DSpace Repository

Covariance Features for Trajectory Analysis

Show simple item record

dc.contributor.author Karadeniz, Talha
dc.contributor.author Maraş, Hadi Hakan
dc.date.accessioned 2019-12-25T11:39:34Z
dc.date.available 2019-12-25T11:39:34Z
dc.date.issued 2018
dc.identifier.citation Karadeniz, Talha; Maras, Hakan Hadi, "Covariance Features for Trajectory Analysis", Elektronika ir Elektrotechnika, Vol. 24, No. 3, pp. 78-81, (2018). tr_TR
dc.identifier.issn 1392-1215
dc.identifier.uri http://hdl.handle.net/20.500.12416/2262
dc.description.abstract In this work, it is demonstrated that covariance estimator methods can be used for trajectory classification. It is shown that, features obtained via shrunk covariance estimation are suitable for describing trajectories. Compared to Dynamic Time Warping, application of explained technique is faster and yields more accurate results. An improvement of Dynamic Time Warping based on counting statistical comparison of base distance measures is also achieved. Results on Australian Sign Language and Character Trajectories datasets are reported. Experiment realizations imply feasibility through covariance attributes on time series. tr_TR
dc.language.iso eng tr_TR
dc.publisher Kaunas Univ Technology tr_TR
dc.relation.isversionof 10.5755/j01.eie.24.3.15290 tr_TR
dc.rights info:eu-repo/semantics/openAccess tr_TR
dc.subject Covariance Matrices tr_TR
dc.subject Data Mining tr_TR
dc.subject Sign Language tr_TR
dc.subject Time Series Analysis tr_TR
dc.title Covariance Features for Trajectory Analysis tr_TR
dc.type article tr_TR
dc.relation.journal Elektronika ir Elektrotechnika tr_TR
dc.contributor.authorID 304886 tr_TR
dc.contributor.authorID 34410 tr_TR
dc.identifier.volume 24 tr_TR
dc.identifier.issue 3 tr_TR
dc.identifier.startpage 78 tr_TR
dc.identifier.endpage 81 tr_TR
dc.contributor.department Çankaya Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü tr_TR


Files in this item

This item appears in the following Collection(s)

Show simple item record