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An implicit decoupling for the dilatons and the axions of the heterotic string
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Abstract

A set of consistency conditions is derived for the massless sector of the D-dimensional E8 ×E8 heterotic string. Under the solvable Lie algebra
gauge these conditions are further formulated explicitly in terms of the dilatons and the axions. It is then shown that these consistency conditions
which are satisfied by the solution space give way to an implicit decoupling between the coset scalar sector namely the dilatons and the axions
and the gauge fields of the theory.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The global (rigid) symmetry of the scalar sectors of the su-
pergravity theories can be extended to be the global symmetry
of the entire bosonic sector of the theory. The global symme-
tries of the supergravities give us the non-perturbative U-duality
symmetries of the relative string theories [1–3]. Therefore un-
derstanding the role of the scalars in the supergravity dynamics
has implications not only on its own right but it will also help
us to understand the duality nature of the string theories.

The ten-dimensional N = 1 type I supergravity theory
which is coupled to the Yang–Mills theory [4,5] is the low
energy effective limit or the massless sector of the type I su-
perstring theory and the heterotic string theory [1,6]. When the
coupling Yang–Mills multiplet number is N = 16, the D = 10
Yang–Mills supergravity has the E8 ×E8 gauge symmetry thus
it corresponds to the low energy effective limit of the E8 × E8
ten-dimensional heterotic string theory which forms the mass-
less background coupling [1]. Due to the general Higgs vacuum
structure the full symmetry E8 × E8 can be broken down to its
maximal torus subgroup U(1)16. In this case we have the low
energy effective theory of the fully Higgsed ten-dimensional
E8 × E8 heterotic string. In [6] the Kaluza–Klein compacti-
fication of the bosonic sector of the ten-dimensional N = 1
simple supergravity that is coupled to N Abelian gauge mul-
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tiplets on the tori T 10−D is performed and the D-dimensional
fully Higgsed effective bosonic heterotic string Lagrangian is
obtained. It is also shown in the same work that when a sin-
gle scalar is decoupled from the others, the rest of the scalars
of the D-dimensional theory can be formulated as G/K sym-
metric space sigma model. Since the global symmetry groups
of the compactified D-dimensional effective heterotic string are
non-compact real forms one can make use of the solvable Lie
algebra gauge [7] to parametrize the scalar cosets and to con-
struct the scalar Lagrangians. In such a gauge simply the gauge
forming solvable Lie algebra is composed of certain Cartan and
positive root generators of the Lie algebra of G [8].

In this work starting from the D-dimensional effective
bosonic heterotic string Lagrangian derived in [6] we show that
the field equation of the single decoupled dilaton generates a set
of consistency conditions which are satisfied by the elements of
the solution space of the theory. We interpret these hidden con-
sistency conditions as an implicit decoupling between the G/K

coset scalars and the U(1) gauge fields. Therefore we also prove
that the coset scalar solution space of the D-dimensional effec-
tive heterotic string is embedded in the solution space of the
pure G/K non-linear sigma model.

2. Consistency conditions and the scalar–matter
decoupling

In this section starting from the bosonic Lagrangian of the
D-dimensional fully Higgsed low energy effective heterotic
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string [6] we will show that the field equation of the decou-
pled dilaton leads to two sets of consistency conditions which
are satisfied by the solution space of the theory. Although these
conditions are in general valid for generic coset scalar fields
which are defined without specifying a gauge for the coset para-
metrization we will choose the solvable Lie algebra parame-
trization [7] to further simplify these conditions. By assuming
a matrix representation for the Lie algebra of the global sym-
metry group we will express the general consistency conditions
in terms of the dilatons and the axions of the theory. Then we
will show that these consistency conditions reveal a hidden de-
coupling of the gauge fields in the field equations of the coset
scalars although there exists a scalar–matter coupling term in
the Lagrangian.

The bosonic Lagrangian of the D = 10, N = 1 Abelian
Yang–Mills supergravity which is coupled to N U(1) gauge
multiplets can be given as [4–6]

L10 = R ∗ 1 − 1

2
∗ dφ1 ∧ dφ1 − 1

2
eφ1 ∗ F(3) ∧ F(3)

(2.1)− 1

2
e

1
2 φ1

N∑
I=1

∗GI
(2) ∧ GI

(2),

where GI
(2) = dBI

(1) are the N U(1) gauge field strengths. In
(2.1) φ1 is a scalar field and we have a two-form field A(2)

whose field strength is defined as

(2.2)F(3) = dA(2) + 1

2
BI

(1) ∧ dBI
(1).

When the bosonic sector of the ten-dimensional simple N = 1
supergravity which is coupled to N Abelian gauge multiplets
is compactified on the Euclidean torus T 10−D in D-dimensions
one obtains the reduced Lagrangian [6]

LD = R ∗ 1 − 1

2
∗ dφ ∧ dφ + 1

4
tr
(∗dM−1 ∧ dM

)
− 1

2
e−√

8/(D−2)φ ∗ F(3) ∧ F(3)

(2.3)− 1

2
e−√

2/(D−2)φ ∗ HT
(2) ∧MH(2),

with

(2.4)H(2) = dC(1),

where C(1) is a column vector of one-form fields whose dimen-
sion is (20−2D+N). The field strength F(3) in (2.3) is defined
as

(2.5)F(3) = dA(2) + 1

2
CT

(1)Ω dC(1).

The definitions of the potentials used in writing (2.3) in terms
of the original Kaluza–Klein potentials which emerge from the
reduction ansatz used in (2.1) can be found in [6]. Apart form
the single dilaton φ which is decoupled from the rest the scalars
in (2.3) parametrize the coset

(2.6)
O(10 − D + N,10 − D)

O(10 − D + N) × O(10 − D)
.

The (20 − 2D + N) × (20 − 2D + N) matrix Ω in (2.5) is

(2.7)Ω =
( 0 0 −1(10−D)

0 1(N) 0
−1(10−D) 0 0

)
,

where 1(n) is the n × n unit matrix. Ω is the invariant metric of
O(10 − D + N,10 − D). The scalar sector Lagrangian in (2.3)
is based on the internal metric

(2.8)M= νT ν,

where ν is the O(10 − D + N,10 − D)/O(10 − D + N) ×
O(10 − D) coset representative. One can use the solvable Lie
algebra parametrization [7,8]

(2.9)ν = e
1
2 φiHi eχmEm,

to parametrize the coset representative ν. This parametrization
is a result of the Iwasawa decomposition

(2.10)o(10 − D + N,10 − D) = k0 ⊕ s0,

where k0 is the Lie algebra of O(10 − D + N) × O(10 − D)

which is a maximal compact subgroup of O(10 − D + N,

10 − D) and s0 is a solvable Lie subalgebra of o(10 − D + N,

10 − D) [8,9]. The set {Hi} which is composed of a certain
number of Cartan generators and the set {Em} which is com-
posed of a certain number of positive root generators are the
generators of s0 [9]. The (10−D)× (10−D+N) coset scalars
are divided into the dilatons {φi} and the axions {χm}.

As we have mentioned in the introduction in this work our
aim is to derive a set of consistency conditions which reveal an
implicit decoupling in the scalar–matter structure of (2.3). We
should state that for observing the above mentioned consistency
conditions we do not have to inspect the entire set of field equa-
tions of (2.3). It will be sufficient to take a look at only the field
equation of the decoupled dilaton φ to obtain the necessary con-
sistency conditions. Now if we vary the Lagrangian (2.3) with
respect to the scalar field φ we obtain the corresponding field
equation as

(−1)Dd(∗dφ)

= 1

2

√
8/(D − 2)e

−
√

8
(D−2)

φ ∗ F(3) ∧ F(3)

(2.11)+ 1

2

√
2/(D − 2) e

−
√

2
(D−2)

φMij ∗ Hi
(2) ∧ H

j

(2).

This equation can be written as

−√
2/(D − 2)Lmat = (−1)Dd(∗dφ) − 1

2

√
8/(D − 2)

(2.12)× e
−

√
8

(D−2)
φ ∗ F(3) ∧ F(3),

where

(2.13)Lmat = −1

2
e
−

√
2

(D−2)
φMij ∗ Hi

(2) ∧ H
j

(2),

is the term which couples the coset scalars to the matter gauge
fields in (2.3). Now we should observe that since the right-hand
side of (2.12) does not depend on the dilatons and the axions if
we take the partial derivative of both sides of (2.12) with respect
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to the dilatons {φi} and the axions {χm} we obtain

(2.14)
∂Lmat

∂φi
= ∂Lmat

∂χm
= 0.

Since in deriving (2.14) we have started from the field equa-
tion (2.11) these conditions are consistency conditions which
are satisfied by the solution space of (2.3). Before discussing
their implications in the scalar sector we will work on them fur-
ther more and derive the explicit form of the conditions (2.14).
For any matrix function ω(x) we have [10,11]

(2.15)
∂eω

∂x
= eω

(
ω′ − 1

2! [ω,ω′] + 1

3!
[
ω, [ω,ω′]] − · · ·

)
,

with

(2.16)ω′ ≡ ∂ω

∂x
.

When we choose a (20 − 2D + N )-dimensional representation
for o(10−D +N,10−D) and express the generators {Hi} and
{Em} as matrices bearing in mind that the generators {Hi} are
Cartan generators [9] after some algebra one can show that

(2.17)
∂ν

∂φi
= 1

2
Hiν and

∂νT

∂φi
= 1

2
νT HT

i .

Therefore we find

(2.18)
∂M
∂φi

= 1

2

(
A+AT

)
,

where we define

(2.19)A= νT Hiν.

Now from (2.15) we also define

O(Em) ≡ ∂(eχnEn)

∂χm

= eχnEn

(
Em − 1

2!
[
χnEn,Em

]
(2.20)+ 1

3!
[
χnEn,

[
χtEt ,Em

]] − · · ·
)

,

where we have used

(2.21)
∂(χnEn)

∂χm
= Em.

After some algebra one can prove that

(2.22)OT (Em) = O
(
ET

m

)
.

By using the definition (2.20) and also the identity (2.22) simi-
larly for the axions we find that

(2.23)
∂M
∂χm

= B +BT ,

where we introduce

(2.24)B = νT e
1
2 φiHi O(Em).

We should state that since {Em} are the generators of a nilpo-
tent Lie subalgebra of o(10−D+N,10−D) [9] one can prove
that the series in (2.20) should terminate after a finite number
of terms [12,13]. Thus the calculation of (2.24) is a straightfor-
ward task after choosing the representation. Now from (2.14)
we have

∂Lmat

∂φi
= −1

2
e
−

√
2

(D−2)
φ ∂Mkl

∂φi
∗ Hk

(2) ∧ Hl
(2) = 0,

(2.25)
∂Lmat

∂χm
= −1

2
e
−

√
2

(D−2)
φ ∂Mij

∂χm
∗ Hi

(2) ∧ H
j

(2)
= 0.

By using (2.18) and (2.23) also by further simplifying we can
finally write the consistency conditions in (2.25) as

Aij ∗ Hi
(2) ∧ H

j

(2) = 0,

(2.26)Bij ∗ Hi
(2) ∧ H

j

(2) = 0.

Before concluding we should discuss how these conditions
bring out an implicit decoupling between the coset scalars
namely the dilatons and the axions and the U(1) gauge fields.
The scalar sector which governs the (10 − D) × (10 − D + N)

coset scalars {φi} and {χm} in (2.3) can be given as

(2.27)L
(
φi,χm

) = 1

4
tr
(∗dM−1 ∧ dM

) +Lmat.

Now if we vary this Lagrangian with respect to the dilatons {φi}
and the axions {χm} to find the corresponding field equations
we immediately see that since the matter Lagrangian in (2.27)
does not depend on the field strengths of the dilatons and the
axions and moreover due to the conditions (2.14) which are sat-
isfied by the elements of the solution space the dilaton and the
axion field equations are equivalent to the ones which would be
obtained by directly varying the pure G/K coset sigma model
Lagrangian

(2.28)Lpure scalar = 1

4
tr
(∗dM−1 ∧ dM

)
.

Thus we prove that the coset scalar solutions of the field equa-
tions of (2.3) are contained in the general solution space of the
pure symmetric space sigma model Lagrangian (2.28).1 This
may be identified as an implicit decoupling structure of the
coset scalars and the Abelian gauge fields C(1). Therefore we
conclude that although there is a coupling between the coset
scalars and the Abelian gauge fields at the Lagrangian level in
(2.3) the consistency conditions we have derived in (2.14) re-
flect an implicit decoupling between the coset scalars and the
Abelian gauge fields in the coset scalar field equations. How-
ever we should state that the coset scalars and the rest of the
fields are still coupled to each other in the other field equations.
Thus as a result we observe that the dilaton and the axion so-
lutions of the field equations of the D-dimensional Lagrangian
(2.3) form up a subset of the pure scalar coset sigma model so-
lution space.

3. Conclusion

By inspecting the decoupled dilaton field equation of the
bosonic Lagrangian of the D-dimensional fully Higgsed low

1 To see how the field equations of the pure symmetric space sigma model
can be derived one may refer to [9,14].
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energy effective heterotic string [6] we have derived two sets
of consistency conditions which are satisfied by the elements of
the bosonic solution space. Assuming the solvable Lie algebra
parametrization for the scalar coset manifold and a matrix rep-
resentation for the global symmetry algebra we have obtained
the explicit forms of these conditions in terms of the dilatons
and the axions. Furthermore we have discussed that these con-
ditions bring out a hidden decoupling between the coset scalars
and the gauge fields of the theory from the scalar solution space
point of view despite the existence of a coupling term in the
Lagrangian. Therefore we have revealed an implicit constraint
which shapes the bosonic solution space of the fully Higgsed
effective heterotic string.

The consistency conditions we have obtained can be ef-
fectively used to generate ansatz for solving the bosonic field
equations of the theory. For this reason we have also derived
the explicit form of these conditions in the solvable Lie alge-
bra gauge of the scalar coset manifold. Besides we have shown
that the coset scalar solutions of the D-dimensional fully Hig-
gsed low energy effective heterotic string are embedded in the
solution space of the pure symmetric space G/K sigma model.
Thus the general solutions of the pure coset scalar sector can
also be used as ansatz in solving the bosonic field equations of
the D-dimensional effective heterotic string.

The main achievement of this work is to reveal the fact
that the single dilaton which behaves distinctively in the D-
dimensional effective heterotic string Lagrangian generates a
scalar–matter decoupling structure for the content of the scalar
solution space and its existence contributes an important set
of consistency conditions on the entire bosonic solution space.
Such an implicit decoupling of the coset scalars from the rest
of the bosonic field content also carries implications why the
global symmetry of the pure coset scalar sector can be extended
to be the global symmetry of the entire bosonic sector. There-
fore this work may help us to understand the global symmetries
of the supergravities thus the duality scheme of the string theory
better.

Although we have assumed the solvable Lie algebra gauge
to parametrize the scalar coset manifold of the D-dimensional
theory the consistency conditions we have derived are valid for
any parametrization, scalar field definition and the formulation
of the coset scalar sector Lagrangian. Therefore these condi-
tions can be studied further more in different formulations of
the scalar sector. We should state that the decoupling studied in
this work is a pseudo one instead since when one considers the
rest of the bosonic field equations of the theory one sees that
the coset scalars take part in the equations. Thus the solution
configuration of the coset scalars do depend on the other fields
since they couple to the rest of the field content in the other
field equations. However the field equations of the coset scalars
can be decoupled from the rest of the fields denoting that the
coset scalar solution space is contained in the pure scalar sec-
tor non-linear sigma model solution space. With the perspective
of understanding the global symmetry structure of the super-
gravities we have focussed on the role of the scalar coset sigma
model in the bosonic theory. For this reason we have inspected
its bosonic couplings and we have omitted the fermionic sector.
One may do a similar search to derive consistency conditions
which would reveal the relations between the pure scalar sector
and its coupling extensions in the entire theory.
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