dc.contributor.author |
Abdeljawad, Thabet
|
|
dc.contributor.author |
Baleanu, Dumitru
|
|
dc.date.accessioned |
2020-03-05T08:16:31Z |
|
dc.date.available |
2020-03-05T08:16:31Z |
|
dc.date.issued |
2017-09 |
|
dc.identifier.citation |
Abdeljawad, Thabet; Baleanu, Dumitru, "Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel", Chaos Solitons&Fractals, Vol.102, pp.106-110, (2017). |
tr_TR |
dc.identifier.issn |
0960-0779 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2602 |
|
dc.description.abstract |
Discrete fractional calculus is one of the new trends in fractional calculus both from theoretical and applied viewpoints. In this article we prove that if the nabla fractional difference operator with discrete Mittag-Leffler kernel ((ABR)(a -1) del(alpha)y) (t) of order 0 < alpha < 1/2 and starting at a - 1 is positive, then y(t) is alpha(2)- increasing. That is y (t + 1) >= alpha(2)y(t) for all t is an element of N-a = {a, a + 1,...}. Conversely, if y(t) is increasing and y(a) >= 0, then ((ABR)(a-1)del(alpha)y)(t) >= 0. The monotonicity properties of the Caputo and right fractional differences are concluded as well. As an application, we prove a fractional difference version of mean-value theorem. Finally, some comparisons to the classical discrete fractional case and to fractional difference operators with discrete exponential kernel are made. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Pergamon-Elsevier Science LTD |
tr_TR |
dc.relation.isversionof |
10.1016/j.chaos.2017.04.006 |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Discrete Fractional Derivative |
tr_TR |
dc.subject |
Discrete Mittag-Leffler Function |
tr_TR |
dc.subject |
Discrete ABR Fractional Derivative |
tr_TR |
dc.subject |
Alpha-Increasing |
tr_TR |
dc.subject |
Discrete Fractional Mean-Value Theorem |
tr_TR |
dc.title |
Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Chaos Solitons&Fractals |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
102 |
tr_TR |
dc.identifier.startpage |
106 |
tr_TR |
dc.identifier.endpage |
110 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |