Abstract:
In this paper, we discuss existence and uniqueness of solutions to nonlinear fractional order ordinary differential equations with integral boundary conditions in an ordered Banach space. We use the Caputo fractional differential operator and the nonlinearity depends on the fractional derivative of an unknown function. The nonlinear alternative of the Leray- Schauder type Theorem is the main tool used here to establish the existence and the Banach contraction principle to show the uniqueness of the solution under certain conditions. The compactness of solutions set is also investigated and an example is included to show the applicability of our results.