Özet:
This paper build a structure of fuzzy neural network, which is well sufficient to gain a fuzzy interpolation polynomial of the form y(p) = a(n)x(p)(n) +... + a(1)x(p) + a(0) where a(j) is crisp number (for j = 0,..., n), which interpolates the fuzzy data (x(j), y(j)) (for j = 0,..., n). Thus, a gradient descent algorithm is constructed to train the neural network in such a way that the unknown coefficients of fuzzy polynomial are estimated by the neural network. The numeral experimentations portray that the present interpolation methodology is reliable and efficient.