DSpace Repository

On Multiplication In Finite Fields

Show simple item record

dc.contributor.author Cenk, Murat
dc.contributor.author Özbudak, Ferruh
dc.date.accessioned 2020-04-17T00:02:58Z
dc.date.available 2020-04-17T00:02:58Z
dc.date.issued 2010-04
dc.identifier.citation Cenk, Murat; Ozbudak, Ferruh,"On multiplication in finite fields", Journal of Complexıty, Vol. 26, No. 2, pp. 172-186, (2010) tr_TR
dc.identifier.issn 1090-2708
dc.identifier.issn 0885-064X
dc.identifier.uri http://hdl.handle.net/20.500.12416/3271
dc.description.abstract We present a method for multiplication in finite fields which gives multiplication algorithms with improved or best known bilinear complexities for certain finite fields. Our method generalizes some earlier methods and combines them with the recently introduced complexity notion (M) over cap (q)(l), which denotes the minimum number of multiplications needed in F-q in order to obtain the coefficients of the product of two arbitrary l-term polynomials modulo x(l) in F-q[x]. We study our method for the finite fields F(q)n, where 2 <= n <= 18 and q = 2, 3,4 and we improve or reach the currently best known bilinear complexities. We also give some applications in cryptography. (C) 2010 Published by Elsevier Inc. tr_TR
dc.language.iso eng tr_TR
dc.publisher Academic Press INC Elsevier Science tr_TR
dc.relation.isversionof 10.1016/j.jco.2009.11.002 tr_TR
dc.rights info:eu-repo/semantics/closedAccess tr_TR
dc.subject Finite Fields tr_TR
dc.subject Algebraic Function Fields tr_TR
dc.subject Bilinear Complexity tr_TR
dc.title On Multiplication In Finite Fields tr_TR
dc.type article tr_TR
dc.relation.journal Journal of Complexıty tr_TR
dc.contributor.authorID 6093 tr_TR
dc.identifier.volume 26 tr_TR
dc.identifier.issue 2 tr_TR
dc.identifier.startpage 172 tr_TR
dc.identifier.endpage 186 tr_TR
dc.contributor.department Çankaya Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü tr_TR


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record