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ABSTRACT

A new spectral continuous wavelet transform (CWT) methods are proposed for the quantitative analysis of the binary mixtures. The simultaneous spectral
resolution of binary mixtures and tablets containing paracetamol (PAR) and chloroxozone (CHL) with overlapping absorption spectra is performed by six
wavelet families with no chemical separation procedure. The calibration graphs for the six wavelet families are obtained by the help of the data collected from the
CWT- signal amplitudes corresponding to the zero crossing points in the spectral range of 210 nm-310 nm. The validation of each wavelet family is carried out by
analyzing various synthetic binary mixtures of the above mentioned drugs. The second derivative spectrophotometry (D2) is used to compare the experimental
results provided by the analyzed continuous wavelet families and a good coincidence is reported for the proposed analytical approaches.

Keywords: Continuous wavelet families; Simultaneous determination; Paracetamol; Chloroxozone; Binary mixture; Tablets.

INTRODUCTION

In the field of analytical chemistry, various graphical and numerical
spectral methods have been applied to the quality control or to the routine
analysis of several commercial preparations containing complex mixtures
with a constant matrix. The derivative spectrophotometry has been used
extensively for the binary mixture analysis. Many reviews have been reported
the theoretical basis and applications of derivative spectrophotometry to
multicomponent samples > however it has several disadvantages, e.g. the
signal/noise ratio diminishes in the higher order derivative, the main band and
the noise peak may interfere with each other in some cases. In addition the
involved parameters (derivative order, smoothing factor, the scale factor and
working wavelength) must be well selected for the suitable application of the
derivative spectrophotometry. However, the derivative method may not give
better results in all cases even if the above conditions are provided. Nowadays,
various mathematical calibration models, e.g. classical least squares, inverse
least squares, principal component regression and partial least squares have
been extensively applied to complex mixture analysis. Classical least squares
and inverse least squares have some limited area of analytical applications and
for some mixtures the methods can not be applied due to the fact that the matrix
effects of samples can not be fully eliminated.

However, principal component regression and partial least squares
eliminate the matrix effect but in some cases it requires well knowledge of
statistics and involves much time for finding the optimal factor number.

Therefore, it shows us that we need spectral approaches to analyze the
complex mixtures.

During the last decades the wavelet transform method became an efficient
tool to solve problems in several areas of science and engineering **. Very
recently, the method has been successfully applied to analytical chemistry *!3.
The advantage of CWT approach over the derivative method is that CWT
provides a set of wavelet families which give us a rich resolution of the
overlapping absorption spectra. For example, the wavelet transform doesn’t
require an extra denoising procedure during the spectral transform due to its
mathematical algorithm. The use of the spectral CWT provides sharp and
higher peak amplitudes possessing low signal-to-noise (S/N) ratio.

One of the open problem encountered in the application of the continuous
wavelet transform (CWT) or the discrete wavelet transform (DWT) in
quantitative drug analysis is to find, for a specified mixture, the optimal wavelet
family providing the acceptable recovery results. This problem can be handled
in principle from the mathematical point of view as an optimal control problem.
However, the existence of various wavelet families and the complexity of the
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spectra create difficulties in handling this problem. The common encountered
case is that several families provide the same recoveries for a given complex
data system. As a result, we have to analyze the values of other quantities, e.g.
mean recovery, the standard deviation and the relative standard deviation in
order to decide which wavelet family gives the better recovery results.

The quantitative analysis of PAR combinations with other active
compounds by spectrophotometry > and by HPLC %*?¢ has been obtained
in the literature.

The main aim of this study is to develop new spectral alternative resolutions
of the mixture PAR and CHL drugs. For the investigated binary mixture,
a series of continuous wavelet families (Mexican hat function, Daubechies,
Symplets, Coiflets, Biortogonal and Gauss) give us higher recoveries. In order
to compare the assay results of six wavelet families, the D2 method is used as a
comparison method for the resolution of the above mixture. The validity of six
indicated CWT families and DS approaches is performed by analyzing various
synthetic mixtures of CHL and PAR compounds. The proposed CWT and DS
approaches can be use for the routine quality control of the tablet containing
CHL and PAR compounds.

Although the classical derivative spectrophotometry has been applied
widely for the resolution of the binary mixtures, in the spectral quantitative
analysis this method has several disadvantages and limitations, e.g., only the
first-fourth derivative order can be used, it has low sensitivity in ambiguous
spectral situation and the decreasing of signal/noise ratio.

Recently, the wavelet method started to play and important role in
simultaneous spectral analysis of complex mixtures. The spectral wavelet
methods are more useful due to their high sensitivities, self de-noising
algorithms, providing sharp peaks together with higher peak amplitudes. The
existence of multiple wavelet families is one of the most used advantages in
dealing with the alternative spectral transformations which give us different
outputs for the quantitative evaluation in mixture analysis.

EXPERIMENTAL

Apparatus and Software

In this study a Shimadzu UV-1601 double beam UV-Visible
spectrophotometer equipped with a fixed slit width (2 nm) and connected to
a computer loaded with Shimadzu UVPC software and a LEXMARK E320
printer was involved to record the absorption spectra and their absorbance
measurements. All statistical and signal processing calculations are based on
developed algorithms in MATLAB 7.0 and Microsoft EXCEL softwares.



Commercial tablet formulation

A commercial tablet, namely Parafon® Table produced by SANTA
FARMA Pharm. Ind. from Turkey tablet has investigated. Each commercial
tablet contains 300 mg PAR and 250 mg CHL compounds.

Standard solutions

Stock solutions of PAR and CHL have separately prepared by dissolving 50
mg for each compound in methanol and diluting them into 100-mL calibrated
flask. A standard series for each PAR and CHL in the linear concentration range
of4-14 pg/mL and 6-16 pg/mL, respectively, has obtained by using the above
stock solutions. A validation set consisting of 12 synthetic mixture solutions
of PAR and CHL in the above concentration range were obtained from stock
solutions by the dilution. For all dilutions we have used 0.1 M HCI.

Analysis of commercial tablet

10 tablets were accurately weighed and powdered in a mortar. An
equivalent amount to half tablet containing CHL and PAR was dissolved with
methanol to 50 mL calibrated flask. The content of the flask was mechanically
shaken for 30 min. The same content was filtrated with 0.45 um membrane filter
and diluted to an appropriate volume with 0.1 N HCI. The above procedure
has repeated 8 times. All proposed spectral methods were applied to the final
sample solutions.

METHOD AND THEORETICAL FRAMEWORK

Wavelets

Various amounts of wavelet families and functions provide a rich space in
which to search for a wavelet which will very efficiently represent a signal in
the field of analytical chemistry.

The wavelet function is orthogonal to all functions which are obtained
by shifting the wavelet function to right or left by an integer number. More
exactly, the wavelet function is orthogonal to all functions which are obtained
by dilating the mother by a factor of 2/ and shifting by multiples of 2/ units.

It was shown in the literature that the wavelets families have the property
to efficiently represent functions possessing localized features. In addition of
that, some wavelets may be implemented in an extremely computationally
efficient manner by means of a multi-resolution analysis.

Wavelet families and their combinations with other chemometric
techniques have been used for the quantitative analysis of complex mixtures.

In the following a briefly fundamental description of a wavelet family is
presented. The starting point is to consider a wavelet family ¢J (A) (1) . By
scaling and shifting the wavelet function ¢J (L) a set of functions denoted by
¢ ab(h) canbe obtain as

(O]
—_1 A=b
Ta,b(a)’ml{](a ) az0, a,beR.
Here a denotes the scale parameter, b is the translation parameter and R
denotes the domain of real numbers. A CWT of a given signal f (X) is defined
as

o x @)
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where the superscript * is the complex conjugate and M .. denotes
the inner product of function f(A) onto the wavelet functi (é) aﬁj{k))

In the following we have six wavelet families abbreviated as mex, b2,
sym2, coifl, bior4.4, gaus2.

RESULTS AND DISCUSSION

Alternative spectral CWT approaches

Figure 1a indicates that the absorption spectra of PAR and CHL overlap
in the spectral region 210-320 nm. The existence of the overlapping absorption
spectra of the compounds is to render impossible for the spectral simultaneous
determination of the PAR and CHL in samples. For this reason, six continuous
wavelet families as new alternative spectral methods are proposed for the
simultaneous determination of PAR and CHL compounds in their synthetic
mixtures and tablets without using any separation step. As itis known, derivative
spectrophotometry has been frequently used for the spectral determination
of compounds in samples. In all cases, this derivative method may not give
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desirable results due to overlapping spectra and decrease the signal-to-noise
ratio in derivative calculation in binary mixture analysis. It is clear that the
use of alternative methods and mathematical approaches for the elimination
of the disadvantages of the above mentioned methods needs for the analysis
of complex mixtures. Moreover, the alternative spectral CWT approaches can
be considered as new examples in the spectral quantitative analysis of two
component mixtures.

In this study, several continuous wavelet families for the determination
of PAR and CHL are tested and a series of wavelet families, Mexican hat
function, Daubechies, Symplets, Coiflets, Biortogonal and Gauss, are suitable
for the analysis of the binary mixture of the subject two drugs. The application
of six CWT families is given in the following.

CWT calibration graphs

The absorption spectra of PAR and CHL in the concentration range 4-14
pg/mL and 6-16 pg/mL CHL with their tablet samples are plotted in Figure la.
The absorption spectra consisting of 1024 data points in the wavelength range
210-310 nm, have transferred in the wavelet domain and it was processed by the
above mentioned six CWT families. The mexh-CWT, db2-CWT, sym2-CWT,
coif1-CWT, bior4.4-CWT and gaus2-CWT spectra have obtained by graphing
the CWT- coefficients the provided by Eq. (2) versus the wavelengths, as shown
in Figure 1b-g, respectively. At the selected wavelengths, the calibration graphs
and their statistical parameters of CHL for each CWT family are indicated
in Table 1.The determination of CHL in samples has performed by using the
mexh-CWT , db2-CWT, sym2-CWT, coif-CWT, bior4.4-CWT and gaus2-
CWT calibration graphs as shown in Table 1. By using a similar procedure as
for CHL, the calibration graphs of PAR are depicted in Table 2. The amount of
PAR in samples is calculated by using the above calibration graphs.

The red CWT spectra given in Figure 1b-f, correspond to the tablet
samples. Transformed spectra of calibration graph and tablet samples have
collected in the same Figure in order to demonstrate clearly all transformations
of the absorption spectra of two pure compounds an their corresponding tablet
samples.

The derivative spectrophotometry has used to verify the six CWT methods.
By trying the first and the second derivative we have observed that the second
derivative is suitable to check the results of the proposed CWT alternative
methods. The results provided by the first derivative method have indicated
that this method is not suitable for the quantitative analysis of PAR and CHL.

Figure 1h shows the second derivative spectra of CHL and PAR in the
linear concentration range of 6-16 pg/mL and 4-14 pg/mL, respectively as well
as the tablet samples. For all calculations involved in D2 method we used AA=5
nm and a scaling factor of 15.

The scaling factor was needed in order to increase the peak amplitude. The
second derivative spectra was processed by smoothing function with AA=5
nm due to noise elimination procedure. In contrast to derivative method, the
spectral CWT approaches do not require the above treatments.

The derivative calibration graphs have obtained by measuring the second
derivative amplitudes at 250.9 and 271.8 nm for CHL and at 262.2.nm for PAR.
The linear regression analysis and its statistical results for both compounds are
shown in Table 1 and Table 2. The analysis of CHL and PAR in samples is
performed by derivative calibration graphs.
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Figure 1. Absorption spectra, b) mexh-CWT spectra, ¢) db2-CWT spectra, d) sym2-CWT spectra, ¢) coifl-CWT spectra, f) bior4.4-CWT spectra, g) gaus2-

CWT spectra and h) D2-spectra of 4,6,8,10,12,14 ng/mL PAR (—) and 6,8,10,12,14,16 ng/mL CHL (----) and their tablet samples (—).
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Table 1. CHL linear regression analysis and its corresponding statistical results by the proposed methods
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LOD LO
CWT A (nm) M n R SE(m) SE(n) SE(r) eml) | (e /H?L)
229.4 4.49x10 -1.80 x107 0.9998 436 x10* 5.02x10° 3.65x10° 0.82 2.74
Mexh 258.5 -2.66x102 9.10 x10* 1.0000 7.40 x10° 8.53 x10* 6.19 10 0.24 0.79
282.7 8.49 x10? -1.76 x10° 1.0000 2.94x10* 3.39x10° 2.46 x10° 0.29 0.98
2344 3.87x10? 47510 0.9998 3.39x10* 3.91x10° 2.84x10° 0.74 247
db2-128 262.0 -1.70 x10? 2.26 x107 0.9999 1.28 x10* 1.48 x10° 1.07 x10° 0.58 1.94
285.4 6.05x107 433 x10* 1.0000 1.65 x10* 1.90 x10° 138 x10° 0.23 0.77
2337 -3.86x107 -1.75 10" 0.9998 3.95x10* 4.55x10° 3.30x10° 0.87 2.89
sym2-128 261.9 1.69 x10° 245 x107 0.9999 1.20 x10* 1.38 x10° 1.00 x10° 0.60 2.00
288.0 -5.90 x10? -3.06 x10° 0.9999 2.96 x10 3.41x10° 248 x10° 0.42 1.42
230.1 3.10 x10? 6.42x10" 0.9997 4.02 x10* 4.63 x10°? 3.37x10° 1.10 3.67
coifl-144 257.7 -1.83x10? 2,01 x10°% 1.0000 422x10° 4.86 x10* 3.53x10* 0.19 0.65
280.4 6.78 x10? -3.01x10° 0.9999 5.01 x10* 577 x10° 4.19x10° 0.63 2.09
256.8 2270 x10? 7.15x10* 0.9999 1.76 x10* 2.03 x10° 1.47 x10° 0.55 1.84
bior.4-224 278.5 1.09 x10" 5.24x10° 1.0000 4.85x10* 5.59x10° 4.06 x10° 0.38 1.26
2973 912 x10? -4.83x10° 1.0000 2.74x10* 3.16 x10° 2.29x10° 0.25 0.85
229.1 4.06 x107 -8.78 x10* 0.9998 4.18 x10* 4.82x10°% 3.50 x10° 0.87 2.91
gaus2-64 258.4 2.32x10? 1.75 x10° 1.0000 6.20 x10° 7.14 x10* 5.19 x10* 0.23 0.76
282.0 7.66 x10? 2.58x10° 1.0000 3.48 x10 4.01x10% 2.92x10° 0.38 1.28
250.9 1.89 x10° -5.53x10° 0.9998 2.10x10* 2.42x10°% 1.76x10° | 0.86 2.87
bz 2718 -6.91x10? 7.70 x10° 0.9997 8.86 x10" 1.02 x10? 7.41x10° 0.99 330

r = Correlation coefficient of the regression function, m = Slope of the regression function, n = Intercept of the regression function,
error of the correlation coefficient, m(SE) = Standard error of the slope, n(SE) = Standard error of the intercept,

quantitation

Validation of spectral CWT methods

In the concentration range of 6-16 pg/mL for CHL and 4-14 pg/mL for PAR, the six spectral CWT approaches have provided good linearities as indicated by
the correlation coefficients (r) shown in Table 1 and Table 2, respectively. Also a good linearity for CHL and PAR calibration graphs has reported for D2 method

in the above concentration range (see Table 1 and Table 2).

Table 2. PAR linear regression analysis and its corresponding statistical results by the proposed methods

r(SE) = Standard
LOD = Limit of detection, LOQ = Limit of

Method A (nm) m n r SE(m) SE(n) SE(r) LOD LOQ
236.0 3.51x10? -5.23 x107% | 0.9993 6.38 x10* 6.14x103 5.34x103 1.29 4.29

mexh 268.8 | -4.92x10? 1.98x10* | 0.9999 | 3.76x10* 3.62x10° 3.15x103 0.49 1.64
db2-128 239.2 1.83 x107 -4.88x10° | 0.9994 | 3.14x10* 3.02x10° 2.63 x10° 1.21 4.04
273.0 | -2.99x10? 9.73 x10* | 0.9999 | 2.30x10* 2.21x10? 1.92 x10° 0.54 1.81

239.1 -1.80 x10 6.87x10° | 0.9994 | 3.02x10* 2.91x10? 2.53 x10° 1.19 3.96

sym2-128 272.8 3.02x10 -7.94x10* | 0.9999 | 2.35x10* 2.27x10° 1.97 x10- 0.55 1.83
coifl-144 235.9 2.92 x107 -9.13x10% | 0.9996 | 4.33x10* 4.17 x10° 3.62x103 1.05 3.50
268.5 -4.01 x10? | -6.19x10° | 0.9999 | 3.45x10* 3.32x103 2.89x10° 0.61 2.03

biord 4-224 268.8 | -7.21x10? 3.42x10° | 0.9999 | 5.79x10* 5.57x103 4.84 x10° 0.57 1.89
289.1 2.12 x10? -1.46 x10% | 0.9997 | 2.59x10* 2.49 x10° 2.16 x10° 0.86 2.87

caus2-64 236.1 3.07 x102 -8.50 x10% | 0.9995 | 4.92x10* 4.73 x10° 4.11 x103 1.13 3.78
268.9 | -4.38x10? 3.18x10* | 0.9999 | 3.37x10* 3.24 x103 2.82x107 0.54 1.81

D2 262.2 3.72 x102 1.79x10° | 0.9998 3.42x10* | 3.29x10° 2.86 x10° 0.59 1.98

The proposed spectral mexh-CWT, db2-CWT, sym2-CWT, coif|-CWT, bior4.4-CWT and gaus2-CWT methods have tested by considering 12 different
mixtures consisting of CHL and PAR within the working concentration range. D2 method has applied to the above mixtures.

It was observed that all spectral approaches provided successful accuracies and precisions according to the obtained mean recoveries and the relative standard
deviations indicated in Table 3 for CHL and in Table 4 for PAR. The numerical values of the mean recoveries show that gauss2-CWT gives 99.9% for CHL and
mexh-CWT approaches to 100% for PAR (see Table 3 and Table 4). By reading the numerical values of the lowest relative standard deviations (RSD) we conclude
that sym2-CWT gives 1.12% for CHL and 0.50 for PAR as illustrated in Table 3 and Table 4.
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Table 6. PAR experimental results obtained by application of the proposed methods to the tablets

PAR experimental results (mg/tablet)

D2
262.2
291.7

gaus2-CWT

236.1

bior4.4-CWT

268.8

coif-CWT

sym2-CWT
235.9
295.8

239.1

db2-CWT

239.2
290.2

mexh-CWT

236

268.9

289.1

268.5

272.8

273.0

268.8

No.

292.2

287.8 297.4 290.2
290.8
286.5

294.6
294.8

299.7

308.7

291.4

289.6

290.2

289.4
290.0
285.2

292.2
299.8

292.6

288.1

288.8

292.5 308.7 300.8 296.4
308.8

290.0
292.6

301.1

290.6
303.1

296.7

303.3

294.6
294.6
293.7

300.8
301.9

300.4
301.1

298.6

301.5 300.8

286.8

297.7

303.8

309.6
304.0
304.5
308.8

286.2
287.7
286.3
289.1

299.0

285.8

299.4 286.1 295.7 295.1
297.4

292.2

297.9

302.1

295.7

293.2

285.0

296.4
299.8

295.7

285.5

298.1 291.9

292.9

303.3

296.1

293.1

284.0
285.2

300.8 294.6 303.3 296.7 293.8 286.5 301.1
301.9 294.6

300.4
301.1

298.6

303.8 297.8 306.2 286.8 301.5 300.8
297.0

309.6
305.7

299.0 293.7

285.8

287.4 297.7 297.1
1.96
0.68

0.69
1.36

293.7

299.9

294.6

295.2 289.5 297.3 303.5

286.3

Mean

3.77
1.27
1.33
2.62

4.06

6.07
2.04
2.15
4.20

4.03
1.37
1.43
2.79

4.06
1.35
1.43
2.81

1.11
0.38
0.39
0.77

4.02
1.32
1.42
2.79

3.29
1.09
1.16

2.28

3.97
1.34
1.40
2.75

2.73
0.94
0.97
1.89

4.10

2.19
0.76
0.77
1.52

SD
RSD

137
1.44
2.82

1.39
1.45
2.84

SH

—0.05)

CL (p
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CONCLUSION

The study illustrated a successful application of the spectral CWT
approaches to the analysis of synthetic binary mixtures as well as tablets
containing CHL and PAR compounds. A series of six CWT families give
satisfactory determination results despite the overlapping absorption spectra of
the related compounds in the same spectral range of 210-320 nm. The results of
this manuscript show that the role of the CWT method becomes very important
for the rapid, accurate, precise, very cheap and easy to apply of the quantitative
analysis of two-component mixtures. The proposed CWT approaches do not
need the extra treatments as in the case of the classical derivative method.
Therefore, the proposed spectral alternative CWT processing method can
replace successfully the classical derivative method. Besides, the presence
of several continuous wavelet families providing desirable results open new
problem in the field of chemometrics, namely the optimal control like problem
for finding the optimal CWT family for a given complex mixture.

Finally, we strongly believe that this alternative approaches can
successfully used in routine analysis and quality control of tablets containing
the related compounds.
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