dc.contributor.author |
Baleanu, Dumitru
|
|
dc.contributor.author |
Darzi, R.
|
|
dc.contributor.author |
Agheli, Bahram
|
|
dc.date.accessioned |
2020-03-06T12:19:51Z |
|
dc.date.available |
2020-03-06T12:19:51Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Baleanu, D.; Darzi, R.; Agheli, B., "Fractional Hybrid Initial Value Problem Featuring Q-Derivatives", Acta Mathematica Universitatis Comenianae, Vol. 88, No. 2, pp. 229-238, (2019). |
tr_TR |
dc.identifier.issn |
0231-6986 |
|
dc.identifier.uri |
http://hdl.handle.net/20.500.12416/2615 |
|
dc.description.abstract |
We have perused about the existence of a solution toward hybrid initial value problem (HIVP) featuring fractional q-derivative
{D-q(delta)[v(t)/h(t,v(t) max(0 <=tau <= t)vertical bar v(t)vertical bar] rho(t, v(t)), t is an element of(0,1), 0 < delta <= 1`,
in which D-q(delta) denotes the Riemann-Liouville fractional q-derivative in the order of delta. In Banach algebra, by making use of a fi xed point theorem based Dhage along with mixed Lipschitz and Caratheodory condition, a way of solving the above fractional Hybrid initial value problem (FHIVP) featuring q-derivatives veri fi ed, in this study. |
tr_TR |
dc.language.iso |
eng |
tr_TR |
dc.publisher |
Comenius Univ |
tr_TR |
dc.rights |
info:eu-repo/semantics/closedAccess |
tr_TR |
dc.subject |
Existence Solution |
tr_TR |
dc.subject |
Boundary Value Problem |
tr_TR |
dc.subject |
Fixed Point Theorem |
tr_TR |
dc.subject |
Fractional Q-Difference Equation |
tr_TR |
dc.title |
Fractional Hybrid Initial Value Problem Featuring Q-Derivatives |
tr_TR |
dc.type |
article |
tr_TR |
dc.relation.journal |
Acta Mathematica Universitatis Comenianae |
tr_TR |
dc.contributor.authorID |
56389 |
tr_TR |
dc.identifier.volume |
88 |
tr_TR |
dc.identifier.issue |
2 |
tr_TR |
dc.identifier.startpage |
229 |
tr_TR |
dc.identifier.endpage |
238 |
tr_TR |
dc.contributor.department |
Çankaya Üniversitesi, Fen - Edebiyat Fakültesi, Matematik Bölümü |
tr_TR |