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A B S T R A C T

Pachpatte type inequalities are convex generalizations of the well-known Hardy-Copson type inequalities. As
Hardy-Copson type inequalities and convexity have numerous applications in pure and applied mathematics,
combining these concepts will lead to more significant applications that can be used to develop certain branches
of mathematics such as fuctional analysis, operator theory, optimization and ordinary/partial differential equa-
tions. We extend classical nabla Pachpatte type dynamic inequalities by changing the interval of the exponent δ
from δ > 1 to δ < 0. Our results not only complement the classical nabla Pachpatte type inequalities but also
generalize complementary nabla Hardy-Copson type inequalities. As the case of δ < 0 has not been previously
examined, these complementary inequalities represent a novelty in the nabla time scale calculus, specialized cases
in continuous and discrete scenarios, and in the dual outcomes derived in the delta time scale calculus.

Introduction

Since Hardy's inequality is one of those inequalities which turns in-
formation about derivatives of functions into information about the size
of the function, it is an essential part of all areas of mathematics and
useful in various applications.

In this paper, we obtain new nabla Pachpatte type inequalities, which
are convex generalizations of Hardy-Copson type dynamic inequalities,
by changing the interval of the exponent δ from δ > 1 to δ < 0. This new
interval will provide new inequalities which are complementary to the
previous ones obtained for δ > 1.

The classical discrete Hardy inequality was established by Hardy
(1920) as
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where d(k)�0, δ>1 and the continuous versions were derived by (Hardy
et al. (1934, Theorem 330) as
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where p(t) � 0, δ > 1.
Since various generalizations and numerous variants of the discrete

and continuous Hardy inequalities (1)–(2) exist in the literature, all of
which can not be mentioned here, we only focus on the extensions which
have been established in Copson (1928, Theorem 1.1, Theorem 2.1) and
in Copson (1976 Theorem 1, Theorem 3). As we follow the way that
Hardy and Copson lead us, we call these inequalities as Hardy-Copson
type inequalities.

Hardy-Copson type inequalities have attracted many mathematicians
for almost a century and many refinements and new proofs for the
discrete and continuous cases have appeared in the books (Hardy et al.,
1934; Masmoudi, 2011; Balinsky et al., 2015; Kufner et al., 2007, 2017)
and in the articles (Bennett, 1987; Leindler, 1993; Chu et al., 2014; Liao,
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2015; Gao and Zhao, 2020; Lef�evre, 2020; Beesack, 1961; Pachpatte,
1999; Iddrisu et al., 2014; Nikolidakis, 2014), respectively.

The convex generalizations of Hardy-Copson type inequalities
have appeared in the literature after the celebrated papers of Pachpatte.
The discrete Pachpatte type inequalities have been established by
Pachpatte (1990a) and by Hwang and Yang (1990) for a real-valued
positive convex function H(u) defined for u > 0 and for the sequences
d(k) > 0, e(k) > 0 as
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where DðmÞ ¼Pm
j¼1dðjÞ and EðmÞ ¼ Pm

j¼1dðjÞeðjÞ. Note that choosing
H(u) ¼ u and d(m) ¼ 1 for all m � 1 in inequality (3) yields Hardy's
inequality (1).

The first continuous convex extension of Hardy inequality (2) has
been established in Levinson (1964) by assuming a condition on the
convex function in this manner: Let H(u) be a real-valued nonnegative
convex function defined for u > 0 satisfying
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If p(t) > 0 is nondecreasing function and r(t) � 0, then Levinson (1964)
obtained following inequality
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where PðtÞ ¼ R t0 pðsÞds and RðtÞ ¼ R t0 pðsÞrðsÞds.
Pachpatte (1990b) improved and generalized Levinson's inequality

(5) by removing condition (4) on a nonnegative convex functionH and by
taking into account the constant ξ > 1 for real-valued integrable func-
tions p(t) > 0, r(t) � 0, and for the constants δ � 1, ξ > 1 as
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where the functions P and R are defined as above.
Another result obtained by Pachpatte (1994) for a real valued

nonnegative convex function H(u) defined for u > 0, for real-valued
integrable functions p(t) > 0, r(t) � 0 and for the constants δ � 1, κ �
0 is as folows.
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where the functions P and R are defined as above and QðtÞ ¼R t
0 pðsÞHðrðsÞÞds.
A generalization of Pachpatte's inequalities (6) and (7) was estab-

lished by Pe�cari�c and Hanj�s (1999) for a real valued nonnegative convex
function H(u) defined for u > 0, for real-valued integrable functions p(t)
> 0, r(t) � 0 and for the constants δ � 1, κ � 0, κ þ ξ > 1 as
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where the functions P, R and Q are defined as above. Note that choosing
κ ¼ 0 and ξ ¼ δ in inequality (8) yields inequalities (6) and (7),
respectively.

After the invention of the calculus on time scales (Bohner and
Peterson, 2001, 2003; Guseinov and Kaymakçalan, 2002; Atici &
Guseinov, 2002; Gürses et al., 2005), many well-known inequalities have
been expanded to an arbitrary time scale. These inequalities have been
obtained in delta time scale calculus (Agarwal et al., 2001, 2014; Saker,
2012) as well as in the nabla case (Anderson, 2005; €Ozkan et al., 2008;

Güvenilir et al., 2015; Bohner et al., 2015; Pelen, 2019; Kayar et al.,
2021; Kayar and Kaymakçalan, 2022b).

Establishing dynamic Hardy-Copson type inequalities has been
started by the delta approach and these unifications can be found in
the book (Agarwal et al., 2016) and in the articles (�Reh�ak, 2005; Saker
et al., 2014a,b, 2017, 2018a,b, Saker and Mahmoud, 2019; Agarwal
et al., 2017; El-Deeb et al., 2020). For the nabla Hardy-Copson type
inequalities, we refer Kayar and Kaymakçalan (2021, 2022a).

Although some Pachpatte type dynamic inequalities, which are
convex generalizations of Hardy-Copson type inequalities, were obtained
in Saker et al. (2018a, 2019) via delta time scales calculus, there does not
exist any result in the nabla case.

Combining Hardy-Copson-type inequalities with convexity, both of
which have many applications in many fields in pure and applied
mathematics such as functional analysis, optimization theory, control,
spectral theory, Fourier analysis, interpolation theory, operator theory,
geometry, and ordinary/partial differential equations, leads to
Pachpatte-type inequalities and provides more applications in the above
fields.

Contrary to Hardy-Copson-type inequalities, there exists few results,
especially in the time scale calculus, for Pachpatte-type inequalities,
which are convex generalizations of Hardy-Copson-type inequalities. The
main aim in this paper is to find δ < 0 versions of the classical nabla
Pachpatte type dynamic inequalities (δ > 1) by preserving the directions
of the classical inequalities. Since Pachpatte type inequalities are convex
generalizations of Hardy-Copson inequalities, our results not only com-
plement the classical nabla Pachpatte type inequalities but also gener-
alize complementary nabla Hardy-Copson type inequalities. Another
novelty of this manuscript is to obtain δ < 0 versions of the discrete,
continuous and delta Pachpatte type dynamic inequalities, which have
not been considered yet.

It is assumed that the readers know the fundamental theory of the
time scale calculus. If not, the books (Bohner and Peterson, 2001, 2003)
or the articles (Guseinov and Kaymakçalan, 2002; Atici & Guseinov,
2002; Gürses et al., 2005; Saker et al., 2018a; Kayar and Kaymakçalan,
2022a) can be helpful to understand the theory.

The nabla Jensen's inequality will be used in the sequel.

Lemma 1.1. (Jensen’s inequality). (€Ozkan et al., 2008) Let f 2 Cld([t1, t2],
[t3, t4]) and g 2 Cldð½t1; t2�;RÞ with
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Complementary Pachpatte type inequalities

We start this section by defining the following functions
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(10)

where p, r � 0 are ld-continuous, r-differentiable and locally nabla
integrable functions, H(u) is a real-valued nonnegative convex function
defined for u � 0 and 0 < c 2 T.

The following results, which are obtained for δ < 0, κ � 0 and κ þ ξ �
0, yield complements of Pachpatte type dynamic inequalities presented
for δ > 1, κ � 0 and κ þ ξ � 0.

Theorem 2.1. Let PρðtÞ
PðtÞ � D1; t 2 ðc;∞ÞT be fulfilled for some D1 > 0 and

for the functions P and R defined as in (10). Assume that δ< 0, κ � 0 and κ þ

Z. Kayar, B. Kaymakcalan Kuwait Journal of Science 51 (2024) 100130

2



ξ � 0 are real numbers and H(u) is a real-valued nonnegative convex
function defined for u � 0.

(1) When κ þ δ > 1, one can show
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(2) When 0 < κ þ δ < 1, one can show
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Proof. We first prove inequality (11). Convexity of the function H
implies
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Then the left hand side of inequality (11) becomes
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Now we will estimate the right hand side of inequality (16) to get nabla
Hardy-Copson type inequalities.

We start with the same method of the proof of Kayar et al. (2021,
Theorem 3.1), which shows reverse nabla Hardy-Copson type in-
equalities, even though our aim is to prove nabla Hardy-Copson type
dynamic inequalities.

Employing integration by parts formula to the right hand side of
inequality (16), we can get
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For Qr(t) ¼ p(t)H(r(t)) � 0, using the chain rule for the nabla derivative
provides
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where we have used Qr(t) � 0 and Qρ(t) � Q(t) for κ þ δ > 1.
Moreover for Pr(t) ¼ �p(t) � 0, using the chain rule for the nabla

derivative provides
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where we have used Pr(t)� 0 and Pρ(t)� P(t) for κ þ ξ� 0. Then one can
deduce that
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Then inequality (17) reduces to
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The reverse H€older inequality (€Ozkan et al., 2008) for the constants δ <
0 and 0 < δ

δ�1 < 1, implies
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For δ < 0, taking δ-th power of the both sides of the above inequality
yields inequality (11) after taking into account inequality (15).

The proof of inequality (12) can be established by following the above
steps for

pðtÞ
½PρðtÞ�κþξ �
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:

For inequalities (13)–(14), after employing convexity of the function H,
we use integration by parts formula in the following ways.
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where uðtÞ ¼ � R∞t pðsÞ
½PðsÞ�κþξrs and uðtÞ ¼ � R∞t pðsÞ

½PðsÞ�κþξrs, respectively and

Q(c) ¼ 0 and u(∞) ¼ 0.
For Qr(t) ¼ p(t)H(r(t)) � 0, using the chain rule for the nabla deriv-

ative provides
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where we have used Qr(t) � 0 and Qρ(t) � Q(t) for 0 � κ þ δ < 1.
Then one can obtain from inequality (18) that
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The rests of the proofs depend on substituting the necessary terms to the
inequalities (19) and (20) and applying reverse H€older's inequality to the
resulting inequalities.

Remark 2.2. Since Pρ(t)� P(t) and κ þ ξ� 0, inequalities (12) and (14)
are valid if the terms ½PρðtÞ�κþξ on the left hand sides of these inequalities
are changed by [P(t)]κþξ.

Since Qρ(t)� Q(t) and κ � 0, inequalities (11) and (12) are valid if the
terms ½QρðtÞ�κ on the right hand sides of these inequalities are changed by
[Q(t)]κ.

Remark 2.3. Since the condition δ < 0 has not been considered so far,
nabla Pachpatte type dynamic inequalities (11)-(14) have been obtained
for thefirst time.Moreover the condition 0< κþ δ< 1 in Theorem2.1first
ever appears in the literature. Hence the gap in the literature may be ful-
filledby these inequalities,which are obtained for δ<0, κ�0, κþ ξ�0via
this theorem.

The nabla Pachpatte type dynamic inequalities (11)-(14) obtained for
δ < 0, κ � 0 and κ þ ξ � 0 are complements of the nabla Pachpatte type
dynamic inequalities established for δ > 1, κ � 0 and κ þ ξ � 0.

The nabla Pachpatte type inequalities (11)-(14) obtained for
δ < 0, κ � 0 and κ þ ξ � 0 are convex generalizations of the nabla Hardy-
Copson type inequalities obtained for δ < 0, κ � 0 and κ þ ξ � 0 where
H(u) ¼ u.

Remark 2.4. Delta versions of the nabla inequalities (11)-(14) can be
obtained by replacing Pρ, P, Rρ, R, Qρ, Q presented in (10) by P, Pσ, R, Rσ,
Q, Qσ defined as

PðtÞ ¼
Z ∞

t
pðsÞΔs; RðtÞ ¼

Z t

c
pðsÞrðsÞΔs; QðtÞ ¼

Z t

c
pðsÞHðrðsÞÞΔs;

PðtÞ ¼
Z t

c
pðsÞΔs; RðtÞ ¼

Z ∞

t
pðsÞrðsÞΔs; QðtÞ ¼

Z ∞

t
pðsÞHðrðsÞÞΔs:

(21)

Let PðtÞ
Pσ ðtÞ � E1; t 2 ðc;∞ÞT be fulfilled for some E1> 0 and for the functions

P and R defined as in (21). Suppose that δ< 0, κ � 0 and κ þ ξ� 0 are real
constants. Then nabla Pachpatte type dynamic inequalities (11)-(14) turn
into new delta Pachpatte type dynamic inequalities. For instance, in-
equalities (12) and (14) become the following forms, respectively. When
κ þ δ > 1, we get

Z ∞

c

pðtÞHκþδðRðtÞÞ
½PðtÞ�κþξ Δt �

�
Eκþξ�1
1 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QðtÞ�κ
½PðtÞ�κþξ�δ Δt;

and when 0 < κ þ δ < 1, we get

Z ∞

c

pðtÞHκþδðRσðtÞÞ
½PðtÞ�κþξ Δt �

�
κ þ δ
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�δ Z ∞

c

pðtÞHδðrðtÞÞ½QσðtÞ�κ
½PðtÞ�κþξ�δ Δt: (22)

Since the condition δ< 0 has not been considered so far, delta variants of
nabla Pachpatte type dynamic inequalities (11)-(14) have appeared in
the literature for the first time. Moreover the condition 0 < κ þ δ < 1 in
Theorem 2.1 first ever appears in the literature. Hence the gap in the
literature may be fulfilled by these inequalities, which are obtained for δ
< 0, κ � 0, κ þ ξ � 0 via this remark.

The delta counterparts of the nabla Pachpatte type dynamic in-
equalities (11)-(14) derived for δ< 0, κ � 0 and κ þ ξ� 0 complement the
delta Pachpatte typedynamic inequalities established for δ>1, κ�0 and κ
þ ξ � 0.

The delta Hardy-Copson type inequalities established for δ < 0, κ �
0 and κ þ ξ � 0 can be obtained in the special case where H(u) ¼ u from
the delta analogues of the inequalities (11)-(14).

The delta Pachpatte type inequality (22) derived for δ < 0, κ � 0, κ þ
ξ � 0 is a convex extension and a complementary inequality of the delta
Hardy-Copson type inequality presented in Saker et al. (2018a, Theorem
2.2) where H(u) ¼ u and δ > 1, κ � 0, 0 � κ þ ξ < 1.

Let κ ¼ 0 and H(u) ¼ u. Then inequality (22) is a complementary
inequality of the delta Hardy-Copson inequality (2.36) in Saker et al.
(2014b, Theorem 2.9) established for δ > 1, 0 � κ þ ξ < 1.

The following results, which are obtained for δ < 0, κ � 0 and 0� κ þ
ξ < 1, yield complements of Pachpatte type dynamic inequalities pre-
sented for δ > 1, κ � 0 and 0 � κ þ ξ < 1.

Theorem 2.5. Let D2 � PðtÞ
PρðtÞ � 1; t 2 ðc;∞ÞT be fulfilled for some D2 >

0 and for the functions P, R and Q defined as in (10). Assume that δ < 0, κ �
0 and 0� κ þ ξ< 1 are real numbers and H(u) is a real-valued nonnegative
convex function defined for u � 0.

(1) When κ þ δ > 1, we get

Z ∞

c

pðtÞHκþδðRρðtÞÞ
½PρðtÞ�κþξ rt �

�
D2ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QρðtÞ�κ
½PρðtÞ�κþξ�δ rt; (23)

Z ∞

c

pðtÞHκþδðRρðtÞÞ
½PðtÞ�κþξ rt �

�
κ þ δ

1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QρðtÞ�κ
½PðtÞ�κþξ�δ rt: (24)

(2) When 0 < κ þ δ < 1, one can show

Z ∞

c

pðtÞHκþδðRðtÞÞ
½PρðtÞ�κþξ rt �

�
Dκþξ

2 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QðtÞ�κ
½PρðtÞ�κþξ�δ rt; (25)

Z ∞

c

pðtÞHκþδðRðtÞÞ
½PðtÞ�κþξ rt �

�
κ þ δ

1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QðtÞ�κ
½PðtÞ�κþξ�δ rt: (26)

Proof. We first show the proof of inequality (23). Convexity of the
function H implies

HðRρðtÞÞ ¼ H
�Z ρðtÞ

c
pðsÞrðsÞrs

�
�
Z ρðtÞ

c
pðsÞHðrðsÞÞrs ¼ QρðtÞ: (27)

We use exactly the same method as the proof of Theorem 2.1.
By using ½QκþδðtÞ�r � ðκþδÞpðtÞHðrðtÞÞ½QρðtÞ�κþδ�1 for κ þ δ > 1 and

½P1�κ�ξðtÞ�r � �ð1� κ � ξÞpðtÞ
½PðtÞ�κþξ ; 0 � κ þ ξ < 1;

and by following the same steps of the proof of Theorem 2.1 for the
functions P and Q, we can show that
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Z ∞

c

pðtÞ½QρðtÞ�κþδ

½PρðtÞ�κþξ rt � Dκþξ
2 ðκ þ δÞ
1� κ � ξ

Z ∞

c

pðtÞHðrðtÞÞ½QρðtÞ�κþδ�1

½PðtÞ�κþξ�1 rt

� D2ðκ þ δÞ
1� κ � ξ

Z ∞

c

pðtÞHðrðtÞÞ½QρðtÞ�κþδ�1

½PρðtÞ�κþξ�1 rt:

The reverse H€older inequality (€Ozkan et al., 2008) for the constants δ <
0 and 0 < δ

δ�1 < 1, implies

"Z ∞

c

pðtÞ½QρðtÞ�κþδ

½PρðtÞ�κþξ rt

#1=δ
� D2ðκ þ δÞ

1� κ � ξ

"Z ∞

c

pðtÞHδðrðtÞÞ½QρðtÞ�κ
½PρðtÞ�κþξ�δ rt

#1=δ
:

For δ < 0, taking δ-th power of the both sides of the above inequality
yields the reverse inequality (23) after taking into account inequality
(27). The proofs of inequalities (24)–(26) can be obtained by following
the same method as above. □

Remark 2.6. Since the condition δ < 0 has not been considered so far,
nabla Pachpatte type dynamic inequalities (23)-(26) have been obtained
for the first time. Moreover the condition 0 < κ þ δ < 1 in Theorem 2.5
first ever appears in the literature. Hence the gap in the literature may be
fulfilled by these inequalities, which are obtained for δ< 0, κ � 0, 0� κ þ
ξ < 1 via this theorem.

The nabla Pachpatte type dynamic inequalities (23)-(26) obtained for
δ < 0, κ � 0 and 0 � κ þ ξ < 1 are complements of the nabla Pachpatte
type dynamic inequalities established for δ > 1, κ � 0 and 0 � κ þ ξ < 1.

The nabla Pachpatte type inequalities (23)-(26) obtained for δ < 0, κ
� 0 and 0 � κ þ ξ < 1 are convex generalizations of the nabla Hardy-
Copson type inequalities presented for δ < 0, κ � 0 and 0 � κ þ ξ < 1
where H(u) ¼ u.

The following results, which are obtained for δ < 0, κ � 0 and κ þ ξ �
0, yield complements of Pachpatte type dynamic inequalities presented
for δ > 1, κ � 0 and κ þ ξ � 0.

Theorem 2.7. Let PðtÞ
P
ρðtÞ � D3; t 2 ðc;∞ÞT be fulfilled for some D3 > 0 and

for the functions P ;R and Q defined as in (10). Assume that δ< 0, κ � 0 and
κ þ ξ � 0 are real numbers and H(u) is a real-valued nonnegative convex
function defined for u � 0.

(1) When κ þ δ > 1, one can show

Z ∞

c

pðtÞHκþδ
�
R ðtÞ

�
½P ρðtÞ�κþξ

rt �
�
Dκþξ

3 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½P ρðtÞ�κþξ�δ

rt; (28)

Z ∞

c

pðtÞHκþδ
�
R ðtÞ

�
½P ðtÞ�κþξ rt �

�
Dκþξ�1

3 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½P ðtÞ�κþξ�δ rt:

(29)

(2) When 0 < κ þ δ < 1, one can show

Z ∞

c

pðtÞHκþδ
�
R

ρðtÞ
�

½P ρðtÞ�κþξ
rt �

�
Dκþξ

3 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½P ρðtÞ�κþξ�δ

rt;

(30)

Z ∞

c

pðtÞHκþδ
�
R

ρðtÞ
�

½P ðtÞ�κþξ rt �
�

κ þ δ

1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½P ðtÞ�κþξ�δ rt: (31)

Proof. We first show the proof of inequality (29). Convexity of the
function H implies

H
�
R ðtÞ

�
¼ H

�Z ∞

t
pðsÞrðsÞrs

�
�
Z ∞

t
pðsÞHðrðsÞÞrs ¼ Q ðtÞ: (32)

We use exactly the same method as the proof of Theorem 2.1.

By using�½Q κþδðtÞ�r � ðκþδÞpðtÞHðrðtÞÞ½Q ðtÞ�κþδ�1 for κ þ δ> 1 and

½P 1�κ�ξðtÞ�r � ð1� κ � ξÞpðtÞ
½P ðtÞ�κþξ ; κ þ ξ � 0;

and by following the same steps of the proof of Theorem 2.1 for the

functions P and Q , we can show that

Z ∞

c

pðtÞ½Q ðtÞ�κþδ

½P ðtÞ�κþξ rt � Dκþξ�1
3 ðκ þ δÞ
1� κ � ξ

Z ∞

c

pðtÞHðrðtÞÞ½Q ðtÞ�κþδ�1

½P ðtÞ�κþξ�1 rt:

The reverse H€older inequality (€Ozkan et al., 2008) for the constants δ <
0 and 0 < δ

δ�1 < 1, implies

"Z ∞

c

pðtÞ½Q ðtÞ�κþδ

½P ðtÞ�κþξ rt

#1=δ
� Dκþξ�1

3 ðκ þ δÞ
1� κ � ξ

"Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½P ðtÞ�κþξ�δ rt

#1=δ
:

For δ < 0, taking δ-th power of the both sides of the above inequality
yields the reverse inequality (29) after taking into account inequality
(32). The proofs of inequalities (28), (30) and (31) can be obtained by
following the same method as above. □

Remark 2.8. Since the condition δ < 0 has not been considered so far,
nabla Pachpatte type dynamic inequalities (28)-(31) have been obtained
for the first time. Moreover the condition 0 < κ þ δ < 1 in Theorem 2.7
first ever appears in the literature. Hence the gap in the literature may be
fulfilled by these inequalities, which are obtained for δ< 0, κ � 0, κ þ ξ�
0 via this theorem.

The nabla Pachpatte type dynamic inequalities (28)-(31) obtained for
δ < 0, κ � 0 and κ þ ξ � 0 are complements of the nabla Pachpatte type
dynamic inequalities established for δ > 1, κ � 0 and κ þ ξ � 0.

The nabla Pachpatte type inequalities (28)-(31) obtained for δ < 0, κ
� 0 and κ þ ξ � 0 are convex generalizations of the nabla Hardy-Copson
type inequalities presented for δ < 0, κ � 0 and κ þ ξ� 0 where H(u)¼ u.

The following results, which are obtained for δ < 0, κ � 0 and 0� κ þ
ξ < 1, yield complements of Pachpatte type dynamic inequalities pre-
sented for δ > 1, κ � 0 and 0 � κ þ ξ < 1.

Theorem 2.9. Let D4 � PðtÞ
P
ρðtÞ � 1; t 2 ðc;∞ÞT be fulfilled for some D4 >

0 and for the functions P ;R and Q defined as in (10). Assume that δ < 0, κ
� 0 and 0 � κ þ ξ < 1 are real numbers and H(u) is a real-valued
nonnegative convex function defined for u � 0.

(1) When κ þ δ > 1, we get

Z ∞

c

pðtÞHκþδðR ðtÞÞ
½P ðtÞ�κþξ rt �

�
D4ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½P ðtÞ�κþξ�δ rt; (33)

Z ∞

c

pðtÞHκþδðR ðtÞÞ
½P ρðtÞ�κþξ

rt �
�

κ þ δ

1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½P ρðtÞ�κþξ�δ

rt: (34)

(2) When 0 < κ þ δ < 1, one can show

Z ∞

c

pðtÞHκþδðR ρðtÞÞ
½P ðtÞ�κþξ rt �

�
Dκþξ

4 ðκ þ δÞ
1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½P ðtÞ�κþξ�δ rt;

(35)

Z ∞

c

pðtÞHκþδðR ρðtÞÞ
½P ρðtÞ�κþξ

rt �
�

κ þ δ

1� κ � ξ

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½P ρðtÞ�κþξ�δ

rt: (36)

Proof. We first show the proof of inequality (35). Convexity of the
function H implies
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H
�
R

ρðtÞ
�
¼ H

 Z ∞

ρðtÞ
pðsÞrðsÞrs

!
�
Z ∞

ρðtÞ
pðsÞHðrðsÞÞrs ¼ Q

ρðtÞ: (37)

We use exactly the same method as the proof of Theorem 2.1.

By using �½Q κþδðtÞ�r � ðκþδÞpðtÞHðrðtÞÞ½Q ρðtÞ�κþδ�1 for 0 < κ þ δ <
1 and

	
P
1�κ�ξðtÞ
r � ð1� κ � ξÞpðtÞ

½PρðtÞ�κþξ � ð1� κ � ξÞpðtÞ
Dκþξ

4 ½PðtÞ�κþξ ; 0 � κ þ ξ < 1;

and by following the same steps of the proof of Theorem 2.1 for the

functions P and Q , we can show that

Z ∞

c

pðtÞ½Q ρðtÞ�κþδ

½P ðtÞ�κþξ rt � Dκþξ
4 ðκ þ δÞ
1� κ � ξ

Z ∞

c

pðtÞHðrðtÞÞ½Q ρðtÞ�κþδ�1

½P ðtÞ�κþξ�1 rt:

The reverse H€older inequality (€Ozkan et al., 2008) for the constants δ <
0 and 0 < δ

δ�1 < 1, implies

"Z ∞

c

pðtÞ½Q ρðtÞ�κþδ

½P ðtÞ�κþξ rt

#1=δ
� Dκþξ

4 ðκ þ δÞ
1� κ � ξ

"Z ∞

c

pðtÞHðrðtÞÞ½Q ρðtÞ�κ
½P ðtÞ�κþξ�δ rt

#1=δ
:

For δ < 0, taking δ-th power of the both sides of the above inequality
yields the reverse inequality (35) after taking into account inequality
(37). The proofs of inequalities (33), (34) and (36) can be obtained by
following the same method as above. □

Remark 2.10. Since P
ρðtÞ � P ðtÞ and 0 � κ þ ξ < 1, inequalities (34)

and (36) are valid if the terms ½P ρðtÞ�κþξ on the left hand sides of these
inequalities are changed by ½P ðtÞ�κþξ.

Since P
ρðtÞ � P ðtÞ and κ þ ξ � δ � 0, inequalities (33) and (35) are

valid if the terms ½P ðtÞ�κþξ�δ on the right hand sides of these inequalities

are changed by ½P ρðtÞ�κþξ�δ.

Since Q
ρðtÞ � Q ðtÞ and κ � 0, inequalities (33) and (34) are valid if

the terms ½Q ðtÞ�κ on the right hand sides of these inequalities are changed

by ½Q ρðtÞ�κ .
The following results, which are obtained for δ < 0, κ � 0 and κ þ ξ >

1, yield complements of the former Pachpatte type dynamic inequalities
presented for δ > 1, κ � 0 and 0 � κ þ ξ > 1.

Theorem 2.11. Let D4 > 0 be defined as in Theorem 2.9 and the functions
P ;R and Q be defined as in (10). Assume that δ < 0, κ � 0 and κ þ ξ > 1 are
real numbers and H(u) is a real-valued nonnegative convex function
defined for u � 0.

(1) When κ þ δ > 1, we get

Z ∞

c

pðtÞHκþδðRρðtÞÞ
½P ðtÞ�κþξ rt �

�
Dκþξ

4 ðκ þ δÞ
κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QρðtÞ�κ
½P ðtÞ�κþξ�δ rt; (38)

Z ∞

c

pðtÞ
½PρðtÞ�ξ�δH

κþδ

�
RρðtÞ
P
ρðtÞ

�
rt �

�
Dκþξ�1

4 ðκ þ δ� 1Þ
κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QρðtÞ�κ
½PρðtÞ�κþξ�δ rt:

(39)

(2) When 0 < κ þ δ < 1, one can show

Z ∞

c

pðtÞ
½P ðtÞ�ξ�δH

κþδ

 
RðtÞ
P ðtÞ

!
rt �

�
Dκþξ

4 ðκ þ δÞ
κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QðtÞ�κ
½P ðtÞ�κþξ�δ rt;

(40)

Z ∞

c

pðtÞHκþδðRðtÞÞ
½P ρðtÞ�κþξ

rt �
�

κ þ δ

κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½QðtÞ�κ
½P ρðtÞ�κþξ�δ

rt: (41)

Proof. After employing Jensen's inequality (9) with a convex function
H and by using

�½P 1�κ�ξðtÞ�r � ðκ þ ξ� 1ÞpðtÞ
½P ρðtÞ�κþξ

� ðκ þ ξ� 1ÞpðtÞ
Dκþξ

4 ½P ðtÞ�κþξ

for κ þ ξ > 1, the combination of the techniques used in the proof of
Kayar et al. (2021, Theorem 3.12) and in the proofs of Theorem 2.1 and
Theorem 2.7 work for the proof of this theorem. □

Remark 2.12. Since the condition δ< 0 has not been considered so far,
nabla Pachpatte type dynamic inequalities (38)-(41) have been obtained
for the first time. Moreover the condition 0 < κ þ δ < 1 in Theorem 2.11
first ever appears in the literature. Hence the gap in the literature may be
fulfilled by these inequalities, which are obtained for δ< 0, κ � 0, κ þ ξ>
1 via this theorem.

The nabla Pachpatte type dynamic inequalities (38)-(41) obtained for
δ < 0, κ � 0 and κ þ ξ > 1 are complements of the nabla Pachpatte type
dynamic inequalities established for δ > 1, κ � 0 and κ þ ξ > 1.

The nabla Pachpatte type inequalities (38)-(41) obtained for δ < 0, κ
� 0 and κ þ ξ > 1 are convex generalizations of the nabla Hardy-Copson
type inequalities presented for δ < 0, κ � 0 and κ þ ξ> 1 where H(u)¼ u.

The following results, which are obtained for δ < 0, κ � 0 and κ þ ξ >
1, yield complements of the former Pachpatte type dynamic inequalities
presented for δ > 1, κ � 0 and κ þ ξ > 1.

Theorem 2.13. Let D2 > 0 be defined in Theorem 2.5 and the functions P;

R and Q be defined as in (10). Assume that δ < 0, κ � 0 and κ þ ξ > 1 are
real numbers and H(u) is a real-valued nonnegative convex function
defined for u � 0.

(1) When κ þ δ > 1, we get

Z ∞

c

pðtÞ
½PðtÞ�ξ�δH

κþδ

 
R ðtÞ
PðtÞ

!
rt �

�
Dκþξ�1

4 ðκ þ δÞ
κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½PðtÞ�κþξ�δ rt;

(42)

Z ∞

c

pðtÞHκþδðR ðtÞÞ
½PρðtÞ�κþξ rt �

�
Dκþξ

4 ðκ þ δÞ
κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ðtÞ�κ
½PρðtÞ�κþξ�δ rt: (43)

(2) When 0 < κ þ δ < 1, one can show

Z ∞

c

pðtÞ
½PρðtÞ�ξ�δH

κþδ

 
R

ρðtÞ
PρðtÞ

!
rt�

�
Dκþξ

4 ðκþδÞ
κþξ�1

�δZ ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½PρðtÞ�κþξ�δ rt;

(44)

Z ∞

c

pðtÞHκþδðR ρðtÞÞ
½PðtÞ�κþξ rt �

�
κ þ δ

κ þ ξ� 1

�δ Z ∞

c

pðtÞHδðrðtÞÞ½Q ρðtÞ�κ
½PðtÞ�κþξ�δ rt: (45)

Proof. After employing Jensen's inequality (9) with a convex function
H, the combination of the techniques used in the proof of Kayar et al.
(2021, Theorem 3.4) and in the proofs of Theorem 2.1 and Theorem 2.7
work for the proof of this theorem. □

Remark 2.14. Since Pρ(t)� P(t) and κ þ ξ> 1, inequality (45) is valid if
the term [P(t)]κþξ on the left hand side of this inequality is changed by
½PρðtÞ�κþξ.
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Since ðtÞ � PðtÞ and κ þ ξ� δ� 0, inequalities (43) and (44) are valid

if the terms ½PρðtÞ�κþξ�δ on the right hand sides of these inequalities are
changed by ½PρðtÞ�κþξ�δ.

Since Q
ρðtÞ � Q ðtÞ and κ � 0, inequalities (42) and (43) are valid if

the terms ½Q ðtÞ�κ on the right hand sides of these inequalities are changed

by ½Q ρðtÞ�κ .
Remark 2.15. Since the condition δ< 0 has not been considered so far,
nabla Pachpatte type dynamic inequalities (42)-(45) have been obtained
for the first time. Moreover the condition 0 < κ þ δ < 1 in Theorem 2.11
first ever appears in the literature. Hence the gap in the literature may be
fulfilled by these inequalities, which are obtained for δ< 0, κ � 0, κ þ ξ>
1 via this theorem.

The nabla Pachpatte type dynamic inequalities (42)-(45) obtained for
δ < 0, κ � 0 and κ þ ξ > 1 are complements of the nabla Pachpatte type
dynamic inequalities given for δ > 1, κ � 0 and κ þ ξ > 1.

The nabla Pachpatte type inequalities (42)-(45) obtained for δ < 0, κ
� 0 and κ þ ξ > 1 are convex generalizations of the nabla Hardy-Copson
type inequalities presented for δ< 0, κ � 0 and κ þ ξ> 1 where H(u)¼ u.
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Eskişehir Tech. Univ. J. Sci. Technol. B - Theor. Sci. 7, 133–145. https://doi.org/
10.20290/estubtdb.609525.

�Reh�ak, P., 2005. Hardy inequality on time scales and its application to half-linear
dynamic equations. J. Inequalities Appl. 2005, 495–507. https://doi.org/10.1155/
JIA.2005.495.

Saker, S.H., 2012. Dynamic inequalities on time scales: a survey. J. Fractional Calc. &
Appl. 3 (S), 1–36. https://doi.org/10.1007/978-3-319-11002-8.

Saker, S.H., Mahmoud, R.R., 2019. A connection between weighted Hardy's inequality
and half-linear dynamic equations. Adv. Differ. Equ. 2019, 1–15. https://doi.org/
10.1186/s13662-019-2072-x.

Saker, S.H., Mahmoud, R.R., H, S., Osman, M.M., Agarwal, R.P., 2017. Some new
generalized forms of Hardy's type inequality on time scales. Math. Inequalities Appl.
20, 459–481. https://doi.org/10.7153/mia-20-31.

Saker, S.H., Mahmoud, R.R., Peterson, A., 2018b. A unified approach to Copson and
Beesack type inequalities on time scales. Math. Inequalities Appl. 21, 985–1002.
https://doi.org/10.7153/mia-2018-21-67.

Saker, S.H., O'Regan, D., Agarwal, R.P., 2014a. Dynamic inequalities of Hardy and Copson
type on time scales. Analysis 34, 391–402. https://doi.org/10.1515/anly-2012-1234.

Saker, S.H., O'Regan, D., Agarwal, R.P., 2014b. Generalized Hardy, Copson, leindler and
bennett inequalities on time scales. Math. Nachr. 287, 686–698. https://doi.org/
10.1002/mana.201300010.

Saker, S.H., Osman, M.M., O'Regan, D., Agarwal, R.P., 2018a. Inequalities of Hardy type
and generalizations on time scales. Analysis 38, 47–62. https://doi.org/10.1515/
anly-2017-0006.

Saker, S.H., Osman, M.M., O'Regan, D., Agarwal, R.P., 2019. Levinson type inequalities
and their extensions via convexity on time scales. RACSAM 113, 299–314. https://
doi.org/10.1007/s13398-017-0473-9.

Z. Kayar, B. Kaymakcalan Kuwait Journal of Science 51 (2024) 100130

7

https://doi.org/10.7153/mia-04-48
https://doi.org/10.1007/s10474-017-0718-2
https://doi.org/10.1007/s10474-017-0718-2
https://doi.org/10.1007/978-3-319-11002-8
https://doi.org/10.1007/978-3-319-44299-0
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref5
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref5
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref5
https://doi.org/10.1016/S0377-0427(01)00437-X
https://doi.org/10.1016/S0377-0427(01)00437-X
https://doi.org/10.1007/978-3-319-22870-9
https://doi.org/10.1007/978-3-319-22870-9
http://projecteuclid.org/euclid.pjm/1103037533
https://doi.org/10.1093/qmath/38.4.401
https://doi.org/10.7153/mia-18-69
https://doi.org/10.7153/mia-18-69
https://doi.org/10.1007/978-1-4612-0201-1
https://doi.org/10.1007/978-1-4612-0201-1
https://doi.org/10.1007/978-0-8176-8230-9
https://doi.org/10.1186/1029-242X-2014-271
https://doi.org/10.1112/jlms/s1-3.1.49
https://doi.org/10.1112/jlms/s1-3.1.49
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref15
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref15
https://doi.org/10.1186/s13662-020-02883-8
https://doi.org/10.1186/s13662-020-02883-8
https://doi.org/10.1186/s13660-020-02339-3
https://doi.org/10.1080/10236190290015272
https://doi.org/10.1080/10236190290015272
https://doi.org/10.1063/1.2116380
https://doi.org/10.1186/s13660-015-0681-9
https://doi.org/10.1186/s13660-015-0681-9
https://doi.org/10.1007/BF01199965
https://doi.org/10.1007/BF01199965
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref22
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref22
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref22
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref23
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref23
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref23
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref24
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref24
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref24
https://doi.org/10.3906/mat-2011-38
https://doi.org/10.1007/s41980-021-00651-2
https://doi.org/10.31801/cfsuasmas.930138
https://doi.org/10.31801/cfsuasmas.930138
https://doi.org/10.1007/s00009-020-01674-5
https://doi.org/10.1007/s00009-020-01674-5
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref29
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref29
https://doi.org/10.1142/10052
https://doi.org/10.1007/s00013-019-01395-6
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref32
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref32
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref32
http://projecteuclid.org/euclid.dmj/1077375352
https://doi.org/10.1515/ans-2015-0404
https://doi.org/10.1007/978-3-642-19533-4
https://doi.org/10.1007/978-3-642-19533-4
https://doi.org/10.5186/aasfm.2014.3947
https://doi.org/10.5186/aasfm.2014.3947
https://doi.org/10.1016/j.aml.2007.06.008
https://doi.org/10.1016/j.aml.2007.06.008
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref38
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref38
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref38
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref39
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref39
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref39
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref40
https://doi.org/10.1006/jmaa.1999.6294
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
http://refhub.elsevier.com/S2307-4108(23)00155-4/sref42
https://doi.org/10.20290/estubtdb.609525
https://doi.org/10.20290/estubtdb.609525
https://doi.org/10.1155/JIA.2005.495
https://doi.org/10.1155/JIA.2005.495
https://doi.org/10.1007/978-3-319-11002-8
https://doi.org/10.1186/s13662-019-2072-x
https://doi.org/10.1186/s13662-019-2072-x
https://doi.org/10.7153/mia-20-31
https://doi.org/10.7153/mia-2018-21-67
https://doi.org/10.1515/anly-2012-1234
https://doi.org/10.1002/mana.201300010
https://doi.org/10.1002/mana.201300010
https://doi.org/10.1515/anly-2017-0006
https://doi.org/10.1515/anly-2017-0006
https://doi.org/10.1007/s13398-017-0473-9
https://doi.org/10.1007/s13398-017-0473-9

	On the complementary nabla Pachpatte type dynamic inequalities via convexity
	Introduction
	Complementary Pachpatte type inequalities
	Declaration of competing interest
	References


