dc.contributor.author |
Wu, Guo-Cheng
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Xie, He-Ping
|
|
dc.date.accessioned |
2017-04-24T08:40:48Z |
|
dc.date.available |
2017-04-24T08:40:48Z |
|
dc.date.issued |
2016-08 |
|
dc.identifier.citation |
Wu, G.C., Baleanu, D., Xie, H.P. (2016). Riesz Riemann-Liouville difference on discrete domains. Chaos, 26(8). http://dx.doi.org/10.1063/1.4958920 |
tr_TR |
dc.identifier.issn |
1054-1500 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/1573 |
|
dc.description.abstract |
A Riesz difference is defined by the use of the Riemann-Liouville differences on time scales. Then the definition is considered for discrete fractional modelling. A lattice fractional equation method is proposed among which the space variable is defined on discrete domains. Finite memory effects are introduced into the lattice system and the numerical formulae are given. Adomian decomposition method is adopted to solve the fractional partial difference equations numerically. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Amer Inst Physics |
tr_TR |
dc.relation.isversionof |
10.1063/1.4958920 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
|
dc.subject |
Fractional Diffusion Equation |
tr_TR |
dc.subject |
Logistic Map |
tr_TR |
dc.subject |
Space |
tr_TR |
dc.subject |
Calculus |
tr_TR |
dc.subject |
Systems |
tr_TR |
dc.subject |
Chaos |
tr_TR |
dc.title |
Riesz Riemann-Liouville difference on discrete domains |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Chaos |
tr_TR |
dc.identifier.volume |
26 |
tr_TR |
dc.identifier.issue |
8 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bilgisayar Bölümü |
tr_TR |