetic algorithms.
The authors concluded that the new hyper-heuristics could obtain most
of the optimal solutions to problem instances.

Drake, Özcan, and Burke (2016) investigated how the crossover is
controlled at the hyper-heuristic level where no specific information
about the problem exists. The proposed framework is compared to other
recent hyper-heuristic frameworks using knapsack problems. In this
problem domain, controlling crossover at the domain level outperforms
managing crossover at the hyper-heuristic level. Ersoy, Ozcan, and
Etaner-Uyar (2007) designed a new hyper-heuristic method that uses
multiple hill climbers in a memetic algorithm. The hyper-heuristic
is customized for the memetic algorithm and makes greater use of
each hill climber’s power without modifying the memetic algorithm’s
framework. The proposed hyper hill-climber algorithm is validated on
exam timetabling problems.

Özcan (2006) presented an empirical study of memetic algorithms.
The experiments using a collection of well-known benchmark functions
with a memetic algorithm are discussed in detail. In the study, adaptive
heuristics are classified as hyper-heuristics. Memetic algorithms that
run a single hill climber independently are tested on a set of nurse
rostering problem cases.

3.2.4. Matheuristics
Matheuristics is an emerging optimization research area that fo-

cuses on the cooperation of metaheuristics and mathematical pro-
gramming techniques (Fischetti & Fischetti, 2018; Maniezzo, Stützle, &
Voß, 2021). Although there are few hyper-heuristic applications with
matheuristics, it is an exciting field. New studies have been proposed
to develop hyper-heuristics using matheuristics recently. Some studies
performed with Mixed Integer Linear Programs (MILPs) exist.

In a recent study, Archetti and Speranza (2014) prepared a sur-
vey on matheuristics that solve vehicle routing problems. The au-
thors proposed classification with three matheuristics classes; decom-
position, improvement heuristics and branch-and-price/column gener-
ation. A structured overview of the ideas that combine heuristics and
mathematical programming models is offered.

Gonzalez, López-Espín, Aparicio, and Talbi (2022) focused on MILPs,
and the authors proposed a new hyper-matheuristic for a MILP-based
decomposition. An evolutionary algorithm, tabu search, scatter search,
and GRASP metaheuristics are used in the proposed algorithm. The
experimental results showed that the solutions outperformed those
obtained by a metaheuristic. The best algorithm selection is obtained
for a set of cooperative metaheuristics.

Steenson, Özcan, Kheiri, McCollum, and McMullan (2022) inves-
tigated the multi-level hyper-heuristics arranging low-level heuristics
using the Constraint Programming (CP) Solver that performs local
search metaheuristics and hill climbing. The authors focused on exam
and course scheduling problems. The proposed method used a matrix
containing transitional probabilities between low-level heuristics. The
best hyper-heuristic for selection was examined for the timetabling
problem. The findings showed that the proposed method could yield
better solutions than other proposed solvers and CP Solver. In another
study, Vela, Cruz-Duarte, Ortiz-Bayliss, and Amaya (2022) developed
an extra layer of generalization to select an appropriate solver. The new
model outperformed the base hyper-heuristics. In a recent study, Do-
erner and Schmid (2010) examined the evolution of hybrid solution
strategies for several vehicle routing challenges. Only hybrid heuristics
and exact solution strategies are taken into account. Most extant hybrid
methods rely on set-covering formulations, local branching, or other de-
composition strategies. Amaya, Cruz-Duarte, and Ortiz-Bayliss (2022)
presented MatHH algorithm, a Matlab-based application that allows

rapid hyper-heuristics prototyping. The authors provide an overview
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of the architecture and some examples of its usage. Interesting research
questions that can be examined with MatHH are discussed in this study.

Matheuristics are commonly used in routing problems. Kramer,
Subramanian, Vidal, and Lucídio dos Anjos (2015) prepared a Ve-
hicle Routing Problem with environmental aspects to minimize the
costs of driver wages and fuel consumption while respecting time
windows and capacity constraints. The authors proposed a method
using a local search-based metaheuristic with an integer programming
approach. The proposed algorithm reports new best solutions for all
tested problems.

3.3. Target optimization problems

In this section, we examine the application areas of hyper-heuristics
as a target optimization problem in more detail. We explained this
section under four main subsections (single-objective, multi-objective,
bi-level optimization problems, and optimization under uncertainty
problems).

3.3.1. Single-objective problems
Previous survey sections mainly discussed single-objective algo-

rithms without mentioning this categorization as a target optimization
problem. An optimization problem is a single-objective optimization
problem if it minimizes or maximizes a single target value. We see that
hyper-heuristics have a very wide application area in this field. Some
of the single-objective problems that have been solved efficiently by
the hyper-heuristics are Exam scheduling, vehicle routing, generating
efficient dispatching rules, bus network route design, minimization of
fuel consumption costs, determination of the chemical reaction kinetic
constants, finding the longest common sub-sequence problem, traveling
salesman problem, examination timetabling problem, 2D bin packing
problem, knapsack problems, timetabling problem, resource-restricted
project planning (Pour, Drake, & Burke, 2018), energy optimization
problems, project scheduling problems, quadratic assignment (Venske
et al., 2022) etc. As seen, single-objective optimization problem ap-
plications of hyper-heuristic algorithms are quite extensive. In our
classification, bi-level optimization under uncertainty, parallel appli-
cations, low-level heuristics, and selection hyper-heuristics categoriza-
tions present several studies of recent single-objective problems.

Most recent studies have reported that hyper-heuristics obtained
better results than metaheuristics or other state-of-the-art optimization
approaches. Many hyper-heuristic studies for the solutions to single-
objective problems are presented in other sections of our survey (they
will not be mentioned in this section again).

3.3.2. Multi-objective problems
This section focuses on new multi-objective hyper-heuristic re-

search. Many researchers believe that applying hyper-heuristics to
multi-objective problems is an appealing alternative. This has become
one of the most extensively researched topics in recent years. We com-
piled a list of the most cited and cutting-edge multi-objective hyper-
heuristics studies. When we consider a multi-objective hyper-heuristic,
we refer to a problem with two or more objectives.

Burke, Silva, and Soubeiga (2005) offered a novel hyper-heuristic
approach with a tabu search to pick the best heuristic for optimizing
a particular individual objective. They examined scheduling and space
allocation problem instances. The outcomes demonstrated that the per-
formance of the multi-objective hyper-heuristic strategy is superior to
techniques in the literature. Gómez and Terashima-Marín (2012) built
multi-objective hyper-heuristics using NSGA-II (Deb, Pratap, Agarwal,
& Meyarivan, 2002) to solve 2D irregular cutting stock problems.
Instead of using a single heuristic consistently throughout the place-
ment process, this variation applied a heuristic according to the state
of the problem. Maashi et al. (2014) presented a learning selection
hyper-heuristic. This method combined and controlled the advantages
of three multi-objective metaheuristic algorithms. The Walking Fish
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Group was used for the performance analysis of the proposed learning
hyper-heuristic. In another study, Maashi, Kendall, and Özcan (2015)
presented a study combining a selection heuristic with the great deluge
and late acceptance. The Walking Fish Group tests were used during the
experiments. The results show that the method was effective for various
multi-objective problems.

Hitomi and Selva (2015) investigated various combinations of credit
aggregation, definition, and heuristic selection procedures. Instead of
traditional benchmarking tasks, all algorithms were evaluated on a cli-
mate monitoring satellite constellation design issue. A multi-objective
hyper-heuristic method for the integration and test order problems (As-
sunção, Colanzi, Vergilio, & Pozo, 2014) was developed by Guizzo,
Fritsche, Vergilio, and Pozo (2015). The algorithm used selection func-
tions to choose the best low-level heuristic to apply to the problem.
The authors suggested a quality metric to evaluate the effectiveness
of the selection process. The process used the NSGA-II algorithm,
and the proposed hyper-heuristic reported the best results in the lit-
erature. Gonçalves, Kuk, Almeida, and Venske (2015) enhanced the
MOEA/D framework for developing a multi-objective selection hyper-
heuristic. They evaluated MOEA/D-HH on scenarios from the com-
petition problem set. The comparison of MOEA/D-HH with various
significant multi-objective optimization techniques yields encouraging
results.

Walker and Keedwell (2016) combined different comparison op-
erators and examined them in conjunction with a hyper-heuristic to
optimize many-objective problems. They found that the favor relation
or hypervolume yields the best results. Kumari and Srinivas (2016)
proposed a hyper-heuristic algorithm to cluster the software modules
into clusters according to their cohesion and coupling values. They
reported significant improvements in their study. Qian, Tang, and Zhou
(2016) deployed MOEA components (selection, mutation, and accep-
tance procedures) as low-level heuristics, showing that heuristic selec-
tion might be quicker than a single low-level heuristic. The findings
give a theoretical basis for multi-objective selection hyper-heuristics.
A multi-objective wind farm layout optimization is addressed by Li,
Özcan, and John (2017). They used a hyper-heuristic to select low-
level (meta)-heuristics that work on combined solutions controlled by
selection hyper-heuristics. The empirical findings demonstrate the effi-
cacy of tackling this challenging computational issue. Guizzo, Vergilio,
Pozo, and Fritsche (2017) suggested a hyper-heuristic solution for the
Integration and Test Order Problem, which uses selection techniques
to pick search operators adaptively while MOEAs are conducted. The
results of the experiments reveal that the suggested genetic algorithm
outperforms standard MOEAs.

Yao, Peng, and Xiao (2018) proposed a hyper-heuristic framework
for route planning problems. To generate new routes, they created a
collection of low-level heuristics. Additionally, they used a reinforce-
ment learning process to pick effective low-level heuristics and speed
up searches. Extensive testing demonstrated that the suggested method
outperforms the exact multi-objective optimization approach regarding
speed. Zhang, Mei, and Zhang (2019) dealt with the multi-objective job
shop scheduling. They provided various trade-offs between competing
objectives. In terms of both training performance and generalization,
experimental data demonstrated that the NSGA-II technique imple-
mented in Genetic Programming Hyper-Heuristic (GPHH) outperforms
both the weighted sum approaches and SPEA2-based (Zitzler, Lau-
manns, & Thiele, 2001) GPHH. Zhou, Yang, and Zheng (2019) focused
on the multi-objective flexible job shop scheduling using real-life data
originating from an aero-engine blade production facility. To evolve on-
line scheduling rules, new multi-agent hyper-heuristics are presented.
In their technique, agents were connected with the past data of the shop
floor.

Almeida, Gonçalves, Venske, Lüders, and Delgado (2020) studied
numerous hyper-heuristics for the multi-objective permutation flow
shop problem. On 220 case studies having two and three objectives,

the effectiveness of the suggested techniques was evaluated using the
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indicator of hypervolume and non-parametric tests. Results demon-
strate that this best strategy was comparable with the state-of-the-
art in situations with two and three objectives, including Pareto and
decomposition techniques. Alshareef and Maashi (2022) employed a
multi-objective hyper-heuristic technique to address the module clus-
tering issue to assure high modularization quality. The experimental
findings showed that the proposed technique outperformed the separate
multi-objective evolutionary methods.

de Santiago Júnior, Özcan, and de Carvalho (2020) introduced a
selection hyper-heuristic that combines Reinforcement Learning (Kael-
bling, Littman, & Moore, 1996), (meta)-heuristic selection, and group
decision-making. They provided two iterations of the late acceptance
technique and a brand-new quality indicator supporting the initializa-
tion of selection hyper-heuristics with little computational expense. Du-
flo, Danoy, Talbi, and Bouvry (2020) proposed a Q-Learning-
based hyper-heuristic for generating distributed coverage of
connected-unmanned aerial vehicles swarm heuristics to automate the
design of unmanned aerial vehicle swarming behaviors by developing
a multi-objective optimization problem. Experimental results verified
the capacity of the proposed algorithm to generate heuristics for the
problem instances.

de Carvalho, Özcan, and Sichman (2021) presented a novel cross-
domain evaluation method for multi-objective optimization that exam-
ines hyper-heuristics for real-world optimization problems with multi-
ple criteria needing to be optimized in conjunction. The results showed
that hyper-heuristics could outperform single metaheuristics in many
situations. Cheng, Tang, Zhang, and Zhang (2022) studied produc-
tion scheduling problems, and the authors developed a multi-objective
hyper-heuristic using Q-learning. Pareto criteria were implemented to
provide diversity during the heuristic selection process, where a reward
mechanism selects an optimizer for the exploration and exploitation
stages.

Maashi et al. (2015) proposed a selection hyper-heuristics using
a choice function with great deluge. The metric of hypervolume is
employed in the move acceptance techniques. The algorithm’s perfor-
mance is tested with the Walking Fish Group test suite. The results
demonstrated the performance of the new move acceptance method in
selection hyper-heuristics.

3.3.3. Bi-level problems
In a bi-level optimization problem, one optimization problem is

embedded (nested) within another optimization problem (Talbi, 2013).
In this regard, bi-level optimization is applied to problems with a
hierarchical nature where multiple decisions have to be taken one
after the other. Often in such problems, the higher-level decisions
(termed as ‘‘upper-level decisions’’) are constraining the outcome of
the lower-level decisions. Combinatorial bi-level optimization problems
are especially challenging when the lower level is characterized by
some NP-Hard complexity since evaluation depends on the higher-level
decisions. Studies that produce solutions using hyper-heuristics in bi-
level optimization have attracted more attention in recent years. This
area of research appears to be filled with many new opportunities that
may interest researchers.

Yang, Zhong, Dessouky, and Postolache (2018) examined simul-
taneous scheduling problems in automated control terminals where
automated guided vehicles and cranes need to work in tandem to
manage operations. Their study involves two integrated problems: a
scheduling problem and a vehicle routing problem. To minimize the
completion time of operations, the authors propose a bi-level model
where the former problem is addressed with a congestion prevention
rule-based genetic algorithm and the latter problem is addressed with
a rolling horizon heuristic. On a similar topic, Shouwen, Di, Zhengrong,
and Dong (2021) examined the joint problem of integrated scheduling
and vehicle routing problems to minimize the temporal costs of the
operations and proposed using an adaptive heuristic for the vehicle
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routing problem and a genetic algorithm for solving the integrated
scheduling problem.

In his thesis, Turky (2019) studied the selection of local search
algorithms for combinatorial optimization problems. The performance
of the local search algorithms is closely related to the operators and
parameters that should be set. The author proposed a bi-level hyper-
heuristic algorithm with various operators for solving combinatorial
optimization problems. The search spaces are designed as bi-level
heuristic areas, and new hyper-heuristics are introduced to solve this
problem. The hyper-heuristics use a local search to select the local
search algorithm, and the algorithms are based on ant colonies that
combine many local search techniques. Bin packing and machine reas-
signment problems are examined during the experiments. The proposed
frameworks obtained the best-known methods in the literature.

Kieffer, Danoy, Brust, Bouvry, and Nagih (2019) tackled large-scale
combinatorial bi-level problems using Genetic Programming hyper-
heuristics. This approach trains heuristics as in a machine learning al-
gorithm. The authors considered heuristic generation. Greedy heuristics
are trained to make them more reliable for the optimization problem.
The authors solved a bi-level cloud computing pricing optimization be-
tween a service provider and customers. Results demonstrated that the
trained heuristics could cope with the bi-level optimization problems,
successfully outperforming classical heuristics and metaheuristics.

3.3.4. Optimization under uncertainty
As practical applications of forecasting, decision-making, and pro-

cess systems engineering problems in real-life conditions often involve
uncertainties, deterministic optimization techniques could only pro-
duce sub-optimal or infeasible solutions. Motivated by such practical
concerns, optimization techniques focusing on uncertain problems at-
tracted much attention within the last decade. As several past surveys
also indicate (De Maio, Laganà, Musmanno, & Vocaturo, 2021; Ning
& You, 2019), it is possible to categorize past studies on optimization
under uncertainty under three categories: stochastic programming (La-
porte, Musmanno, & Vocaturo, 2010; Wen, Linde, Ropke, Mirchandani,
& Larsen, 2016; Zhang et al., 2022), chance constrained optimiza-
tion (Oyebolu, Allmendinger, Farid, & Branke, 2019; Renaud, Absi, &
Feillet, 2017) and robust optimization techniques (Amini, Moghaddam,
& Ebrahimnejad, 2020; Jiang, Han, Liu, & Liu, 2008; Löfberg, 2008;
van der Weide, Deng, & Santos, 2022). Although numerous studies are
involved in each category, we only focus on hyper-heuristics involving
uncertainty in this part of the study.

The core difference between these categories is how uncertainties
are modeled within the proposed studies. In the stochastic program-
ming approach, the uncertainty is modeled with probability distribu-
tions, explaining possible randomness in problem parameters. Laporte
et al. (2010) propose a novel solution to the waste collection problem
by modeling a stochastic version of arc routing problems. In their
model, edges in the waste collection graph have an associated proba-
bility of failing. In their case, the route can be extended via a visit to an
intermediate facility, i.e., a dump site. The authors propose adapting a
neighborhood-based search heuristic for considering uncertainty using
a constructive stochastic path scanning algorithm. The algorithm is
reminiscent of evolutionary approaches in that insertion and update
heuristics are applied iteratively until a feasible solution is achieved.
More recently, Wen et al. (2016) applied a similar Adaptive Large
Neighborhood Search heuristic (ALNS) for the multi-objective electric
vehicle scheduling problem where the objective is to minimize the
number of required vehicles to fulfill trips and minimize the total trav-
eling distance. The proposed approach uses an iterative strategy that
starts from an initial solution and refines it by involving diversification
techniques for obtaining a versatile set of solutions and a probabilistic
selection mechanism for the best solution for the ALNS.

Unlike stochastic programming, chance-constrained optimization
aims to solve the optimization problem while ensuring that the con-
straints are mostly satisfied within an acceptable margin of uncer-

tainty. Renaud et al. (2017) proposed a solution for the meter reading
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problem where geographically placed nodes in a map contain informa-
tion to be collected by a vehicle. The problem is posed as finding the
minimal tour between sites. The non-determinism of the problem comes
from the fact that transmission of the information is probabilistic and is
proportional to the distance between the node and the vehicle at their
closest distance within the tour. In their ILP-based heuristic solution,
the authors impose a set of probabilistic constraints that impose that
the probability of transmission for each node must be over some
threshold. Oyebolu et al. (2019) examined the problem of optimizing
process run times in a multi-product assembly line with possible process
failure events and uncertain demand in the pharmaceutical sector.
In the study, the authors propose using evolutionary hyper-heuristics,
where optimization algorithms evaluate the performance of scheduling
policies using an event simulation framework.

Robust optimization models uncertainty as an additional set of
parameters representing possible uncertainty relations. Jiang et al.
(2008) examined the nonlinear interval number programming problem
where only the bounds of the uncertain coefficients are known and not
the probability distributions or membership functions. In this study,
an order relation of interval number is used to generate two separate
deterministic objectives, simultaneously representing the median and
boundaries of uncertainties from the uncertain objective function. The
proposed approach is based on an evolutionary algorithm, micro GA,
which is reportedly capable of avoiding premature convergence and
leverages a small population size for computational requirements. Two
numerical examples are investigated to demonstrate the effectiveness
of the present method. Another study (Löfberg, 2008), proposes using
robust optimization for problems involving control and systems theory
problems. For many such problems, a convenient strategy aims to
model and convert uncertain components in the problem space to a
robust counterpart containing no uncertainties. As a wide range of
solutions or tools is available for problem models without uncertain-
ties, it is relatively easy to solve the problem next. In their work,
the authors present a robust optimization framework in the model-
ing language YALMIP, which automates the process of uncertainty
elimination, allowing the user to concentrate on the high-level model
instead. Amini et al. (2020) examined a robust location-arc routing
problem with uncertain demand and traversing costs. In this study,
the authors employed three meta-heuristic approaches: hill climbing,
late acceptance hill climbing, and tabu search for enhancing solution
quality. van der Weide et al. (2022) analyzed a scheduling problem for
aircraft maintenance checks where sub-steps of maintenance operations
may involve temporal deviations, resulting in a need for frequent
schedule adjustments. The authors model the problem as a min–max
optimization approach and apply a genetic algorithm-based technique
to find robust solutions.

3.4. Parallel hyper-heuristics

Modern parallel computation facilities offer many new opportu-
nities for hyper-heuristics algorithms. The fact that many (meta)-
heuristics can be run concurrently ensures that the results are obtained
in shorter times. Moreover, because the early convergence and stagna-
tion to local optima are handled better, the quality of solutions will
also improve. This section gives detailed information about the recent
parallel hyper-heuristic studies.

High-performance computing architectures are rapidly emerging,
and parallel machine classification significantly impacts the perfor-
mance and implementation of parallel hyper-heuristics. This area has
critical aspects of shared or distributed memory, heterogeneous ma-
chines, cloud computing, and the communication network. A global
memory links the processors in a shared memory architecture, whereas
each processor in a distributed memory architecture has its local mem-
ory. Network topologies such as stars, rings, trees, and hypercubes
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connect the processors. Communication is handled through message &
passing. These architectures are more scalable than shared memory
machines.

The uniformity of processors and networks is critical for parallel
hyper-heuristic performance. Local-area networks (LANs) and wide-
area networks (WANs) are loosely coupled and used in grid systems
with distributed heterogeneous machines in multiple domains. Parallel
hyper-heuristics can use modern embedded systems such as Graphical
Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs) and
ARM processors (Moreno, Ortega, Filatovas, Martínez, & Garzón, 2017).

The parallel architecture affects the implementation of parallel
hyper-heuristics. Shared and distributed memory are the popular pro-
gramming paradigms. Multi-threading, OpenMP and CUDA are the
shared-memory programming languages, whereas MPI (Message Pass-
ing Interface) is for distributed memory architectures.

The taxonomy of parallel hyper-heuristics presented in our survey
is inspired by the study of Talbi (2019). In our taxonomy, we describe
three main models.

3.4.1. Algorithmic-level parallelism
This model executes different (meta)-heuristic algorithms in par-

allel. The algorithms may be independent or cooperative. The model
modifies the hyper-heuristic’s behavior and enhances the solutions’
quality. In the independent algorithmic model, various (meta)-
heuristics are executed without any information exchange. The (meta)-
heuristics are started with multiple populations and parameters (the
probability of crossover and mutation). Worker processors run (meta)-
heuristics and the master node sets the parameters of the workers and
receives the best results. Good performance of speed up and robustness1

are provided in this model.
In the cooperative model, (meta)-heuristics can exchange solutions

for better results in single or multi-objective hyper-heuristic algorithms.
When to communicate, which communication topology to be used,
what knowledge to be exchanged, and the consolidation policy is the
critical issues of the cooperative hyper-heuristic models.

The partitioning of the decision space can be used to decompose the
objective problem. As a result, a hyper-heuristic can narrow its search
to a subset (or partition) of the decision space.

3.4.2. Iteration-level parallelism
The iteration-based model parallelizes a single iteration of a hyper-

heuristic algorithm. The primary goal of the design is to accelerate the
process by manipulating a large population. A processor can compute
the fitness of each solution. Generally, the fitness evaluation is a costly
operation repeated by hyper-heuristics. This model is independent of
the target problem. The surrogate-based computation used to obtain
the fitness values more simply can be a method of these parallel
hyper-heuristics (Jin, 2011).

The population of the hyper-heuristics may be updated in parallel
because it can be a costly operation most of the time. The master
initializes the population, selects the candidate solutions and inserts
the new individuals into the population while the worker processors
perform the fitness calculations. The master node can wait for all
the workers to finish their calculations synchronously or start a new
iteration asynchronously without waiting for all the workers to finalize

1 Here, robustness of parallel algorithms refers to potential improvements
n result quality (Cantu-Paz, 2000), having a natural affinity to alleviate
he bloat phenomenon (Fernández, Galeano, & Gómez, 2002; Kucukyilmaz &
iziloz, 2018; Ruciński, Izzo, & Biscani, 2010; Trujillo, Muñoz, Galván-López,
Silva, 2016), and having a better scalability potential (Dokeroglu & Cosar,

016; Liu & Wang, 2015). Especially when using evolutionary approaches,
everal studies indicate that parallel frameworks maintain population diversity
etter than non-parallel counterparts, allowing better exploration for the
ramework and hence improvements in terms of result quality (Andre & Koza,
996; Fernández, Gil, Baños, & Montoya, 2013; Fernández, Tomassini, Punch,
Sánchez, 2000; Kucukyilmaz & Kiziloz, 2018).
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Fig. 6. The taxonomy of parallel hyper-heuristics.
their estimates. In addition, some common knowledge of the (meta)-
heuristics (like the pheromone matrix of Ant Colony Optimization)
needs to be shared between the processors in this model.

3.4.3. Solution-level parallelism
In this design, because the fitness evaluation of solutions consumes

most of the time, the algorithm handles every single solution in parallel.
This model does not alter the behavior of the hyper-heuristic but
shortens the processing time. Two decomposition strategies may be
used, the decomposition of data and the decomposition of objective
functions. The master node collects worker results and determines the
best global fitness value.

In addition to these three models of hyper-heuristics, combinations
are also possible using a hierarchical organization. Fig. 6 presents the
proposed taxonomy of parallel hyper-heuristics.

This section will concentrate on efficiently implementing the pro-
posed parallel hyper-heuristic models on various types of high-
performance machines. The parallel hyper-heuristics’ performance eval-
uation is mainly related to speed up, scalability, and energy consump-
tion. Another aspect is the financial cost of the implementation in a
commercial computation environment.

The granularity is the most critical aspect of parallel hyper-heuristic
algorithms. It is the proportion of computation to communication.
When the granularity is large, higher values of speed up are achieved.
Algorithmic-level parallel hyper-heuristics have a better granularity
than solution-level design approaches.

Parallel hyper-heuristics can use static, dynamic, and adaptive
scheduling techniques. The processors’ workload is decided at compile
time in static scheduling, which may be inefficient for uneven load
distributions. The job assignments are scheduled during execution in
dynamic scheduling, and the number of processes is fixed. In the
adaptive version, the number of processors and jobs change at run time.

In this part, we consider our proposed parallel hyper-heuristics
models mentioned above from the aspects of granularity, degree of
concurrency, asynchronous vs synchronous knowledge exchange, and
scheduling.

The algorithmic-level parallelism has a bigger granularity than other
models. Communication cost is reduced in this model; therefore, large-
scale HPC machines’ scalability performance becomes better. The num-
ber of involved parallel hyper-heuristics bounds the degree of con-
currency. Synchronous or asynchronous communication can be used
in this model. The synchronous version can be less efficient on a
Grid. Using synchronous exchange in a heterogeneous environment
will degrade the performance of parallel hyper-heuristics. The least
powerful processor will dominate the performance. This model supports
static, dynamic, and adaptive scheduling.

Iteration-level parallelism has a medium granularity. The model
is effective depending on the size of the sub-populations or the time
required for fitness value evaluations. Using large populations in this
11
model enhances the scalability of the hyper-heuristics. Using asyn-
chronous messaging increases the performance of the iteration-level
parallelism model. Faster and less loaded processors can handle more
problems than others in dynamic scheduling. As a result, compared to
static scheduling, this approach reduces the execution time.

The solution-level parallelism has the smallest level of granular-
ity of the three models. This model is slower for large-scale dis-
tributed machines with high communication costs. The number of
data partitions/sub-functions limits the degree of concurrency (scalabil-
ity). This model’s implementation is master–worker and synchronous.
Scheduling in the decomposition model corresponds to data partitions
and sub-functions in the functional decomposition. For homogeneous
non-shared machines, static scheduling appears to be efficient.

If we briefly summarize some studies in the literature: Crainic and
Toulouse (2003) presented one of the first surveys of parallel meta-
heuristics and discussed the design principles of these algorithms. Par-
allel hyper-heuristics have much to benefit from this field. Rattadilok,
Gaw, and Kwan (2004) investigated emerging search algorithms in
their study. High-level heuristics were selected and executed to obtain
optimal results, and a parallel architecture was used during the im-
plementation. Significant performance improvements are obtained. Se-
gura, Miranda, and León (2011) developed a parallel hyper-heuristic
for the frequency assignment problem. For each instance to be solved,
a memetic algorithm is used in the study and adapted to the solutions.
The algorithm configured the settings that are executed on each island
processor. The configurations were decided during the execution of the
algorithms.

Van Onsem and Demoen (2013) presented a framework called
ParHyFlex. The implementation of different hyper-heuristics was in-
cluded in the software. It is tested on the Maximum Satisfiability Prob-
lem. Chana et al. (2013) proposed a hyper-heuristic based on bacterial
foraging to schedule resources. The algorithm was compared to other
recent heuristics. The results showed that the algorithm outperforms
the others by minimizing the total cost. In another study, Borgulya
(2014) presented a parallel hyper-heuristic for 2D strip-packing prob-
lems. An island parallel model with a memetic algorithm is proposed
in the study. The new technique learned bad variable values based
on the population’s worst solutions and controlled the steps of each
mutation operation. Dokeroglu and Cosar (2016) proposed a parallel
hyper-heuristic to solve the Quadratic Assignment Problem (QAP). The
algorithm uses ACO, simulated annealing, tabu search, and breakout
local search metaheuristics. The best-performing (meta)-heuristic is de-
cided using genetic approaches. The developed hyper-heuristic obtains
the best results in the literature.

Alekseeva, Mezmaz, Tuyttens, and Melab (2017) offered a par-
allel multi-core hyper-heuristic for the flow-shop problem with the
makespan criteria based on GRASP that incorporates a cost function
based on a boundary operator. The suggested hyper-heuristic eval-
uated GRASP configurations and obtained the best setting. Parallel
multi-core computing was utilized to implement the hyper-heuristic
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Fig. 7. The master and worker parallel computation environment of hyper-heuristics.
At each node, a different metaheuristic algorithm can be executed simultaneously. This
topology is considered to be one of the best communication topologies.

efficiently. Rodriguez, Oteiza, and Brignole (2019) proposed a study
of the parallel combination of three metaheuristics. To escape from
stagnation, the algorithm used genetic algorithms, simulated annealing,
and ACO metaheuristics. The implementation executed the metaheuris-
tics simultaneously. Therefore, it has increased the overall computation
capacity significantly. The proposed optimization algorithm improved
solution quality. Oteiza, Ardenghi, and Brignole (2021) developed a
parallel cooperative hyper-heuristic framework for nonlinear algebraic
equations with constraints. Genetic algorithms, PSO, and simulated
annealing were used in this framework. The parameters of the methods
were set during the execution of the optimization process (at run-time).
A master and worker communication paradigm was implemented, and
the master node ranked the candidates and communicated the best
candidate to all other nodes. The results verified the efficiency of
the approach because the parallel processing significantly increased
the fitness evaluations of the candidate solutions and did not get
into local optima as much as single metaheuristics. Duque Gallego
(2022) proposed a framework to set the parameters of single solution
metaheuristics in a parallel hybrid way for combinatorial optimization
problems. The implementation used three heuristics. The author exam-
ines numerous parameter control strategies using parallel parameter
settings of the metaheuristics.

Fig. 7 shows a master and worker parallel computation environ-
ment for hyper-heuristics, considered the most common computational
topology used by parallel hyper-heuristics. At each node, a different
(meta)-heuristic is executed efficiently while the master node selects,
generates and coordinates the jobs (using dynamic scheduling) exe-
cuted in the worker nodes. In Appendix, a summary of the state-of-
the-art hyper-heuristic studies are listed in Tables A.2, A.3, A.4, and
A.5.

4. Conclusions and open research issues

There is an increasing trend in developing hyper-heuristics to opti-
mize hard optimization problems. To illustrate this trend quantitatively,
we conducted a literature survey on Google Scholar, as illustrated in
Fig. 8. In the survey, we included articles that appeared in scientific
journals, international conferences, and books. To this end, we have
extracted the relevant studies with a structured strategy using the
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Google Scholar API.2 In our strategy, keywords of each publication
cited in this work are extracted and searched for related publications
in the related hyper-heuristic research category. In case a keyword
appears in multiple categories, the keyword is moved upwards in the
taxonomy presented in Fig. 2.

As indicated by Fig. 8, it is possible to observe this from the growing
number of publications in recent years. Hyper-heuristics were initially
considered niche solvers for limited hard optimization problems, but
now they can be applied to many problems. This rapidly growing
field of science aims to increase the generality level of optimization
techniques for many problems by exploring the appropriate heuristics
rather than solving single specific problems. That is, utilizing low-level
heuristics instead of solution-spaced-based solvers.

Additionally, we extended the above survey and examined recent
publications for the research objectives, type of selection algorithms,
and in-case the publications include parallelization efforts and the
type of parallelization techniques. The results of the rundown of the
aforementioned categorical distributions are presented in Fig. 9. As
the figure suggests, recent studies also indicate that advances in ma-
chine learning are attracting significant attention in this community
for solving multi-objective problems with hyper-heuristic adaptations.
The figure also indicates an important research gap in the literature:
although by nature, hyper-heuristics are very suitable for parallelism,
there is only a few studies that examine hyper-heuristics and their
performance in parallel settings.

In our survey, we have covered and discussed state-of-the-art hyper-
heuristic algorithms of the last two decades. To the best of our knowl-
edge, there is a growing gap and a need for studies examining recent
developments and cutting-edge research involving hyper-heuristics.
Therefore, this study extends the existing taxonomy for hyper-heuristics,
capable of capturing the current trends in the field. To this end,
the proposed taxonomy involves four categories of hyper-heuristics,
and examining these algorithms under these categories is the main
contribution of this survey.

Hyper-heuristics involve two components: An algorithm that selects
the low-level heuristics to solve a problem efficiently and a low-
level repository and/or a generator for (meta)-heuristics. Developing
new heuristics will always create attention toward hyper-heuristics as
decisions involving how to select and sequence them to achieve the
best results will be the focus of the optimization community. Config-
uring these techniques to achieve faster convergence, better results
and lower resource requirements will ultimately decide which of the
proposed techniques will find applications in real-life situations. In this
regard, setting the parameters of (meta)-heuristics and finding novel
strategies will always be an important point affecting the performance
of the algorithms and will continue to be one of the high points of
hyper-heuristics.

There is still not a solid and widely accepted theoretical understand-
ing of hyper-heuristics. Therefore constructing the theoretical founda-
tions of hyper-heuristics is still an open question. The speed of the fit-
ness value calculation is another critical issue in many hyper-heuristic
applications. Applying dynamic programming approaches seems to
provide successful results in that aspect. It will positively affect the
performance of these algorithms, especially the computation cost and
shorter execution times. In this sense, studies involving NFL and fit-
ness evaluation remain an important issue in hyper-heuristic research.
Although exploration and exploitation are critical issues in hyper-
heuristics, it seems that this issue has not been mentioned much in
previous studies. In our opinion, determining the sequence of heuris-
tics is closely related to the exploration and exploitation efforts of
the optimization algorithms. We believe there is a strong correspon-
dence between the exploration/exploitation and selection/generation
and sequencing activities of (meta)-heuristics.

2 https://serpapi.com/search?engine=google_scholar

https://serpapi.com/search?engine=google_scholar
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Fig. 8. Research trends on different branches of hyper-heuristics, displayed as the number of papers per year.
Fig. 9. Distribution of the selection of objective functions, selection algorithms, and parallel algorithms examined in the literature in the last two decades.
Stagnation (getting stuck into local optima) will always be a sig-
nificant issue in both hyper-heuristics and (meta)-metaheuristic algo-
rithms. Heuristics that deal better with this problem will have a higher
chance of being selected by hyper-heuristics. Exascale supercomputers
with millions of cores in multi-machines are currently on the horizon.
This new architecture may open the way for the development of new
high-performance and scalable hyper-heuristic algorithms. With their
ever-increasing performance, GPUs are new technologies that can aid
this research area.

Quantum-inspired algorithms incorporate quantum mechanics into
classical metaheuristics using non-quantum machines (Dahi & Alba,
2022). Because quantum principles are unique, the inspiration of quan-
tum phenomena and how it is done in fundamentally different non-
quantum systems rather than real or simulated quantum computers
introduces interesting and new issues about designing new algorithms
in real or simulated quantum devices. In this sense, it is seen that
the cooperation of quantum computation and hyper-heuristics will
reveal many new research areas in the near future and will pro-
vide opportunities for higher-quality computation in optimization. New
13
quantum-inspired metaheuristic studies started to appear in recent
research activities.

The application of newly developed metaheuristics in the field of
hyper-heuristics clearly shows the research gap in this field for future
studies. For example, the inclusion of newly developed metaheuristics
such as Harris Hawk (Heidari et al., 2019), Ant Lion (Mirjalili, 2015a),
Moth Flame (Mirjalili, 2015b), Grey Wolf Optimizer (Mirjalili, Mir-
jalili, & Lewis, 2014), Dragonfly (Meraihi, Ramdane-Cherif, Acheli, &
Mahseur, 2020), Grasshopper Optimization (Mirjalili, Mirjalili, Saremi,
Faris, & Aljarah, 2018), Multi-Verse Optimizer (Mirjalili, Mirjalili, &
Hatamlou, 2016), Sine Cosine (Mirjalili, 2016), Salp Swarm (Mirjalili
et al., 2017), Whale Optimization (Mirjalili & Lewis, 2016), and Artifi-
cial Hummingbird (Zhao, Wang, & Mirjalili, 2022) into the repository
of the hyper-heuristics will provide better results. Many problems in
the field of metaheuristics are also closely related to hyper-heuristics,
and any progress to be made will positively affect both sides.

As the last word, we think that hyper-heuristics are still in their
infancy, and we expect developments in this field to shape the frame-
work for tackling large-scale, real-life problems. We believe that the
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Table A.2
Selected recent hyper-heuristic studies using metaheuristics.

Study Metaheuristics Multi-objec. Mach. lear. Problems solved

Tabataba and Mousavi
(2012)

beam search – – longest common
subsequence

Abd Aziz (2015) ACO – – traveling salesman

Dokeroglu and Cosar
(2016)

genetic, simulated
annealing, ACO, breakout
local search

– – quadratic assignment

Pandiri and Singh (2018) ABC – – traveling salesman

Navajas-Guerrero et al.
(2022)

harmony search – – prediction of failures

Cruz-Duarte et al. (2021) gravitational, simulated
annealing, genetic,
differential evol. firefly,
cuckoo search

– – testing scheduling

Gölcük and Ozsoydan
(2021)

ABC, manta ray foraging,
salp swarm, whale
optimization

– Q-learning knapsack problems

Gonzalez et al. (2022) evolution algorithm, scatter
search, tabu, GRASP

– – MILP

Liu, Zhang, Zhang, Li, and
Chen (2023)

aquila, arithmetic – Q-learning global optimization
Table A.3
Selected recent multi-objective hyper-heuristic studies.

Study Heuristic-based Metaheuristics Mach. lear. Problems solved

Burke et al. (2005) ✔ – – scheduling, space allocation

Gómez and Terashima-Marín (2012) ✔ – – 2D irregular cutting stock

Maashi et al. (2014) ✔ – – walking fish group
Maashi et al. (2015) ✔ – – walking fish group

Gonçalves et al. (2015) ✔ – – CEC 2009 MOEA Competition

Guizzo et al. (2015) ✔ – – integration and test order

Walker and Keedwell (2016) ✔ – – DTLZ test suite (Deb, Thiele, Laumanns, & Zitzler, 2002)

Li et al. (2017) – ✔ – layout optimization

Zhang et al. (2019) ✔ – – job shop scheduling

Zhou et al. (2019) ✔ – – job shop scheduling

de Santiago Júnior et al. (2020) – ✔ reinforcement layout optimization

Almeida et al. (2020) ✔ – – permutation flow shop

de Carvalho et al. (2021) ✔ – – real-world

Alshareef and Maashi (2022) ✔ – – clustering

Venske et al. (2022) ✔ – – quadratic assignment

Heise and Mostaghim (2023) ✔ – – 20 benchmark problems

Cao, Zhang, Zhou, and Tang (2023) – Simulated Annealing – structural damage identification
K
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studies in multi-objective hyper-heuristic optimization will increase,
and metaheuristic-based hyper-heuristics will be more prevalent in the
future with the advances in metaheuristics.
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Table A.4
Selected recent hyper-heuristic studies using machine learning.

Study Heuristic-based Metaheuristics Multi-objec. Mach. lear. Problems solved

Özcan et al. (2012) ✔ great deluge – reinforcement exam timetabling

Hunt et al. (2012) ✔ genetic
programming

– – feature selection

Maashi et al. (2014) ✔ NSGAII, SPEA2,
MOGA

✔ – walking fish
group

Abd Elaziz and Mirjalili
(2019)

– whale
optimization

– – initial population

Lassouaoui et al. (2022) ✔ – – reinforcement feature selection

Lin et al. (2022) ✔ – – Q-learning testing
scheduling

Qin et al. (2021) ✔ ✔ – reinforcement
deep learning

vehicle routing

Juntama et al. (2022) ✔ – – reinforcement traffic
complexity

Zhang et al. (2022) ✔ – – deep
reinforcement

uncertainty
Table A.5
Selected recent parallel hyper-heuristic studies.

Study Heuristic-based Metaheuristics Multi-objec. Mach. lear. Problems solved

Crainic and Toulouse (2003) – genetic, simulated annealing,
tabu

– – general

Rattadilok et al. (2004) ✔ – – – timetabling, scheduling

Segura et al. (2011) – memetic – – frequency assignment

Chana et al. (2013) – bacterial foraging – – resource scheduling

Van Onsem and Demoen
(2013)

– genetic, simulated annealing,
tabu

✔ – maximum satisfiability

Borgulya (2014) ✔ memetic – – 2D strip-packing

Dokeroglu and Cosar (2016) – genetic, simulated annealing,
ACO, Breakout Local Search

– – quadratic assignment

Alekseeva et al. (2017) – GRASP – – flow-shop problem

Rodriguez et al. (2019) ✔ genetic, simulated annealing,
tabu

– – urban transportation

Oteiza et al. (2021) – genetic, simulated annealing,
PSO

– – nonlinear algebraic equations

Duque Gallego (2022) – extremal, multi-start Local,
tabu

– – quadratic assignment

Liu, Zhang, Liu, Zhang, and
Wu (2023)

– simulated annealing variable
neighborhood, tabu

– Q-lear. allocation and ordering
Appendix. The list of recent studies

Some of the state-of-the-art hyper-heuristic studies are summarized
in this Appendix. We aim to provide detailed information about re-
cent publications for interested readers. The metaheuristics used by
the hyper-heuristics, multi-objective hyper-heuristics, applied machine
learning techniques, parallel hyper-heuristics, the problems solved by
these algorithms are listed in the Tables A.2, A.3, A.4, and A.5.
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