
Radiation force of coherent and partially coherent 
flat-topped beams on a Rayleigh particle 

Chengliang Zhao,
1
 Yangjian Cai,

1,2*
 Xuanhui Lu,

1
 and Halil T. Eyyuboğlu

3
  

1. Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310028, China 
2.  School of Physical Science and Technology, Suzhou University, Suzhou 215006, China 

3. Department of Electronic and Communication Engineering, Çankaya University, Öğretmenler Cad. 14,  
Yüzüncüyıl 06530 Balgat Ankara, Turkey 

*Corresponding author: yangjian_cai@yahoo.com.cn 

Abstract: Propagations of coherent and partially coherent flat-topped 
beams through a focusing optical system are formulated. The radiation force 
on a Rayleigh dielectric sphere induced by focused coherent and partially 
coherent flat-topped beams is investigated theoretically. It is found that we 
can increase the transverse trapping range at the planes near the focal plane 
by increasing the flatness (i.e., beam order) of the flat-topped beam, and 
increase the transverse and longitudinal trapping ranges at the focal plane by 
decreasing the initial coherence of the flat-topped beam. Moreover the 
trapping stiffness of flat-topped beam becomes lower as the beam order 
increases or the initial coherence decreases. The trapping stability is also 
analyzed. 
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1. Introduction 

In recent years, light beams with flat-topped profiles have attracted more and more attention 
due to their wide applications in free-space optical communications, inertial confinement 
fusion, material thermal processing, nonlinear optics and electron acceleration [1-8]. Several 
theoretical models such as super Gaussian beam, flattened Gaussian beam, flat-topped beam 
and flat-topped multi-Gaussian beam have been proposed to describe a laser beam with flat-
topped beam profile [9-12]. Propagations of various flat-topped beams in free-space, paraxial 
optical systems and turbulent atmosphere have been studied in detail [1,4, 9-20]. 

Recently, flat-topped beams have been extended to the partially coherent case. Several 
theoretical models have been proposed to describe a partially coherent beam with flat-topped 
beam profile [21, 22]. Borghi and Santarsiero studied the modal decomposition of partially 
coherent flat-topped beams [23]. Zhang et al. investigated the spectrum properties of a 
partially coherent flat-topped beam in dispersive and gain media [24]. M. Alavinejad studied 
the intensity and spectral properties of partially coherent flat-topped beams in turbulent 
atmosphere [25-26]. Baykal and Eyyuboğlu studied the scintillations of incoherent flat-topped 
Gaussian beam in turbulence [27]. More recently, Wang and Cai reported the experimental 
generation of a partially coherent flat-topped beam [28]. 

Light radiation force is produced by the exchange of momentum between photons and a 
micro-sized particle when the incident light is scattered by a particle as a whole. The use of 
radiation pressure for trapping and manipulation of particles is a subject of great interest. In 
1970, Ashkin first demonstrated how to capture and manipulate micro-sized particles by using 
the radiation pressure [29]. Since then, this new technology has found wide applications in 
manipulating various particles such as micro-sized dielectric particles, neutral atoms, cells, 
DNA molecules, and living biological cells [30-37]. Up to now, the trapping characteristics of 
different beams, such as Gaussian beam, bottle beam, zero-order Bessel beam, Laguerre-
Gaussian beam, Hermite-Gaussian beam, evanescent fields, radially polarized beam, Gaussian 
Schell-model beam and pulsed Gaussian beam have been studied [29-33, 38-46]. It has been 
found that the radiation forces produced by a laser beam are closely related to its beam 
characteristics such as beam profile, coherence and polarization. In this paper, we investigate 
the radiation force produced by focused coherent and partially coherent flat-topped beams on 
a Rayleigh particle. Some interesting and useful results are found. 

2. The characteristics of coherent and partially coherent flat-topped beams 

In this paper, we adopt the model for a flat-topped beam proposed by Li [11]. The electric 
field of a coherent flat-topped beam at z=0 can be expressed as a finite sum of fundamental 
Gaussian modes as follows [11], 

( ) ( ) 1 2

0 2
1 0

1
, 0 exp ,                       (1)

n
N

in N N
n

N n
E z E

nN w

−

−
=

−   
= = −  

   
∑

r
r  

where 0NE  is a normalization factor, 0w is the waist size of the fundamental Gaussian mode, 










n

N
denotes a binomial coefficient, and N is called the beam order of the flat-topped beam, 

When N=1, Eq. (1) reduces to the electric field of a Gaussian beam. Here we assume the 
power of the flat-topped beam to be P. Following [32], the power of a flat-topped beam is 
calculated by following formula 

( , 0) ,                                         (2)in NP I z dxdy
+∞ +∞

−−∞ −∞
= =∫ ∫ r  
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where 
20( , 0) ( , 0)

2

m
in N in N

n c
I z E z

ε
− −= = =r r , mn is the refractive index of the surrounding 

medium, 0ε is the dielectric constant, and c is the speed of the light in vacuum. Substituting 

Eq. (1) into Eq. (2), we can obtain the expression for the normalization factor 0NE  as follows 

2( 1)
2

0 0 02
1

( 1)
4 / .                                         (3)

nN

N m
n

N
E nP w n c

nN
π ε

−

=

 −
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 
∑

The power of the flat-topped beam in this paper is set to be P=1W, which means every beam 

discussed in the following text carries the same power. Figure 1 shows the intensity 

distributions of a flat-topped beam for four different values of N with
0 10w mm= . One finds 

from Fig. 1 that the beam profile becomes flatter (i.e., beam width increases) but the 

maximum intensity decreases as N increases, which means the potential wells of flatter beams 

(for example N=4, N=3) are lower or shallower than their counterparts (for example N=2, 

N=1). Fig. 1(b) is consistent with Fig. 1(a) of  [11]. 

 

 
                      (a)                                                                                          (b) 

Fig. 1. Intensity distribution of a flat-topped beam for four different values of N 

with
0 10w mm=  (a) contour graph, (b) cross line (y=0) 

After some arrangement, Eq. (1) can be expressed in following tensor form [18] 

 ( ) ( ) 1

T 1

0 1

1

1
, 0 exp ,                    (4)

2

n
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in N N n
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N ik
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where ( )yx  =Tr , λπ /2=k  is the wave number with λ being the wavelength, 1

1

−
nQ  is a 

22×  matrix named complex curvature tensor, and is given by 
2
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0

2 / 0
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Q  

Within the validity of the paraxial approximation, by applying the tensor ABCD law [47, 48], 
we can express the electric field of a flat-topped beam in the output plane after passing 
through a general astigmatic (i.e., nonsymmetrical) optical system as follows [18] 

( ) ( ) 1
1/ 2

1 1

0 1 2

1

1
, det( ) exp ,       (6)

2

nN
T

out N N n n
n

N ik
E z E
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−− −
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where det stands for the determinant, ρ  is the position vector in the output plane given by 

( )  x yρ ρ=T
ρ , A , B , C and D  are the sub-matrices of the general astigmatic optical 

system, 1

1n
−

Q  and 1

2

−
nQ  are related by following tensor ABCD law 

                                               ( )( ) 1
1 1 1

2 1 1 .                              (7)n n n

−− − −= + +Q C DQ A BQ   

The intensity of a coherent flat-topped beam at the output plane is given by 

( ) ( )
2

0, ,
2

m
out N out N

n c
I z E z

ε
− −=ρ ρ . 

For the more general case, we need to take the coherence of light into consideration. It is 
well known that a partially coherent beam can be characterized by the cross-spectral density. 
The cross-spectral density (z=0) of a partially coherent beam generated by a Schell-model 
source can be expressed in the following well-known form [49] 

( ) ( ) ( ) ( )1 2 1 2 1 2
, , 0 , 0 , 0 ,                  (8)z I z I z gΓ = = = = −r r r r r r      

where ( ) ( ), 0 , , 0I z z= = Γ =r r r is the intensity distribution of the partially coherent 

beam, and ( )1 2g −r r   is the spectral degree of coherence given by  

   ( ) ( )2
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1 2 2
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exp ,                                               (9)
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with 0σ being the transverse spatial coherence width.  

If the intensity distribution of a partially coherent flat-topped beam can be expressed 

as ( ) ( ) 2
0, 0 , 0

2

m
in N in N

n c
I z E z

ε
− −= = =r r , we can express the cross-spectral density 

of a partially coherent flat-topped beam at z=0 as follows [21, 22] 
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In the incoherent limit (when 0σ  = 0), Eq. (10) reduces to  

( ) ( ) ( )
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which denotes the cross-spectral density of an incoherent flat-topped beam. The two arbitrary 

transverse points of an incoherent flat-topped beam are correlated byδ function. 

After some arrangement, Eq. (10) can be expressed in following tensor form 

2 T 1

0 12
1 1

( 1)
( ,0) exp ,           (12)

2

n mN N

in N N nm
n m

N N ik
E

n mN

+
−

−
= =

  −  Γ = −    
   

∑∑ɶ ɶ ɶr r M r  

where 
T T T

1 2 1 1 2 2(  ) (       )x y x y= =r r rɶ  and 
1

1

−
nmM  is a 44× complex matrix given by 

                      
2 2 2

0 0 01

1

2 2 2

0 0 0

2

,                                (13)
2

nm

ni i i

kw k k

i mi i

k kw k

σ σ

σ σ

−

  
− −  

  =    − −    

I I

M

I I

  

(C) 2009 OSA 2 February 2009 / Vol. 17,  No. 3 / OPTICS EXPRESS  1757
#104920 - $15.00 USD Received 4 Dec 2008; revised 19 Jan 2009; accepted 25 Jan 2009; published 29 Jan 2009



here I is a 22×  unit matrix. Within the validity of the paraxial approximation, by applying 
the tensor ABCD law of partially coherent beam [50], we can express the cross-spectral 
density of a partially coherent flat-topped beam after passing through a general paraxial 
astigmatic optical system as follows 

( )
1/ 2

2 1 T 1

1 2 0 1 22
1 1

( 1)
( , , ) det exp ,

2

n mN N

out N N nm nm
n m

N N ik
z E
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− −

−
= =

  −   Γ = + −         
∑∑ρ ρ A BM ρ M ρɶ ɶ

 (14) 

where 
T T T

1 2(  )=ρ ρ ρɶ , A , B , C and D  are defined as follows: 
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1

1

−
nmM  and 

1

2

−
nmM  are related by following tensor ABCD law 

1 1 1 1

2 1 1( )( ) .                         (16)nm nm nm
− − − −= + +M C DM A BM  

The intensity of a partially coherent flat-topped beam at the output plane is given by 

( )1 0 1 1, ( , , ) / 2out N m out NI z n c zε− −= Γρ ρ ρ . Although the intensity distribution of a partially 

coherent flat-topped beam at z=0 is independent of its initial coherence width ( 0σ ), the 

intensity distribution and the spatial coherence of flat-topped beam upon propagation are 

closely related to its initial coherence width ( 0σ ) as shown in Fig. 4 of next section and [22]. 

Partially coherent flat-topped beam has been generated in experiment recently [28]. Eqs. (6), 
(7) and (14)-(16) can be used to study the propagation properties of coherent and partially 
coherent flat-topped beams through paraxial optical systems conveniently. 

3. The focusing properties of coherent and partially coherent flat-topped beams 

In this section, we apply the formulae derived in section 2 to study the focusing properties of 
coherent and partially coherent flat-topped beams as shown in Fig. 2. In Fig. 2, a thin lens 
with focal length f is located at the input plane (z=0), and the output plane is located at 

1
z f z= + , where 1z is the axial distance from the focal plane to the output plane. Then the 

transfer matrix between the input and output planes can be expressed as follows 

( )
( )
( )

1 11
0 / ( )( )

.   (17)
1/ 1/

z f f zf z

f f

− + +     
= =       − −      

I I I IA B I I

I I I IC D 0I I
 

Substituting Eq. (17) into Eqs. (6) and (7), we calculate in Fig. 3 the intensity distribution 
of a focused coherent flat-topped beam for different values of N at several propagation 

distances with 
0

10 , 10 , 632.8f mm w mm nmλ= = = . One finds from Fig. 3 that the focusing 

properties of a flat-topped beam (N>1) are very interesting and different from that of Gaussian 

beam (N=1). At the focal plane (
1

0z = ), the intensity of the focused flat-topped beam is of 

quasi-Gaussian distribution, and maximum intensity decreases as the beam order N increases. 
When the output plane is a little away from the focal plane, the intensity of focused flat-
topped beam becomes flat-topped, and the beam profile becomes flatter but the maximum 
intensity decreases as N increases. From Eq. (1), one can find that the flat-topped beam is not 
a pure mode, but a combination of different Gaussian modes, different Gaussian modes evolve 
differently upon propagation, what’s more, different modes overlap and interfere during 
propagation, thus leading to the interesting focusing properties of flat-topped beam. More 
information about the propagation properties of the flat-topped beam can be found in [10]-
[20].  
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Fig. 2. Schematic of a focusing optical system 

 

 

Fig. 3. Intensity distribution of a focused coherent flat-topped beam for different values of N at 
several propagation distances 

Substituting Eq. (17) into Eqs. (14)-(16), we calculate in Fig. 4 the intensity distribution 

of a focused partially coherent flat-topped beam for different values of 
0σ (i.e., initial 

coherence) at several propagation distances. The other parameters take the same values with 
those used in Fig. 3. One finds from Fig. 4 that the intensity properties of a focused flat-
topped beam are also closely related to its initial coherence. As the initial coherence 
decreases, the width of the focused beam spot at all propagation distances becomes large, 
which means a laser beam with high coherence can be focused more tightly as expected [49]. 
While the maximum intensity of the focused flat-topped beam decreases as the initial 
coherence decreases. What’s more, the flat-topped beam profile at non-focal planes disappears 
gradually, and finally becomes a quasi-Gaussian beam profile as the initial coherence 
decreases. 
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Fig. 4. Intensity distribution of a focused partially coherent flat-topped beam for different 

values of 
0σ at several propagation distances 

4. Radiation force produced by focused coherent and partially coherent flat-topped 
beams on a Rayleigh particle 

Now we study the radiation force produced by focused coherent and partially coherent flat-
topped beams on a Rayleigh dielectric sphere, whose radius is much smaller than the 

wavelength of the laser beam (i.e., λ<<a ). The schematic for trapping a Rayleigh dielectric 

sphere with a focused flat-topped beam is shown in Fig. 2. A Rayleigh dielectric sphere with 

refractive index pn  is placed near the focus. In this case, the particle is treated as a point 

dipole. It’s well known that there are two kinds of the radiation force: scattering force and 

gradient force. The scattering force ScatF caused by the scattering of light by the sphere is 

proportional to light intensity and is along the direction of light propagation. The scattering 
force can be expressed as [32] 

                               ( )Scat , / ,                                                 (18)z m outF z e n I cα=
� � �

r   

where outI is the intensity of the focused beam at the output plane, ze
�

 is a unity vector along 

the beam propagation, ( ) 4 2 2 2 28/ 3 ( ) [( 1) /( 2)]ka aα π γ γ= − + , /p mn nγ = . The gradient 

force GradF produced by non-uniform electromagnetic fields is along the gradient of light 

intensity, and is expressed as [32] 

    ( ), 2 / ,                                          (19)Grad m outF z n I cπ β= ∇
� �

r   

where
3 2 2
( 1) /( 2)aβ γ γ= − + . By applying the Eqs. (6), (7), (14)-(16), (18) and (19), we 

can calculate the radiation force induced by focused coherent and partially coherent flat-
topped beams on a Rayleigh dielectric sphere. We choose the radius of the particles to 

be 50=a nm, the refractive index of the particle to be 59.1=pn (i.e., glass) and the 

refractive index of the ambient to be 33.1=mn (i.e., water). 
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Fig. 5. The scattering force ((a)-(c)) and the transverse gradient force ((d)-(f)) of a coherent 

flat-topped beam for four different values of N at different positions 1z , and the longitudinal 

gradient force (g) and (f) for two different transverse positions x  

We calculate in Figs. 5(a)-5(c) the scattering force (cross line y=0) and in Figs. 5(d)-5(f) 
the transverse gradient force (cross line y=0) of a coherent flat-topped beam for four different 

values of N at different positions 1z , and in Figs. 5(g) and 5(h) the longitudinal gradient force 

for two different transverse positions x . The sign of radiation force means the direction of the 

force. Positive ScatF means the direction of the scattering force is along +z direction. 

Positive zGrad−F or Grad xF − means the direction of the gradient force is along +z or +x 

direction. One finds from Fig. 5 that both scattering force and gradient force decrease as the 
initial beam order N increases (i.e., beam profile becomes flatter), which means that the 
trapping stiffness (i.e., stability) of flatter beam is lower. What’s more, the forward scattering 
force always is much smaller than the longitudinal gradient force, so the scattering force in 
this case can be neglected. From Figs. 5(d) and 5(g), one finds that at the focal plane 

( 1 0z = ), there is one stable equilibrium point, and we can use focused flat-topped beam to 

trap a Rayleigh particle whose refractive index is larger than the ambient at the focus. As the 
initial beam order N increases, the trapping stability decreases due to the decrease of radiation 
force, and both transverse trapping range and longitudinal trapping range becomes smaller 
(i.e., the positions of peak values approach the focus as N increases). So a coherent flat-topped 
beam (N>1) at the focal plane does not offer any advantage for trapping a Rayleigh particle 
over a Gaussian beam. From Figs. 5(e) and 5(f), one finds that we can increase the transverse 
trapping range (i.e., increase the width of potential well of flatter beam) by increasing the 
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initial beam order N suitably near the focal plane ( 1 1z mµ= ), even though the trapping 

stiffness decreases as N increases. Table 1 shows the trapping range of Fig. 5(f) for four 
different values of N. From Table 1 we can find that the trapping range increases remarkably 
as the beam order N increases. The trapping range for the case of N=4 is much large than the 
case of N=1 (Gaussian beam). But the initial beam order N can’t be arbitrary large, because 
the trapping stability decreases with increasing N, as discussed in section 5. Rayleigh particles 
will diffuse instead of being trapped when N is very large (i.e., the trapping stiffness is very 
low) because the radiation forces are comparable to the Brownian force as shown later (see 
Fig. 8(a)). We also note from Fig. 5(h), because there are two stable equilibrium points, the 
particle can’t be stably trapped along the z direction at off-axis points. To solve this problem, 
we can use two face to face focused flat-topped beams to construct a true optical potential 
well or “optical bottle” as shown in Fig. 6. To check for stability, we can interrupt one beam 
for a moment, which causes the particle to be accelerated rapidly in the remaining beam along 
its propagation direction. When another beam is turned on again, the particle is decelerated 
slowly and returns to its equilibrium region. So two face to face focused flat-topped beams 
can be used to trap a particle in a stable manner at on-axis and off-axis points. 

 
 

Fig. 6. Schematic of two face to face flat-topped beams focused on a particle 

Table 1. The trapping range of Fig. 5(f) for four different values of N. 

 Trapping Range D 

N=1 10.2 a  

N=2 16.0 a  

N=3 19.0 a  

N=4 21.1 a  

 
 

Now we study the influence of coherence on radiation force produced by a partially 
coherent flat-topped beam. We calculate in Fig. 7(a)-7(c) the scattering force (cross line y=0) 
and in Fig. 7(d)-7(f) the transverse gradient force (cross line y=0) of a partially coherent flat-

topped beam with N=3 for different values of 
0

σ  at different positions 1z , and in Fig. 7(g) 

and 7(h) the longitudinal gradient force for two different transverse positions x . One finds 
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from Fig. 7 that scattering force, transverse and longitudinal gradient forces decrease as the 
coherence of the initial flat-topped beam decreases. The forward scattering force also is much 
smaller than the longitudinal gradient force. From Figs. 7(d) and 7(g), we find that at the focal 
plane, as the initial coherence of flat-topped beam decreases, both transverse and longitudinal 
trapping ranges become larger (i.e., the positions of peak values deviate away from the focus 

as 
0

σ  decreases), while the trapping stiffness reduces due to the decrease of radiation force. 

Table 2 shows the trapping range of Fig. 7(d) for four different values of 0σ . The trapping 

range also increases remarkably as initial coherence width 0σ decreases from Table 2. The 

trapping range for the case of 0 2σ = mm is much larger than the case of 0 100σ = mm. 

From Figs. 7(e), 7(f) and 7(h), we find at the planes near the focal plane, both trapping range 
and stability are reduced as the initial coherence of flat-topped beam decreases. Similarly, we 
can use two face to face focused partially coherent flat-topped beams to trap a particle in a 
stable manner at on-axis and off-axis points. 

 

 
 

Fig. 7. The scattering force ((a)-(c)) and the transverse gradient force ((d)-(f)) of a partially 

coherent flat-topped beam with N=3 for different values of 
0σ at different positions 1z , and 

the longitudinal gradient force (g) and (f) for two different transverse positions x  
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Table 2. The trapping range of Fig. 7(d) for four different values of 0σ  

 Trapping Range D 

0 100σ = mm 1.8 a  

0 25σ = mm 2.0 a  

0 8σ = mm 3.0 a  

0 2σ = mm 10.2 a  

 
From above discussions, we can come to the conclusion that by increasing the flatness of 

the beam profile (i.e., increasing beam order N) of the flat-topped beam, we can increase the 
transverse trapping range at the planes near the focal plane. By decreasing the initial 
coherence of the flat-topped beam, we can increase the transverse and longitudinal trapping 
ranges at the focal plane. In both cases, the stability of trapping decreases, so it is necessary to 

choose suitable beam order N and initial coherence (i.e., 0σ ) in order to extend the trapping 

range. This conclusion is the main result of present paper. 

5. Analysis of the trapping stability 

In this section, we analyze the trapping stability in detail by taking the Brownian motion into 
consideration. We know that the particle usually suffers from the Brownian motion due to the 
thermal fluctuation from the ambient (water). Following the fluctuation-dissipation theorem of 

Einstein, the magnitude of the Brownian force is expressed as ( ) 2/1
12 TakF BB πκ= [49], where 

κ is the viscosity of the ambient  (in our case, Pas10977.7
4−×=κ  at the K300=T ), a  is 

the radius of the particle and Bk is the Boltzmann constant. Then we obtain (after calculation) 

the magnitude of the Brownian force 
3

B 105.2 −×=F pN. Comparing the radiation forces in 

Figs. 5 and Fig. 7, we can find that both scattering force and gradient force in our numerical 
examples are all larger than the Brownian force. So Brownian motion does not influence the 
main conclusion of present paper. We illustrate in Fig. 8 the dependencies of the radiation 

forces
Max

ScatF , 
Max

x-GradF  and
Max

z-GradF  induced by a flat-topped beam on initial beam order N and 

initial coherence (i.e., 
0

σ ) at z1=0. For comparison, Brownian force BF is also shown in Fig. 

8. From Fig. 8(a), one finds that both scattering force and gradient force decrease as N 
increases, which is consistent with Fig. 5. When N=15, the scattering force equals Brownian 

force BF , but the gradient force is still much larger than the scattering force and Brownian 

force BF , so a flat-topped beam with N=15 can still be used to trap a particle. When N=20, the 

gradient force nearly equals the Brownian force BF , so a flat-topped beam with 20N ≥  

cannot be used for trapping a particle. From Fig. 8(b), one finds that both scattering force and 
gradient force decrease as the initial coherence of flat-topped beam decreases, which is 

consistent with Fig. 8. When 0σ  is smaller than 0.04, we cannot use a partially coherent flat-

topped beam for trapping a particle because the Brownian force is larger than the radiation 
force. The line Q in Figs. 8 (a) and 8(b) can be regarded as the critical line. From above 
discussions, we come to conclusion that the trapping stability decreases as the initial beam 
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order increases or initial coherence decreases, and we should choose suitable values of N and 

0σ  of flat-topped beam for particle trapping.  

    

Fig. 8. (a) Dependence of the radiation forces
Max

ScatF , 
Max

x-GradF  and
Max

z-GradF  produced by a 

coherent flat-topped beam on initial beam order N at z1=0, (b) Dependence of the radiation 

forces
Max

ScatF , 
Max

x-GradF  and 
Max

z-GradF  produced by a focused partially coherent flat-topped 

beam on 
0σ at z1=0 with N=3. BF is the Brownian force 

6. Conclusion 

In conclusion, we have studied the focusing properties of coherent and partially coherent 
beams, and have studied the radiation force on a Rayleigh dielectric sphere induced by 
focused coherent and partially coherent flat-topped beams. We have found that we can 
increase the transverse trapping range at the planes near the focal plane by increasing the 
flatness (i.e., beam order) of flat-topped beam, and we can increase the transverse and 
longitudinal trapping ranges at the focal plane by decreasing the initial coherence of the flat-
topped beam. We have also found that the trapping stability decreases as the flatness of flat-
topped beam increases or as the initial coherence decreases. So it is necessary to choose 
suitable beam order and initial coherence of a flat-topped beam in order to trap a particle. Our 
results are interesting and useful for particle trapping. 
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